1
|
Villafuerte FC, Simonson TS, Bermudez D, León-Velarde F. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology (Bethesda) 2022; 37:0. [PMID: 35001654 PMCID: PMC9191173 DOI: 10.1152/physiol.00029.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Fabiola León-Velarde
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
2
|
Steele AR, Tymko MM, Meah VL, Simpson LL, Gasho C, Dawkins TG, Williams AM, Villafuerte FC, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Global REACH 2018: Volume regulation in high-altitude Andeans with and without chronic mountain sickness. Am J Physiol Regul Integr Comp Physiol 2021; 321:R504-R512. [PMID: 34346722 DOI: 10.1152/ajpregu.00102.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-altitude maladaptation syndrome known as chronic mountain sickness (CMS) is characterized by polycythemia and is associated with proteinuria despite unaltered glomerular filtration rate. However, it remains unclear if indigenous highlanders with CMS have altered volume regulatory hormones. We assessed N-terminal pro-B-type natriuretic peptide (NT pro-BNP), plasma aldosterone concentration, plasma renin activity, kidney function (urinary microalbumin, glomerular filtration rate), blood volume, and estimated pulmonary artery systolic pressure (ePASP), in Andean males without (n=14; age=39±11) and with (n=10; age=40±12) CMS at 4330 meters (Cerro de Pasco, Peru). Plasma renin activity (non-CMS: 15.8±7.9 vs. CMS: 8.7±5.4 ng/ml; p=0.025) and plasma aldosterone concentration (non-CMS: 77.5±35.5 vs. CMS: 54.2±28.9 pg/ml; p=0.018) were lower in highlanders with CMS compared to non-CMS, while NT pro-BNP was not different between groups (non-CMS: 1394.9±214.3 vs. CMS: 1451.1±327.8 pg/ml; p=0.15). Highlanders had similar total blood volume (non-CMS: 90±15 vs. CMS: 103±18 ml • kg-1; p=0.071), but Andeans with CMS had greater total red blood cell volume (non-CMS: 46±10 vs. CMS 66±14 ml • kg-1; p<0.01) and smaller plasma volume (non-CMS 43±7 vs. CMS 35±5 ml • kg-1; p=0.03) compared to non-CMS. There were no differences in ePASP between groups (non-CMS 32±9 vs. CMS 31±8 mmHg; p=0.6). A negative correlation was found between plasma renin activity and glomerular filtration rate in both groups (group: r=-0.66; p<0.01; non-CMS: r=-0.60; p=0.022; CMS: r=-0.63; p=0.049). A smaller plasma volume in Andeans with CMS may indicate an additional CMS maladaptation to high-altitude, causing potentially greater polycythemia and clinical symptoms.
Collapse
Affiliation(s)
- Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Michael M Tymko
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Canada
| | - Lydia L Simpson
- Department of Sport Science, Division of Physiology, University of Innsbruck, Austria
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Alexandra Mackenzie Williams
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Francisco C Villafuerte
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Rómulo J Figueroa-Mujíca
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Canada
| |
Collapse
|
3
|
Simpson LL, Meah VL, Steele AR, Gasho C, Howe CA, Dawkins TG, Busch SA, Oliver SJ, Moralez G, Lawley JS, Tymko MM, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Villafuerte FC, Ainslie PN, Stembridge M, Steinback CD, Moore JP. Global REACH 2018: Andean highlanders, chronic mountain sickness and the integrative regulation of resting blood pressure. Exp Physiol 2020; 106:104-116. [PMID: 32271969 DOI: 10.1113/ep088473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does chronic mountain sickness (CMS) alter sympathetic neural control and arterial baroreflex regulation of blood pressure in Andean (Quechua) highlanders? What is the main finding and its importance? Compared to healthy Andean highlanders, basal sympathetic vasomotor outflow is lower, baroreflex control of muscle sympathetic nerve activity is similar, supine heart rate is lower and cardiovagal baroreflex gain is greater in mild CMS. Taken together, these findings reflect flexibility in integrative regulation of blood pressure that may be important when blood viscosity and blood volume are elevated in CMS. ABSTRACT The high-altitude maladaptation syndrome chronic mountain sickness (CMS) is characterized by excessive erythrocytosis and frequently accompanied by accentuated arterial hypoxaemia. Whether altered autonomic cardiovascular regulation is apparent in CMS is unclear. Therefore, during the 2018 Global REACH expedition to Cerro de Pasco, Peru (4383 m), we assessed integrative control of blood pressure (BP) and determined basal sympathetic vasomotor outflow and arterial baroreflex function in eight Andean natives with CMS ([Hb] 22.6 ± 0.9 g·dL-1 ) and seven healthy highlanders ([Hb] 19.3 ± 0.8 g·dL-1 ). R-R interval (RRI, electrocardiogram), beat-by-beat BP (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest and during pharmacologically induced changes in BP (modified Oxford test). Although [Hb] and blood viscosity (7.8 ± 0.7 vs. 6.6 ± 0.7 cP; d = 1.7, P = 0.01) were elevated in CMS compared to healthy highlanders, cardiac output, total peripheral resistance and mean BP were similar between groups. The vascular sympathetic baroreflex MSNA set-point (i.e. MSNA burst incidence) and reflex gain (i.e. responsiveness) were also similar between groups (MSNA set-point, d = 0.75, P = 0.16; gain, d = 0.2, P = 0.69). In contrast, in CMS the cardiovagal baroreflex operated around a longer RRI (960 ± 159 vs. 817 ± 50 ms; d = 1.4, P = 0.04) with a greater reflex gain (17.2 ± 6.8 vs. 8.8 ± 2.6 ms·mmHg-1 ; d = 1.8, P = 0.01) versus healthy highlanders. Basal sympathetic vasomotor activity was also lower compared to healthy highlanders (33 ± 11 vs. 45 ± 13 bursts·min-1 ; d = 1.0, P = 0.08). In conclusion, our findings indicate adaptive differences in basal sympathetic vasomotor activity and heart rate compensate for the haemodynamic consequences of excessive erythrocyte volume and contribute to integrative blood pressure regulation in Andean highlanders with mild CMS.
Collapse
Affiliation(s)
- Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Gilberto Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | | | - Rómulo J Figueroa-Mujíca
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C Villafuerte
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Phillip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
4
|
Aryal N, Weatherall M, Bhatta YKD, Mann S. Lipid Profiles, Glycated Hemoglobin, and Diabetes in People Living at High Altitude in Nepal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14091041. [PMID: 28891952 PMCID: PMC5615578 DOI: 10.3390/ijerph14091041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
This study aimed to describe lipid profiles and the distribution of glycated hemoglobin (HbA1c) in a sample of a high altitude population of Nepal and to explore associations between these metabolic risk variables and altitude. A cross-sectional survey of cardiovascular disease and associated risk factors was conducted among 521 people living at four different altitude levels, all above 2800 m, in the Mustang and Humla districts of Nepal. Urban participants (residents at 2800 m and 3620 m) had higher total cholesterol (TC) and triglyceride (TG) than rural participants. A high ratio of TC to high-density lipoprotein-cholesterol (HDL) (TC/HDL ≥ 5.0) was found in 23.7% (95% CI 19.6, 28.2) and high TG (≥1.7 mmol/L) in 43.3% (95% CI 38.4, 48.3) of participants overall. Mean HbA1c levels were similar at all altitude levels although urban participants had a higher prevalence of diabetes. Overall, 6.9% (95% CI 4.7, 9.8) of participants had diabetes or were on hypoglycaemic treatment. There was no clear association between lipid profiles or HbA1c and altitude in a multivariate analysis adjusted for possible confounding variables. Residential settings and associated lifestyle practices are more strongly associated with lipid profiles and HbA1c than altitude amongst high altitude residents in Nepal.
Collapse
Affiliation(s)
- Nirmal Aryal
- Department of Medicine, University of Otago, Wellington 6021, New Zealand.
| | - Mark Weatherall
- Department of Medicine, University of Otago, Wellington 6021, New Zealand.
| | | | - Stewart Mann
- Department of Medicine, University of Otago, Wellington 6021, New Zealand.
| |
Collapse
|