1
|
Scarpetta-Pizo L, Venegas R, Barrías P, Muñoz-Becerra K, Vilches-Labbé N, Mura F, Méndez-Torres AM, Ramírez-Tagle R, Toro-Labbé A, Hevia S, Zagal JH, Oñate R, Aspée A, Ponce I. Electron Spin-Dependent Electrocatalysis for the Oxygen Reduction Reaction in a Chiro-Self-Assembled Iron Phthalocyanine Device. Angew Chem Int Ed Engl 2024; 63:e202315146. [PMID: 37953459 DOI: 10.1002/anie.202315146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
The chiral-induced spin selectivity effect (CISS) is a breakthrough phenomenon that has revolutionized the field of electrocatalysis. We report the first study on the electron spin-dependent electrocatalysis for the oxygen reduction reaction, ORR, using iron phthalocyanine, FePc, a well-known molecular catalyst for this reaction. The FePc complex belongs to the non-precious catalysts group, whose active site, FeN4, emulates catalytic centers of biocatalysts such as Cytochrome c. This study presents an experimental platform involving FePc self-assembled to a gold electrode surface using chiral peptides (L and D enantiomers), i.e., chiro-self-assembled FePc systems (CSAFePc). The chiral peptides behave as spin filters axial ligands of the FePc. One of the main findings is that the peptides' handedness and length in CSAFePc can optimize the kinetics and thermodynamic factors governing ORR. Moreover, the D-enantiomer promotes the highest electrocatalytic activity of FePc for ORR, shifting the onset potential up to 1.01 V vs. RHE in an alkaline medium, a potential close to the reversible potential of the O2 /H2 O couple. Therefore, this work has exciting implications for developing highly efficient and bioinspired catalysts, considering that, in biological organisms, biocatalysts that promote O2 reduction to water comprise L-enantiomers.
Collapse
Affiliation(s)
- Laura Scarpetta-Pizo
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ricardo Venegas
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Pablo Barrías
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Karina Muñoz-Becerra
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Nayareth Vilches-Labbé
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Francisco Mura
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ana María Méndez-Torres
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Rodrigo Ramírez-Tagle
- Facultad de Ingeniería y Arquitectura Universidad Central de Chile, Av. Sta. Isabel 1186, Santiago, 8330563, Chile
| | - Alejandro Toro-Labbé
- Departamento de Química-Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
| | - Samuel Hevia
- Instituto de Física, Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6904411, Chile
| | - José H Zagal
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Rubén Oñate
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Alexis Aspée
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ingrid Ponce
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| |
Collapse
|
2
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
3
|
Guo XS, Huang ZY, Qi XW, Si LP, Zhang H, Liu HY. The optimization of iron porphyrin@MOF-5 derived Fe N C electrocatalysts for oxygen reduction reaction in zinc-air batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Heppe N, Gallenkamp C, Paul S, Segura-Salas N, von Rhein N, Kaiser B, Jaegermann W, Jafari A, Sergueev I, Krewald V, Kramm UI. Substituent Effects in Iron Porphyrin Catalysts for the Hydrogen Evolution Reaction. Chemistry 2023; 29:e202202465. [PMID: 36301727 DOI: 10.1002/chem.202202465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
For a future hydrogen economy, non-precious metal catalysts for the water splitting reactions are needed that can be implemented on a global scale. Metal-nitrogen-carbon (MNC) catalysts with active sites constituting a metal center with fourfold coordination of nitrogen (MN4 ) show promising performance, but an optimization rooted in structure-property relationships has been hampered by their low structural definition. Porphyrin model complexes are studied to transfer insights from well-defined molecules to MNC systems. This work combines experiment and theory to evaluate the influence of porphyrin substituents on the electronic and electrocatalytic properties of MN4 centers with respect to the hydrogen evolution reaction (HER) in aqueous electrolyte. We found that the choice of substituent affects their utilization on the carbon support and their electrocatalytic performance. We propose an HER mechanism for supported iron porphyrin complexes involving a [FeII (P⋅)]- radical anion intermediate, in which a porphinic nitrogen atom acts as an internal base. While this work focuses on the HER, the limited influence of a simultaneous interaction with the support and an aqueous electrolyte will likely be transferrable to other catalytic applications.
Collapse
Affiliation(s)
- Nils Heppe
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Charlotte Gallenkamp
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany.,Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Stephen Paul
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Nicole Segura-Salas
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Niklas von Rhein
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Bernhard Kaiser
- Institute of Materials Science, Surface Science Division, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Wolfram Jaegermann
- Institute of Materials Science, Surface Science Division, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Atefeh Jafari
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Ulrike I Kramm
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155780. [PMID: 35957335 PMCID: PMC9371027 DOI: 10.3390/s22155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)4/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)4/GCE); this electrode was deposited using gas-phase methods. The composition and morphology of such electrodes were examined using spectroscopy and electron microscopy methods, whereas the main electrochemical characteristics were determined using cyclic voltammetry (CV) and amperometry (CA) methods in the linear ranges of CV 0.25-2.5 mM, CA 2-120 μM in 0.1 M phosphate buffer (pH = 6.8). The results showed that the modification of bare GCEs, with a Au/FePc(tBu)4 heterostructure, provided a high surface-to-volume ratio, thus ensuring its high sensitivity to nitrite ions of 0.46 μAμM-1. The sensor based on the Au/FePc(tBu)4/GCE has a low limit of nitrite detection at 0.35 μM, good repeatability, and stability. The interference study showed that the proposed Au/FePc(tBu)4/GCE exhibited a selective response in the presence of interfering anions, and the analytical capability of the sensor was demonstrated by determining nitrite ions in real samples of meat products.
Collapse
|
7
|
Tian Z, Wang Y, Li Y, Yao G, Zhang Q, Chen L. Theoretical study of the effect of coordination environment on the activity of metal macrocyclic complexes as electrocatalysts for oxygen reduction. iScience 2022; 25:104557. [PMID: 35769883 PMCID: PMC9234223 DOI: 10.1016/j.isci.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Transition metal macrocyclic complexes are appealing catalysts for electrochemical oxygen reduction reaction (ORR). Here, we perform first-principles calculations to gain a comprehensive understanding on the structure-property relationship of the metal macrocyclic complex systems. Various modifications of the complexes are considered, including centered metal, axial ligand, coordination atom, substituent, and macrocycles. Based on simulation, introduction of appropriate apical ligand can improve the performance of all the three metals, whereas replacement of nitrogen with oxygen or carbon as the coordination atoms may enhance the Ni-centered systems. The antiaromatic ring stabilizes the ∗OOH intermediate, whereas the macrocycle with reduced electron density inhibits the binding with oxygen. By regulating the coordination environment, the overpotential can be significantly reduced. This work may assist the rational design of ORR catalysts and is of great significance for the future development of oxygen reduction catalysts. Metal macrocyclic complexes are potential electrocatalysts for ORR An understanding on structure-property relationship is gained based on simulation Various modifications are considered to improve the performance
Collapse
Affiliation(s)
- Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Corresponding author
| | - Yuan Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yanle Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Corresponding author
| | - Ge Yao
- School of Physics, Collaborative Innovation Center of Advanced Microstructures, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Corresponding author
| |
Collapse
|