1
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Yavari M, Ramalingam L, Harris BN, Kahathuduwa CN, Chavira A, Biltz C, Mounce L, Maldonado KA, Scoggin S, Zu Y, Kalupahana NS, Yosofvand M, Moussa H, Moustaid-Moussa N. Eicosapentaenoic Acid Protects against Metabolic Impairments in the APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Nutr 2023; 153:1038-1051. [PMID: 36781072 PMCID: PMC10273166 DOI: 10.1016/j.tjnut.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by amyloid-β (Aβ) plaques. Systemic inflammation and obesity may exacerbate AD pathogenesis. We previously reported anti-inflammatory and anti-obesity effects of EPA in mice. OBJECTIVES We aimed to determine whether EPA reduces obesity-associated metabolic dysfunctions and Aβ accumulation in AD amyloidogenic mice. METHODS Two-mo-old APPswe/PS1dE9 transgenic (TG) mice and non-TG littermates were randomly assigned to low fat (LF; 10% kcal fat), high fat (HF; 45% kcal fat), or EPA (36 g/kg)-supplemented HF diets. Body composition, glucose tolerance, and energy expenditure were measured, and serum and brain metabolic markers were tested 38 wk postintervention. Outcomes were statistically analyzed via 3-factor ANOVA, modeling genotype, sex, and diet interactions. RESULTS HF-fed males gained more weight than females (Δ = 61 mg; P < 0.001). Compared with LF, HF increased body weights of wild-type (WT) males (Δ = 31 mg; P < 0.001). EPA reduced HF-induced weight gain in WT males (Δ = 24 mg; P = 0.054) but not in females. HF mice showed decreased glucose clearance and respiratory energy compared with LF-fed groups (Δ = -1.31 g/dL; P < 0.001), with no significant effects of EPA. However, EPA conferred metabolic improvements by decreasing serum leptin and insulin (Δ = -2.51 g/mL and Δ = -0.694 ng/mL, respectively compared with HF, P ≤ 0.05) and increasing adiponectin (Δ = 21.6 ng/mL; P < 0.001). As we expected, TG mice expressed higher serum and brain Aβ than WT mice (Δ = 0.131 ng/mL; P < 0.001 and Δ = 0.56%; P < 0.01, respectively), and EPA reduced serum Aβ1-40 in TG males compared with HF (Δ = 0.053 ng/mL; P ≤ 0.05). CONCLUSIONS To our knowledge, this is the first report that EPA reduces serum Aβ1-40 in obese AD male mice, warranting further investigations into tissue-specific mechanisms of EPA in AD.
Collapse
Affiliation(s)
- Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Breanna N Harris
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Chanaka Nadeeshan Kahathuduwa
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Angela Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Mohammad Yosofvand
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
3
|
Guo J, Cheng M, Liu P, Cao D, Luo J, Wan Y, Fang Y, Jin Y, Xie SS, Liu J. A multi-target directed ligands strategy for the treatment of Alzheimer's disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator. Eur J Med Chem 2022; 242:114630. [PMID: 35987018 DOI: 10.1016/j.ejmech.2022.114630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) possessed intricate pathogenesis. Currently, multi-targeted drugs were considered to have the potential to against AD by simultaneously triggering molecules in functionally complementary pathways. Hence, a series of molecules based on the pharmacophoric features of Dimethyl fumarate, Tranilast, and Dithiocarbate were designed and synthesized. These compounds showed significant AChE inhibitory activity in vitro. Among them, compound 4c2 displayed the mighty inhibitory activity to hAChE (IC50 = 0.053 μM) and held the ability to cross the BBB. Kinetic study and molecular docking pointed out that 4c2 bound well into the active sites of hAChE, forming steady and sturdy interactions with key residues in hAChE. Additionally, 4c2 as an Nrf2 activator could promote the nuclear translocation of Nrf2 protein and induce the expressions of Nrf2-dependent enzymes HO-1, NQO1, and GPX4. Moreover, 4c2 rescued BV-2 cells from H2O2-induced injury and inhibited ROS accumulation. For the anti-neuroinflammatory potential of 4c2, we observed that 4c2 could lower the levels of pro-inflammatory cytokines (NO, IL-6 and TNF-α) and suppressed the expressions of iNOS and COX-2. In particular, 4c2 was well tolerated in mice (2500 mg/kg, p.o.) and efficaciously recovered the memory impairment in a Scopolamine-induced mouse model. Overall, these results highlighted that 4c2 was a promising multi-targeted agent for treating AD.
Collapse
Affiliation(s)
- Jie Guo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Maojun Cheng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Peng Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Duanyuan Cao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Jinchong Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Yang Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Yuanying Fang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China.
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China.
| |
Collapse
|
4
|
Kim W, Jin Oh S, Thi Trinh N, Yeon Gil J, Ah Choi I, Hyoun Kim J, Hee Kim J, Jung JY, Kim J, Kim HA, Eun Lee K. Effects of RETN polymorphisms on treatment response in rheumatoid arthritis patients receiving TNF-α inhibitors and utilization of machine-learning algorithms. Int Immunopharmacol 2022; 111:109094. [PMID: 35914450 DOI: 10.1016/j.intimp.2022.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
Abstract
This study was designed to investigate the effects of polymorphisms in RETN on remission in RA patients receiving TNF-α inhibitors. In addition, machine learning algorithms were trained to predict remission. Ten single-nucleotide polymorphisms were investigated. Univariate and multivariable analyses were performed to evaluate associations between genetic polymorphisms and the efficacy of TNF-α inhibitors. A random forest-based classification approach was used to assess the importance of different variables associated with the efficacy of TNF-α inhibitors. Various machine learning methods were used for finding vital factors and prediction of remission. The eight most significant features included in the multivariable analysis were sex, age, hypertension, sulfasalazine, rs1862513, rs3219178, rs3219177, and rs3745369. T-allele carriers of rs3219177 and males showed approximately 6.0- and 3.6-fold higher remission rates compared to those with the CC genotype and females, respectively. The elastic net algorithm was the best machine-learning method for predicting remission of patients with RA treated with TNF-α inhibitors. On the basis of the results of this study, it may be possible to design individually tailored treatment regimens to predict the efficacy of TNF-α inhibitors.
Collapse
Affiliation(s)
- Woorim Kim
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Republic of Korea
| | - Soo Jin Oh
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Republic of Korea
| | - Nga Thi Trinh
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Republic of Korea
| | - Jin Yeon Gil
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Republic of Korea
| | - In Ah Choi
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University, Hospital, 776, 1sunhwan-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Ji Hyoun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University, Hospital, 776, 1sunhwan-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 14, Suwon 16499, Republic of Korea
| | - Jinhyun Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 14, Suwon 16499, Republic of Korea.
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
5
|
Taati Moghadam M, Amirmozafari N, Mojtahedi A, Bakhshayesh B, Shariati A, Masjedian Jazi F. Association of perturbation of oral bacterial with incident of Alzheimer's disease: A pilot study. J Clin Lab Anal 2022; 36:e24483. [PMID: 35689551 PMCID: PMC9279996 DOI: 10.1002/jcla.24483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE This case-control study was designed to compare the composition of the predominant oral bacterial microbiome in Alzheimer's disease (AD) and control group. SUBJECT A total of 30 adult participants (15 AD and 15 healthy individuals) were entered in this study. The composition of oral bacterial microbiome was examined by quantitative real-time polymerase chain reaction (qPCR) using bacterial 16S rDNA gene. The levels of systemic inflammatory cytokines in both groups were assessed using enzyme-linked immunosorbent assays (ELISA). RESULTS The loads of Porphyromonas gingivalis, Fusobacterium nucleatum, and Prevotella intermedia were significantly more abundant in the AD compared to the control group (p < 0.05). Although Aggregatibacter actinomycetemcomitans and Streptococcus mutans were relatively frequent in the AD group, no significance difference was observed in their copy number between two groups. Although the concentrations of IL-1, IL-6, and TNF-α were higher in the AD group, there was a significant difference in their levels between the two groups (p < 0.05). Finally, there was a significant relationship between increased number of pathogenic bacteria in oral microbiome and higher concentration of cytokines in patient's blood. CONCLUSION Our knowledge of oral microbiome and its exact association with AD is rather limited; our study showed a significant association between changes in oral microbiome bacteria, increased inflammatory cytokines, and AD.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Bakhshayesh
- Department of Neurology, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Fuentes-Romero B, Muñoz-Prieto A, Cerón JJ, Martín-Cuervo M, Iglesias-García M, Aguilera-Tejero E, Díez-Castro E. Measurement of Plasma Resistin Concentrations in Horses with Metabolic and Inflammatory Disorders. Animals (Basel) 2021; 12:ani12010077. [PMID: 35011183 PMCID: PMC8744951 DOI: 10.3390/ani12010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Obesity and its associated complications, such as metabolic syndrome, are an increasing problem in both humans and horses in the developed world. Adipose tissue is a key endocrine organ that communicates with other organs by multiple endocrine substances called adipokines. There is evidence to suggest that adipokines may contribute to the regulation of biological processes, such as metabolism, immunity, and inflammation. The aim of this study was to investigate the usefulness of one of these adipokines in horses, resistin, and its relationship with insulin dysregulation (ID) and inflammation. Seventy-two horses, included in one of the four following groups, were studied: healthy controls, horses with inflammatory conditions, horses with mild, and horses with severe ID. Plasma resistin concentrations were significantly different between groups, and the highest values were recorded in the inflammatory and severe ID groups. The lack of correlation of resistin with basal insulin concentration and the significant correlation of resistin with the inflammatory marker serum amyloid A suggest that, as is the case in humans, plasma resistin concentrations in horses are predominantly related to inflammatory conditions and not to ID. Abstract Obesity and its associated complications, such as metabolic syndrome, are an increasing problem in both humans and horses in the developed world. The expression patterns of resistin differ considerably between species. In rodents, resistin is expressed by adipocytes and is related to obesity and ID. In humans, resistin is predominantly produced by inflammatory cells, and resistin concentrations do not reflect the degree of obesity, although they may predict cardiovascular outcomes. The aim of this study was to investigate the usefulness of resistin and its relationship with ID and selected indicators of inflammation in horses. Seventy-two horses, included in one of the four following groups, were studied: healthy controls (C, n = 14), horses with inflammatory conditions (I, n = 21), horses with mild ID (ID1, n = 18), and horses with severe ID (ID2, n = 19). Plasma resistin concentrations were significantly different between groups and the higher values were recorded in the I and ID2 groups (C: 2.38 ± 1.69 ng/mL; I: 6.85 ± 8.38 ng/mL; ID1: 2.41 ± 2.70 ng/mL; ID2: 4.49 ± 3.08 ng/mL). Plasma resistin was not correlated with basal insulin concentrations. A significant (r = 0.336, p = 0.002) correlation was found between resistin and serum amyloid A. Our results show that, as is the case in humans, plasma resistin concentrations in horses are predominantly related to inflammatory conditions and not to ID. Horses with severe ID showed an elevation in resistin that may be secondary to the inflammatory status associated with metabolic syndrome.
Collapse
Affiliation(s)
- Beatriz Fuentes-Romero
- Department of Equine Internal Medicine, University of Extremadura, 10004 Cáceres, Spain;
- Correspondence:
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30003 Murcia, Spain; (A.M.-P.); (J.J.C.)
| | - José J. Cerón
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30003 Murcia, Spain; (A.M.-P.); (J.J.C.)
| | - María Martín-Cuervo
- Department of Equine Internal Medicine, University of Extremadura, 10004 Cáceres, Spain;
| | | | | | - Elisa Díez-Castro
- Department of Equine Internal Medicine, University of Córdoba, 14014 Córdoba, Spain; (E.A.-T.); (E.D.-C.)
| |
Collapse
|