1
|
Zhao HF, Yao JQ, Wang YS, Gao N, Zhang T, Li L, Liu Y, Chen ZJ, Peng J, Liu XW, Yu HB. Crystal Facets-Activity Correlation for Oxygen Evolution Reaction in Compositional Complex Alloys. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404095. [PMID: 39041896 PMCID: PMC11423224 DOI: 10.1002/advs.202404095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Compositional complex alloys, including high and medium-entropy alloys (HEAs/MEAs) have displayed significant potential as efficient electrocatalysts for the oxygen evolution reaction (OER), but their structure-activity relationship remains unclear. In particular, the basic question of which crystal facets are more active, especially considering the surface reconstructions, has yet to be answered. This study demonstrates that the lowest index {100} facets of FeCoNiCr MEAs exhibit the highest activity. The underlying mechanism associated with the {100} facet's low in-plane density, making it easier to surface reconstruction and form amorphous structures containing the true active species is uncovered. These results are validated by experiments on single crystals and polycrystal MEAs, as well as DFT calculations. The discoveries contribute to a fundamental comprehension of MEAs in electrocatalysis and offer physics-based strategies for developing electrocatalysts.
Collapse
Affiliation(s)
- Hui-Feng Zhao
- Wuhan National High Magnetic Field Center & School of Physic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun-Qing Yao
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ya-Song Wang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Niu Gao
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Zhang
- Wuhan National High Magnetic Field Center & School of Physic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Li
- Wuhan National High Magnetic Field Center & School of Physic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuyao Liu
- Wuhan National High Magnetic Field Center & School of Physic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng-Jie Chen
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Peng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin-Wang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center & School of Physic, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Mei J, Deng Y, Cheng X, Wu Q. Facile and scalable synthesis of Ni 3S 2/Fe 3O 4 nanoblocks as an efficient and stable electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2024; 660:440-448. [PMID: 38244509 DOI: 10.1016/j.jcis.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
This study employed a one-step hydrothermal process to synthesize Ni3S2/Fe3O4 nanoblocks in situ on nickel foam (NF). The resulting Ni3S2/Fe3O4/NF catalyst demonstrates exceptional electrocatalytic activity for the oxygen evolution reaction (OER) and robust long-term stability. It achieves a low overpotential of only 220 mV for a current density of 10 mA cm-2 with a Tafel slope of 54.1 mV dec-1 and remains stable in 1.0 M KOH for 66 h. The binder-free self-supported three-dimensional nanoblocks enhance the reaction region and long-term stability. Electronic interactions between Fe3O4 and Ni3S2, coupled with heterogeneous interfaces, optimize the electronic structure, fostering the formation of highly reactive species. Density-functional theory (DFT) calculations confirm that Ni3S2/Fe3O4, with a heterogeneous interfacial structure, modulates the chemisorption of reaction intermediates on the catalyst surface, optimizing the Gibbs free energies (ΔG) of oxygen-containing intermediates. The synergistic effect between the two active materials within the heterogeneous structure enhances OER catalytic performance. This finding offers a valuable approach to designing efficient and stable OER electrocatalysts.
Collapse
Affiliation(s)
- Jing Mei
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yuqing Deng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaohong Cheng
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
3
|
Zhao S, Cao W, Lu L, Tan Z, Wang Y, Wu L, Li J. Three-dimensional ordered macroporous design of heterogeneous cobalt-iron phosphides as oxygen evolution electrocatalyst. NANOTECHNOLOGY 2024; 35:185402. [PMID: 38262057 DOI: 10.1088/1361-6528/ad21a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Oxygen evolution reaction (OER) plays a key role in electrochemical conversion, which needs efficient and economical electrocatalyst to boost its kinetics for large-scale application. Herein, a bimetallic CoP/FeP2heterostructure with a three-dimensional ordered macroporous structure (3DOM-CoP/FeP2) was synthesized as an OER catalyst to demonstrate a heterogeneous engineering induction strategy. By adjusting the electron distribution and producing a lot of active sites, the heterogeneous interface enhances catalytic performance. High specific surface area is provided by the 3DOM structure. Additionally, at the solid-gas-electrolyte threephase interface, the electrocatalytic reaction exhibits good mass transfer.In situRaman spectroscopy characterization revealed that FeOOH and CoOOH reconstructed from CoP/FeP2were the true OER active sites. Consequently, the 3DOM-CoP/FeP2demonstrates superior OER activity with a low overpotentials of 300/420 mV at 10/100 mA cm-2and meritorious OER durability. It also reveals promising performance as the overall water splitting anode.
Collapse
Affiliation(s)
- Songan Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weijin Cao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Lu Lu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Zhaoyang Tan
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Lanlan Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
4
|
Wan Z, Guo X, Jiang J, Xin Y, Tang B, Zhang H, Wu Y, Xia L, Yu P. Modulating nickel-iron active species via dealloying to boost the oxygen evolution reaction. Dalton Trans 2024; 53:2065-2072. [PMID: 38180063 DOI: 10.1039/d3dt03008c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The surface structure and composition of pre-catalysts play a critical role in the surface reconstruction process toward active species during the anodic oxygen evolution reaction (OER). Surface modified methods can accelerate the OER process of alloy ribbons, but the understanding of pre-catalysts and the structure/reactivity of the reconstruction (active) species is still insufficient. Herein, we report a two-step dealloyed Ni-Fe-P alloy ribbon as a highly efficient OER electrocatalyst. By adjusting the surface-derived component, we could regulate Ni/Fe hydroxide active species on the Ni-Fe-P alloy ribbon, enhancing the OER performance. The oxidation and release of P driven by dealloying plays a key role in constructing optimal β-NiOOH/FeOOH catalytic species on Ni-Fe-P. The optimal β-NiOOH/FeOOH active species enables Ni-Fe-P alloy to obtain a 104 mV of reduction in overpotential (at 10 mA cm-2) and a 78-fold increase in current density (at overpotential: 300 mV) compared to undealloyed Ni-Fe-P. Our work provides valuable insights into the relationship between the surface structure/composition of alloy bulk electrocatalysts and surface-reconstructed species and a rational design of a surface treatment process.
Collapse
Affiliation(s)
- Zhuqing Wan
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
| | - Xiaolong Guo
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
| | - Junying Jiang
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
| | - Yuci Xin
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
| | - Benzhen Tang
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
| | - Hong Zhang
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
| | - Yong Wu
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China.
| | - Lei Xia
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China.
| | - Peng Yu
- College of Physics and Electronic Engineering of Chongqing Normal University, Chongqing Key Laboratory of Optical and Electronic Functional Materials, Chongqing 401331, China.
| |
Collapse
|
5
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
6
|
Yang N, Tian S, Feng Y, Hu Z, Liu H, Tian X, Xu L, Hu C, Yang J. Introducing High-Valence Iridium Single Atoms into Bimetal Phosphides toward High-Efficiency Oxygen Evolution and Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207253. [PMID: 36610048 DOI: 10.1002/smll.202207253] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Single atoms are superior electrocatalysts having high atomic utilization and amazing activity for water oxidation and splitting. Herein, this work reports a thermal reduction method to introduce high-valence iridium (Ir) single atoms into bimetal phosphide (FeNiP) nanoparticles toward high-efficiency oxygen evolution reaction (OER) and overall water splitting. The presence of high-valence single Ir atoms (Ir4+ ) and their synergistic interaction with Ni3+ species as well as the disproportionation of Ni3+ assisted by Fe collectively contribute to the exceptional OER performance. In specific, at appropriate Ir/Ni and Fe/Ni ratios, the as-prepared Ir-doped FeNiP (Ir25 -Fe16 Ni100 P64 ) nanoparticles at a mass loading of only 35 µg cm-2 show the overpotential as low as 232 mV at 10 mA cm-2 and activity as high as 1.86 A mg-1 at 1.5 V versus RHE for OER in 1.0 m KOH. Computational simulations confirm the vital role of high-valence Ir to weaken the adsorption of OER intermediates, favorable for accelerating OER kinetics. Impressively, a Pt/C||Ir25 -Fe16 Ni100 P64 two-electrode alkaline electrolyzer affords a current density of 10 mA cm-2 at a low cell voltage of 1.42 V, along with satisfied stability. An AA battery with a nominal voltage of 1.5 V can drive overall water splitting with obvious bubbles released.
Collapse
Affiliation(s)
- Niuwa Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaonan Tian
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Zhenya Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chaoquan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu, 211100, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu, 211100, China
| |
Collapse
|
7
|
Jiang J, Wu Y, Chen H, Wan Z, Ding D, Xia L, Guo X, Yu P. Annealing and electrochemically activated amorphous ribbons: Surface nanocrystallization and oxidation effects enhanced for oxygen evolution performance. J Colloid Interface Sci 2023; 633:303-313. [PMID: 36459935 DOI: 10.1016/j.jcis.2022.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Annealing and cyclic voltammetry (CV) are essential for the activation of amorphous alloy ribbons. Various amorphous alloy ribbons have been activated in the fields of environmental catalysts using either annealing or CV. However, the combination of the two methods for improving the oxygen evolution reaction (OER) performance has rarely been reported. This combination is expected to significantly improve the OER performance of amorphous ribbons. Here, we developed an "annealing +CV-activation" integrated strategy to treat a free-standing NiFeBSiP ribbon, which as an efficient and stable oxygen-evolving electrode. The "annealing +CV-activation" strategy induces the nanocrystallization and oxidation effects on the surface of the NiFeBSiP ribbon. The effects significantly increase the electron transfer ability, the Ni/Fe/P oxidation state and the surface area of the NiFeBSiP ribbon, which consequently leads to enhancing the OER performance. As a result, the treated ribbon exhibits a low overpotential of 269 mV at 10 mA cm-2 and a small Tafel slope of 40.5 mV dec-1, which are much better than the OER performance of the as-spun ribbon. The enhanced OER performance of the NiFeBSiP ribbon demonstrates the significant and promising effect of the "annealing +CV-activation" integrated strategy for designing high-efficiency amorphous alloy ribbons electrocatalysts.
Collapse
Affiliation(s)
- Junying Jiang
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yong Wu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Hongguo Chen
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Zhuqing Wan
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Ding Ding
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Lei Xia
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Xiaolong Guo
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Peng Yu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
8
|
Zhao J, Liu Y, cheng Fu X, Zhong Y, Wu J, Xu L, mei Deng N. Gas-solid phase flow synthesis of the ZIF-67 for efficient electrochemical oxygen evolution and mechanism. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
9
|
Wang Q, Jia Z, Li J, He Y, Yang Y, Li Y, Sun L, Shen B. Attractive Electron Delocalization Behavior of FeCoMoPB Amorphous Nanoplates for Highly Efficient Alkaline Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204135. [PMID: 36216584 DOI: 10.1002/smll.202204135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
The rational design of high-performance and cost-effective electrocatalysts to overcome the kinetically sluggish water oxidation reaction is a grand challenge in water electrolysis. Transitional metals with incompletely filled d orbitals are expected to have intrinsic electronic interaction to promote the reaction kinetics, however, the construction of multiple active sites is still a bottleneck problem. Here, inspired by an amorphous alloy design strategy with chemical tunability, a noble-metal-free FeCoMoPB amorphous nanoplate for superior alkaline water oxidation is developed. The achieved overpotentials at current densities of 10, 100, and 500 mA cm-2 are 239, 281, and 331 mV, respectively, while retaining a reliable stability of 48 h, outperforming most currently available electrocatalysts. Experimental and theoretical results reveal that the chemical complexity of the amorphous nanoplate leads to the formation of multiple active sites that is able to greatly lower the free energy of the rate-determining step during the water oxidation reaction. Moreover, the Mo element would result in an electron delocalization behavior to promote electron redistribution at its surrounding regions for readily donating and taking electrons. This amorphous alloy design strategy is expected to stimulate the development of more efficient electrocatalysts that is applicable in energy devices, such as metal-air batteries, fuel cells, and water electrolysis.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Zhe Jia
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| | - Jiaqi Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| | - Yezeng He
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Yiyuan Yang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| | - Yongjie Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| | - Ligang Sun
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Baolong Shen
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
10
|
Metallic glasses and metallic glass nanostructures for functional electrocatalytic applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Jiang S, Chen F, Zhu L, Yang Z, Lin Y, Xu Q, Wang Y. Insight into the Catalytic Activity of Amorphous Multimetallic Catalysts under a Magnetic Field toward the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10227-10236. [PMID: 35171561 DOI: 10.1021/acsami.1c19936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Slow kinetics in the oxygen evolution reaction (OER) remains a Gordian knot to develop an efficient and cost-effective electrocatalyst in electrochemical water splitting. In recent studies, either a synergistic effect on multimetallic catalysts or spin polarization in ferromagnetic materials is considered as a desirable way to improve water electrolysis. Herein, the OER performance of amorphous FeNiCo-based multimetallic catalysts with adjustable composition was investigated from the perspective of atomic structure. Mössbauer spectra results demonstrate that the OER activities exhibit a significant dependence on the local structure of catalysts in which a catalyst with a high content of Fe clusters of low coordination numbers tends to obtain higher activity. Furthermore, benefiting from the spin polarization of these ferromagnetic catalysts, the OER activity is notably enhanced in the presence of a magnetic field. In particular, overpotential reduction exceeding 20 mV (above 100 mA cm-2) in alkaline OER performance is observed for strong ferromagnetic catalysts in comparison with the weak ferromagnetic ones. An increment of 65.2% in turnover frequency is achieved for the catalyst with the strongest ferromagnetism. This magnetic enhancement strategy affords an effective way of improving the water oxidation performance on amorphous ferromagnetic catalysts.
Collapse
Affiliation(s)
- Shuangshuang Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fugang Chen
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Li Zhu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhanzhan Yang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yu Lin
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Quanhui Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yingang Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
12
|
Jin J, Ge J, Zhao X, Wang Y, Zhang F, Lei X. Amorphous NiCuFeP@Cu3P nanoarray for an efficient hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01537k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal phosphides are considered as ideal alternatives for noble metal catalysts for hydrogen evolution reactions. In this study, amorphous NiCuFeP nanosheets are uniformly coated on self-supporting Cu3P nanowire array...
Collapse
|
13
|
Zhai W, Sakthivel T, Chen F, Du C, Yu H, Dai Z. Amorphous materials for elementary-gas-involved electrocatalysis: an overview. NANOSCALE 2021; 13:19783-19811. [PMID: 34846414 DOI: 10.1039/d1nr06764h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Given the critical demands on energy conversion, storage, and transportation, tremendous interest has been devoted to the field of material development related to energy harvesting, recently. As the only route towards energy utilization, the carriers with the characteristics of low carbon are regarded as the future choice, e.g., hydrogen and ammonia. To this end, electrocatalysis provides a green way to access these substances. However, the unfulfilled conversion efficiency is the bottleneck for practical application. In this review, the promising characteristics of amorphous materials and the amorphous-induced electrocatalytic enhancement (AIEE) were emphasized. In the beginning, the characteristics of amorphous materials are briefly summarized. The basic mechanism of heterogeneous electrocatalytic reactions is illustrated, including the hydrogen/oxygen evolution and oxygen/nitrogen reduction. In the third part, the electrocatalytic performance of amorphous materials is discussed in detail, and the mechanism of AIEE is highlighted. In the last section of this review, the challenges and outlook for the development of amorphous enhanced electrocatalysis are presented.
Collapse
Affiliation(s)
- Wenfang Zhai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chengfeng Du
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zhengfei Dai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
14
|
Feng X, Xiao Y, Huang HH, Wang Q, Wu J, Ke Z, Tong Y, Zhang J. Phytic Acid-Based FeCo Bimetallic Metal-Organic Gels for Electrocatalytic Oxygen Evolution Reaction. Chem Asian J 2021; 16:3213-3220. [PMID: 34411452 DOI: 10.1002/asia.202100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Indexed: 11/07/2022]
Abstract
Electrocatalysts have been developed to improve the efficiency of gas release for oxygen evolution reaction (OER), and finding a simple and efficient method for efficient electrocatalysts has inspired research enthusiasm. Herein, we report bimetallic metal-organic gels derived from phytic acid (PA) and mixed transition metal ions to explore their performance in electrocatalytic oxygen evolution reaction. PA is a natural phosphorus-rich organic compound, which can be obtained from plant seeds and grains. PA reacts with bimetallic ions (Fe3+ and Co2+ ) in a facile one-pot synthesis under mild conditions to form PA-FeCo bimetallic gels, and the corresponding aerogels are further partially reduced with NaBH4 to improve the electrocatalytic activity. Mixed valence states of Fe(II)/Fe(III) and Co(III)/Co(II) are present in the materials. Excellent OER performance in terms of overpotential (257 mV at 20 mA cm-2 ) and Tafel slope (36 mV dec-1 ) is achieved in an alkaline electrolyte. This reduction method is superior to the pyrolysis method by well maintaining the gel morphology structure. This strategy is conducive to the further improvement of the performance of metal-organic electrocatalysts, and provides guidance for the subsequent application of metal-organic gel electrocatalysts.
Collapse
Affiliation(s)
- Xiying Feng
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yali Xiao
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hai-Hua Huang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qiushi Wang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinyi Wu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhuofeng Ke
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yexiang Tong
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
15
|
Jiang S, Zhu L, Yang Z, Wang Y. Morphological-modulated FeNi-based amorphous alloys as efficient alkaline water splitting electrocatalysts. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Shao G, Wang Q, Miao F, Li J, Li Y, Shen B. Improved catalytic efficiency and stability by surface activation in Fe-based amorphous alloys for hydrogen evolution reaction in acidic electrolyte. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|