1
|
Ramesh A, Maladan A, Sahu PK, Duvvuri S, Subrahmanyam C. Rod-Shaped Spinel Co 3O 4 and Carbon Nitride Heterostructure-Modified Fluorine-Doped Tin Oxide Electrode as an Electrochemical Transducer for Efficient Sensing of Hydrazine. ACS APPLIED BIO MATERIALS 2023; 6:4894-4905. [PMID: 37814422 DOI: 10.1021/acsabm.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Engineering low-cost and efficient materials for sensing hydrazine (HA) is critical given the adverse effects of high concentrations on humans. We report an efficient electrode made up of rod-shaped Co3O4/g-C3N4 (Co3O4/graphitic carbon nitride (GCN))-coated fluorine-doped tin oxide as a desirable electrode for the detection of HA. GCN is synthesized by the thermal decomposition of melamine, Co3O4, and the heterostructure is grown by a hydrothermal process. The as-prepared materials were characterized by using spectroscopic and microscopic techniques. The voltammetric studies showed that HA can be oxidized at a lower onset potential of 0.24 V vs reference Ag/AgCl, and the composite yielded a significantly enhanced oxidation peak current than the pure components because of the high electrocatalytic activity and the synergy between Co3O4 and GCN. By employing chronoamperometry, the proposed sensor can detect HA in a wide range with a high sensitivity of 819.52 μA mM-1 cm-2 and a detection limit of 3.14 μM. The high conductivity of Co3O4, enhanced electroactive surface area, the rich redox couples of Co2+/Co3+, and the additional catalytic sites from GCN are responsible for the high performance of the heterostructure.
Collapse
Affiliation(s)
- Asha Ramesh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Aswathi Maladan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Pravat Kumar Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Suryakala Duvvuri
- Department of Chemistry, GITAM University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Ch Subrahmanyam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
2
|
Eskandari P, Amarloo E, Zangeneh H, Rezakazemi M, Aminabhavi TM. Photocatalytic degradation of metronidazole and oxytetracycline by novel l-Arginine (C, N codoped)-TiO 2/g-C 3N 4: RSM optimization, photodegradation mechanism, biodegradability evaluation. CHEMOSPHERE 2023:139282. [PMID: 37348615 DOI: 10.1016/j.chemosphere.2023.139282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Removal of Metronidazole (MNZ) and Oxytetracycline (OTC) from wastewater by the prepared (C, N codoped)-TiO2/g-C3N4 (Graphitic carbon nitride) was examined. l-Arginine (C, N codoped)-TiO2 and l-Arginine (C, N codoped)-TiO2/g-C3N4 photocatalysts were successfully synthesized through the sol-gel method, and optimal ratio of l-arginine:TiO2, as well as l-arginine/TiO2:g-C3N4, was determined by a kinetic study of photodegradation process. The maximum photocatalytic removal rate (0.065 min-1 for MNZ removal) was observed using 1% l-Arginine-TiO2/g-C3N4 (1:1) under visible light illumination, 2.2 and 6.5 times greater than those of 1% l-Arginine-TiO2 and pure TiO2, respectively. l-Arginine (1%)-TiO2/g-C3N4 (1:1) (co-doped-TCN) was investigated using X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), Photo-luminescence (PL), and Differential Reflectance Spectroscopy (DRS) as the best-performing photocatalyst. Response surface methodology (RSM) was used to study the effect of co-doped-TCN dosage (0.5-1.0 g/L), pH of simulated wastewater (4-10), initial concentration of MNZ and OTC (50-100 mg/L), and irradiation time (30-90 min for MNZ and 20-40 min for OTC) on removal efficiency of the antibiotics. Also, their optimum values were determined by RSM. The treated pharmaceutical wastewater showed high biodegradability features with 5-day biological oxygen demand/chemical oxygen demand (BOD5/COD) of 0.51 and 0.46 after 40 and 100 min reaction for OTC and MNZ, respectively. The order of reactive species responsible for the photodegradation of pollutants was •O2─> •OH > h+>1O2. The effect of inorganic anions showed that all anions decreased the removal efficiency of both antibiotics in order of NO3─> Cl─ >SO42─>HPO42─ >HCO3─ for MNZ and NO3─> SO42─ > Cl─ >HPO42─ >HCO3─ for OTC. Also, introducing different oxidants improved the photocatalytic removal efficiency with the order of H2O2>K2S2O8> KBrO3.
Collapse
Affiliation(s)
- Parisa Eskandari
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ehsan Amarloo
- Department of Chemical Engineering, Sharif University of Technology, Tehran, 11155, Iran
| | - Hadis Zangeneh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
| |
Collapse
|
3
|
Cheng C, Zhang Y, Chen H, Zhang Y, Chen X, Lu M. Reduced graphene oxide-wrapped La 0·8Sr 0·2MnO 3 microspheres sensing electrode for highly sensitive nitrite detection. Talanta 2023; 260:124644. [PMID: 37182290 DOI: 10.1016/j.talanta.2023.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
An electrochemical nitrite sensor based on perovskite oxides La0·8Sr0·2MnO3 (LSM) microspheres-decorated reduced graphene oxide (rGO) composite was presented to take the merit of the excellent electrocatalytic activity of the LSM and the large surface area of rGO. The content of rGO has been finely adjusted and the electrochemical sensor employing 15 wt% rGO has shown an ultralow nitrite detection limit of 0.016 μM and a high sensitivity of 0.041 μA μM-1 cm-2 and 0.039 μA μM-1 cm-2 in the range of 2-100 and 100-5000 μM, respectively. In addition, the proposed electrode shows good selectivity, reproducibility and stability, suitable for detection of nitrite at various pH values. The sensor was used to determine the nitrite level in environmental water samples with acceptable relative error, demonstrating its feasibility for practical environmental monitoring.
Collapse
Affiliation(s)
- Chu Cheng
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Yixin Zhang
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Hongyu Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Yulong Zhang
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Xinyi Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China.
| | - Miao Lu
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
4
|
Duraisamy V, Sudha V, Dharuman V, Senthil Kumar SM. Highly Efficient Electrochemical Sensing of Acetaminophen by Cobalt Oxide-Embedded Nitrogen-Doped Hollow Carbon Spheres. ACS Biomater Sci Eng 2023; 9:1682-1693. [PMID: 36840727 DOI: 10.1021/acsbiomaterials.2c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
With respect to sensor application investigations, hollow mesoporous carbon sphere-based materials of the spinel type of cobalt oxide (Co3O4) and heteroatom-doped materials are gaining popularity. In this contribution, dopamine hydrochloride (DA) and cobalt phthalocyanine (CoPc) precursors were employed to construct a highly homogeneous Co3O4-embedded N-doped hollow carbon sphere (Co3O4@NHCS) by a straightforward one-step polymerization procedure. The resulting Co3O4@NHCS materials may effectively tune the surface area, defect sites, and doping amount of N and Co elements by altering the loading amount of CoPc. The relatively high surface area, greater spherical wall thickness, enriched defect sites, and better extent of N and Co sites are all visible in the best 200 mg loaded Co3O4@NHCS-2 material. This leads to significant improvement in pyridine and graphitic N site concentrations, which offers exceptional electrochemical performance. Electrochemical analysis was used to study the electrocatalytic activity of Co3O4@NHCSs towards the sensing of pharmacologically active significant compounds (acetaminophen). Excellent sensor properties include the linear range (0.001-0.2 and 1.0-8.0 mM), sensitivity, limit of detection (0.07 and 0.11 μM), and selectivity in the modified Co3O4@NHCSs/GCE. The authentic sample (acetaminophen tablet) produces a satisfactory result when used practically.
Collapse
Affiliation(s)
- Velu Duraisamy
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Velayutham Sudha
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, India
| | - Venkataraman Dharuman
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
5
|
Wang H, Wang X, Cheng J. Bionic Enzyme-Assisted Ion-Selective Amperometric Biosensor Based on 3D Porous Conductive Matrix for Point-of-Care Nitrite Testing. ACS NANO 2022; 16:14849-14859. [PMID: 36099397 DOI: 10.1021/acsnano.2c05752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrite plays a critical role in a variety of physiological processes and maintaining the nitrite level in an appropriate range is vital to keep healthy. Current nitrite analysis methods lack sensitivity and require tedious operations, which could not meet the need of point-of-care (POC) nitrite detection in precision medicine. Here we present a cyanocobalamin (VB12) bionic enzyme-assisted ion-selective amperometric biosensor based on 3D porous conductive matrix (PCM), which can facilitate rapid and accurate POC nitrite monitoring in complex biofluids. The experimental findings quantitatively demonstrate that the biosensor has a sensitivity of 64.08 μA/(mM·cm2), a wide linear range of 0.025-45 mM, and low limit of detection of 1 nM. Moreover, the developed VB12/BSA-PCM biosensor shows outstanding stability after 21 days with 2% decline in current signal, and high repeatability between batches with RSD of only 1.29%. Real salivary nitrite detection has been evaluated, and the results match well with the commercial nitrite analyzer. Thus, the bionic enzyme-assisted ion-selective amperometric biosensor proposed herein has potential utility as an affordable tool for POC detection and home-based healthcare.
Collapse
Affiliation(s)
- Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xueqi Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| |
Collapse
|
6
|
Kang SJ, Pak JJ. Synthesis of laser‐induced cobalt oxide for non‐enzymatic electrochemical glucose sensors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seung-Jo Kang
- Korea University - Seoul Campus: Korea University Electrical Engineering 145 Anam-ro, Seongbuk-gu Seoul KOREA, REPUBLIC OF
| | - James J. Pak
- Korea University - Seoul Campus: Korea University School of Electrical Engineering 145 Anam-ro, Seongbuk-gu 02841 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
7
|
Zhu K, Cai X, Luo Y, Liu B, Zhang Q, Hu T, Liu Z, Wu H, Zhang D. Facile synthesis of flower-like CePO 4 with a hierarchical structure for the simultaneous electrochemical detection of dopamine, uric acid and acetaminophen. NEW J CHEM 2022. [DOI: 10.1039/d1nj04308k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flower-like CePO4 with a hierarchical structure was hydrothermally prepared for electrochemical sensing of dopamine, uric acid and acetaminophen.
Collapse
Affiliation(s)
- Kai Zhu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Xinqin Cai
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Yuhui Luo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Botao Liu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Qingyu Zhang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Tongtong Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Zunzheng Liu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Haiying Wu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Dongen Zhang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| |
Collapse
|