1
|
Makdissi S, Parsons BD, Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front Cell Dev Biol 2023; 11:1087091. [PMID: 36824371 PMCID: PMC9941184 DOI: 10.3389/fcell.2023.1087091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| | - Brendon D. Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
| | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| |
Collapse
|
2
|
Bonaventura E, Alberti L, Lucchi S, Cappelletti L, Fazzone S, Cattaneo E, Bellini M, Izzo G, Parazzini C, Bosetti A, Di Profio E, Fiore G, Ferrario M, Mameli C, Sangiorgio A, Masnada S, Zuccotti GV, Veggiotti P, Spaccini L, Iascone M, Verduci E, Cereda C, Tonduti D. Newborn screening for X-linked adrenoleukodystrophy in Italy: Diagnostic algorithm and disease monitoring. Front Neurol 2023; 13:1072256. [PMID: 36698902 PMCID: PMC9869129 DOI: 10.3389/fneur.2022.1072256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction X-linked adrenoleukodystrophy (X-ALD) is the most common inherited peroxisomal disorder caused by variants in the ABCD1 gene. The main phenotypes observed in men with X-ALD are primary adrenal insufficiency, adrenomyeloneuropathy, and cerebral ALD (cALD). Cerebral ALD consists of a demyelinating progressive cerebral white matter (WM) disease associated with rapid clinical decline and is fatal if left untreated. Hematopoietic stem cell transplantation is the standard treatment for cALD as it stabilizes WM degeneration when performed early in the disease. For this reason, early diagnosis is crucial, and several countries have already implemented their newborn screening programs (NBS) with the assessment of C26:0-lysophosphatidylcholine (C26:0-LPC) values as screening for X-ALD. Methods In June 2021, an Italian group in Lombardy launched a pilot study for the implementation of X-ALD in the Italian NBS program. A three-tiered approach was adopted, and it involved quantifying the values of C26:0-LPC and other metabolites in dried blood spots with FIA-MS/MS first, followed by the more specific ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) technique and, finally, the genetic confirmation via focused NGS. Discussion Genetically confirmed patients are set to undergo a follow-up protocol and are periodically evaluated to promptly start a specific treatment if and when the first signs of brain damage appear, as suggested by international guidelines. A specific disease monitoring protocol has been created based on literature data and personal direct experience. Conclusion The primary aim of this study was to develop a model able to improve the early diagnosis and subsequent follow-up and timely treatment of X-ALD. Ethics The study was approved by the local ethics committee. The research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.
Collapse
Affiliation(s)
- Eleonora Bonaventura
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
| | - Luisella Alberti
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Simona Lucchi
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Laura Cappelletti
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Salvatore Fazzone
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Elisa Cattaneo
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Clinical Genetics Unit, V. Buzzi Children's Hospital, Milan, Italy
| | - Matteo Bellini
- Molecular Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giana Izzo
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Paediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Cecilia Parazzini
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Paediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Alessandra Bosetti
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Elisabetta Di Profio
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Giulia Fiore
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Matilde Ferrario
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Chiara Mameli
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Arianna Sangiorgio
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Silvia Masnada
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Pierangelo Veggiotti
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Luigina Spaccini
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Clinical Genetics Unit, V. Buzzi Children's Hospital, Milan, Italy
| | - Maria Iascone
- Molecular Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Elvira Verduci
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Davide Tonduti
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Huang TY, Zheng D, Houmard JA, Brault JJ, Hickner RC, Cortright RN. Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes. Am J Physiol Endocrinol Metab 2017; 312:E253-E263. [PMID: 28073778 PMCID: PMC5406987 DOI: 10.1152/ajpendo.00331.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/22/2022]
Abstract
Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m2; n = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1-14C]palmitic acid and [1-14C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, 1) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P < 0.05), 2) PGC-1α, PMP70, key PEXs, and peroxisomal β-oxidation mRNA expression levels were significantly upregulated (P < 0.05), and 3) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells.
Collapse
Affiliation(s)
- Tai-Yu Huang
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Jeffrey J Brault
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
- Department of Physiology, East Carolina University, Greenville, North Carolina
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, North Carolina
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Robert C Hickner
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
- Department of Physiology, East Carolina University, Greenville, North Carolina
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
- Center for Health Disparities, East Carolina University, Greenville, North Carolina; and
- Department of Biokinetics, Exercise, and Leisure Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Ronald N Cortright
- Department of Kinesiology, East Carolina University, Greenville, North Carolina;
- Department of Physiology, East Carolina University, Greenville, North Carolina
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
5
|
Vogel BH, Bradley SE, Adams DJ, D'Aco K, Erbe RW, Fong C, Iglesias A, Kronn D, Levy P, Morrissey M, Orsini J, Parton P, Pellegrino J, Saavedra-Matiz CA, Shur N, Wasserstein M, Raymond GV, Caggana M. Newborn screening for X-linked adrenoleukodystrophy in New York State: diagnostic protocol, surveillance protocol and treatment guidelines. Mol Genet Metab 2015; 114:599-603. [PMID: 25724074 DOI: 10.1016/j.ymgme.2015.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE To describe a diagnostic protocol, surveillance and treatment guidelines, genetic counseling considerations and long-term follow-up data elements developed in preparation for X-linked adrenoleukodystrophy (X-ALD) newborn screening in New York State. METHODS A group including the director from each regional NYS inherited metabolic disorder center, personnel from the NYS Newborn Screening Program, and others prepared a follow-up plan for X-ALD NBS. Over the months preceding the start of screening, a series of conference calls took place to develop and refine a complete newborn screening system from initial positive screen results to long-term follow-up. RESULTS A diagnostic protocol was developed to determine for each newborn with a positive screen whether the final diagnosis is X-ALD, carrier of X-ALD, Zellweger spectrum disorder, acyl CoA oxidase deficiency or D-bifunctional protein deficiency. For asymptomatic males with X-ALD, surveillance protocols were developed for use at the time of diagnosis, during childhood and during adulthood. Considerations for timing of treatment of adrenal and cerebral disease were developed. CONCLUSION Because New York was the first newborn screening laboratory to include X-ALD on its panel, and symptoms may not develop for years, long-term follow-up is needed to evaluate the presented guidelines.
Collapse
Affiliation(s)
- B H Vogel
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - S E Bradley
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - D J Adams
- Jacobs Equity Management Personalized Genomic Medicine Program, Goryeb Pediatrics Genetics and Metabolism, Morristown, NJ, USA
| | - K D'Aco
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - R W Erbe
- Division of Genetics, Women and Children's Hospital of Buffalo, Buffalo, NY, USA
| | - C Fong
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - A Iglesias
- New York Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - D Kronn
- New York Medical College, Valhalla, NY, USA
| | - P Levy
- Center for Inherited Medical Disorders, Children's Hospital at Montefiore, Bronx, NY, USA
| | - M Morrissey
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - J Orsini
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - P Parton
- Division of Genetics, Stony Brook Long Island Children's Hospital, Stony Brook, NY, USA
| | - J Pellegrino
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - C A Saavedra-Matiz
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - N Shur
- Albany Medical Center, Albany, NY, USA
| | - M Wasserstein
- Division of Medical Genetics, Division of Genomic Sciences, Mount Sinai Medical Center, New York, NY, USA
| | - G V Raymond
- Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - M Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|