1
|
Al-Garawi ZS, Ismail AH, Hillo DH, Öztürkkan FE, Necefoğlu H, Mohamed GG, Abdallah AM. Experimental and density functional theory studies on some metal oxides and the derived nanoclusters: a comparative effects on human ferritin. DISCOVER NANO 2024; 19:12. [PMID: 38224391 PMCID: PMC10789706 DOI: 10.1186/s11671-023-03922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 01/16/2024]
Abstract
A comprehensive investigation into the green synthesis of metal oxide nanoparticles (NPs) has garnered significant attention due to its commendable reliability, sustainability, and environmentally friendly attributes. Green synthesis methods play a crucial role in mitigating the adverse effects associated with conventional approaches employed for nanostructure preparation. This research endeavors to examine the impact of ginger plant extract-assisted green synthesis of metal oxides NPs on the serum ferritin levels of anemic diabetic patients in vitro, focusing specifically on α-Fe2O3 and ZnO NPs. Sixty diabetic volunteers with anemia (35-50 years) and thirty healthy volunteers were enrolled as controls. The assessment was conducted using the VIDAS Ferritin (FER) assay. Photoluminescence (PL) spectroscopy measurements were performed to elucidate the intrinsic and extrinsic transitions of these NPs, affirming the successful formation of α-structured iron oxide. Density functional theory (DFT) calculations were carried out at the B3LYP/6-311++G(d,2p) level of theory to investigate the geometry optimization and molecular electrostatic potential maps of the NPs. Furthermore, TD-DFT calculations were employed to explore their frontier molecular orbitals and various quantum chemical parameters. The binding affinity and interaction types of ZnO and α-Fe2O3 NPs to the active site of the human H-Chain Ferritin (PDB ID: 2FHA) target were determined with the help of molecular docking. Results unveiled the crystalline structure of ZnO and the α-structure of α-Fe2O3. Analysis of the frontier molecular orbitals and dipole moment values demonstrated that ZnO (total dipole moment (D) = 5.80 µ) exhibited superior chemical reactivity, biological activity, and stronger molecular interactions with diverse force fields compared to α-Fe2O3 (D = 2.65 µ). Molecular docking of the metal oxides NPs with human H-chain ferritin provided evidence of robust hydrogen bond interactions and metal-acceptor bonds between the metal oxides and the target protein. This finding could have a great impact on using metal oxides NPs-ferritin as a therapeutic protein, however, further studies on their toxicity are required.
Collapse
Affiliation(s)
- Zahraa S Al-Garawi
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, 10001, Iraq.
| | - Ahmad H Ismail
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, 10001, Iraq
| | - Duaa H Hillo
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, 10001, Iraq
| | | | - Hacali Necefoğlu
- Department of Chemistry, Kafkas University, 36100, Kars, Turkey
- International Scientific Research Centre, Baku State University, 1148, Baku, Azerbaijan
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, 21934, Egypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt.
| |
Collapse
|
2
|
Sahay A, Tomar RS, Shrivastava V, Chauhan PS. Eugenol Loaded Ag-Ti-Co Nanocomposite as a Promising Antimicrobial and Antioxidative Agent. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
3
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
4
|
Berehu HM, S A, Khan MI, Chakraborty R, Lavudi K, Penchalaneni J, Mohapatra B, Mishra A, Patnaik S. Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia chirayita Leaf Extract on Colorectal Cancer Cells. Front Bioeng Biotechnol 2022; 9:788527. [PMID: 34976976 PMCID: PMC8714927 DOI: 10.3389/fbioe.2021.788527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy side effects, medication resistance, and tumor metastasis impede the advancement of cancer treatments, resulting in a poor prognosis for cancer patients. In the last decade, nanoparticles (NPs) have emerged as a promising drug delivery system. Swertia chirayita has long been used as a treatment option to treat a variety of ailments. Zinc oxide nanoparticles (ZnO-NPs) were synthesized from ethanolic and methanolic extract of S. chirayita leaves. ZnO-NPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron Microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Its anti-cancer activities were analyzed using cytotoxicity assays [MTT assay and acridine orange (AO) staining] and quantitative real-time PCR (qRT-PCR) using colorectal cancer (CRC) cells (HCT-116 and Caco-2) and control cells (HEK-293). The ZnO-NPs synthesized from the ethanolic extract of S. chirayita have an average size of 24.67 nm, whereas those from methanolic extract have an average size of 22.95 nm with a spherical shape. MTT assay showed NPs’ cytotoxic potential on cancer cells (HCT-116 and Caco-2) when compared to control cells (HEK-293). The IC50 values of ethanolic and methanolic extract ZnO-NPs for HCT-116, Caco-2, and HEK-293 were 34.356 ± 2.71 and 32.856 ± 2.99 μg/ml, 52.15 ± 8.23 and 63.1 ± 12.09 μg/ml, and 582.84 ± 5.26 and 615.35 ± 4.74 μg/ml, respectively. Acridine orange staining confirmed the ability of ZnO-NPs to induce apoptosis. qRT-PCR analysis revealed significantly enhanced expression of E-cadherin whereas a reduced expression of vimentin and CDK-1. Altogether, these results suggested anti-cancer properties of synthesized ZnO-NPs in CRC.
Collapse
Affiliation(s)
- Hadgu Mendefro Berehu
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Anupriya S
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Md Imran Khan
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Rajasree Chakraborty
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Kousalya Lavudi
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalam, Tirupati, India
| | - Bibhashee Mohapatra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Amrita Mishra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Srinivas Patnaik
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| |
Collapse
|
5
|
Kaushik N, Oh H, Lim Y, Kumar Kaushik N, Nguyen LN, Choi EH, Kim JH. Screening of Hibiscus and Cinnamomum Plants and Identification of Major Phytometabolites in Potential Plant Extracts Responsible for Apoptosis Induction in Skin Melanoma and Lung Adenocarcinoma Cells. Front Bioeng Biotechnol 2021; 9:779393. [PMID: 34957073 PMCID: PMC8704398 DOI: 10.3389/fbioe.2021.779393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/29/2021] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a major concern that severely affects the human population. Owing to persistent demand for novel therapies to treat and prohibit this lethal disease, research interest among scientists is drawing its huge focus toward natural products, as they have minimum toxicity comparable with existing treatment methods. The plants produce secondary metabolites, which are known to have the anticancer potential for clinical drug development. Furthermore, the use of nanocarriers could boost the solubility and stability of phytocompounds to obtain site-targeting delivery. The identification of potential phytochemicals in natural compounds would be beneficial for the synthesis of biocompatible nanoemulsions. The present study aimed to investigate the potential cytotoxicity of ethanol extracts of Hibiscus syriacus and Cinnamomum loureirii Nees plant parts on human skin melanoma (G361) and lung adenocarcinoma (A549) cells. Importantly, biochemical analysis results showed the presence of high phenol (50-55 µgGAE/mg) and flavonoids [42-45 µg quercetin equivalents (QE)/mg] contents with good antioxidant activity (40-58%) in C. loureirii Nees plants extracts. This plant possesses potent antiproliferative activity (60-90%) on the malignant G361 and A549 and cell lines correlated with the production of nitric oxide. Especially, C. loureirii plant extracts have major metabolites that exhibit cancer cell death associated with cell cycle arrest. These findings support the potential application of Cinnamomum for the development of therapeutic nanoemulsion in future cancer therapy.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| | - Hyunji Oh
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| | - Yeasol Lim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Linh Nhat Nguyen
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea.,Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| |
Collapse
|
6
|
Zhang D, Li X, Xie X, Zheng W, Li A, Liu Y, Liu X, Zhang R, Deng C, Cheng J, Yang H, Gong M. Exploring the Biological Effect of Biosynthesized Au-Pd Core-Shell Nanoparticles through an Untargeted Metabolomics Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59633-59648. [PMID: 34881570 DOI: 10.1021/acsami.1c14850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The biosynthesis of Au-Pd core-shell nanoparticles (NPs) with wild-type Escherichia coli (Au-Pd/E. coli) is an excellent newly established, environmentally friendly synthetic method for the fabrication of nanomaterials compared to traditional chemosynthesis. However, there is insufficient detailed bioinformation on the compatibility, metabolic process, and mechanism of this approach. Metabolomics approaches have provided an excellent alternative to numerous bioinformatics approaches for shedding light on the biological response of an organism exposed to external stimuli at the molecular level. In this study, two different doses (8 and 80 μg/mL) of Au-Pd/E. coli were applied to treat human umbilical vein endothelial cells (HUVECs). Gas chromatography/mass spectrometry coupled with bioinformatics was used to analyze the changes in the HUVEC metabolome after treatment. The results indicated the occurrence of nonsignificant acute cytotoxicity based on cell proliferation and apoptosis analysis, while high concentrations (80 μg/mL) of Au-Pd/E. coli induced dramatic changes in energy metabolism, revealing a notable inhibition of the tricarboxylic acid (TCA) cycle along with the enhancement of glycolysis, the pentose phosphate pathway, fatty acid biosynthesis, and lipid accumulation, which was correlated with mitochondrial dysfunction. The metabolomics results obtained for this novel Au-Pd/E. coli-cell system could broaden our knowledge of the biological effect of Au-Pd/E. coli and possibly reveal material modifications and technological innovations.
Collapse
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Ang Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Rui Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Cheng Deng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610093, China
| |
Collapse
|
7
|
Namasivayam SKR, Venkatachalam G, Bharani RSA, Kumar JA, Sivasubramanian S. Molecular intervention of colon cancer and inflammation manifestation by tannin capped biocompatible controlled sized gold nanoparticles from Terminalia bellirica: A green strategy for pharmacological drug formulation based on nanotechnology principles. 3 Biotech 2021; 11:401. [PMID: 34422541 PMCID: PMC8349386 DOI: 10.1007/s13205-021-02944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Among the diverse nanomaterials, gold nanoparticles (AuNps) are utilised for various therapeutic application due to the distinct physical, chemical properties and biocompatibility. Synthesis of gold nanoparticles using plants is the promising route. This method is low cost, eco-friendly and higher biological activities. In this present study, Gold nanoparticles were synthesised from fruit extract of Terminalia bellirica fruit extract. Their anticancer and anti-inflammatory activity was evaluated against colorectal cancer cell line (HT29) and TNBS-induced zebrafish model. Highly stable tannin capped gold nanoparticles were synthesised from fruit extract broth of Terminalia bellirica rapidly. Structural and functional properties of the synthesised nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) equipped with energy-dispersive atomic X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). All the characterisation studies reveal highly stable, crystalline, phytochemicals, mainly tannin doped, spherical, 28 nm controlled sized gold nanoparticles. The molecular mechanism of anticancer activity was studied by determining cancer markers' expression, which was studied using quantitative real-time polymerase chain reaction (qPCR). Antioxidative enzymes' status and apoptosis changes were also investigated. Synthesised nanoparticles brought a drastic reduction of all the tested cancer markers' expression. Notable changes in antioxidative enzymes' status and a good sign of apoptosis were observed in nanoparticles' treatment. The anti-inflammatory activity was studied against TNBS-induced zebrafish model, which was confirmed by determining inflammatory markers' expression TNF-α, iNOS (induced Nitric Oxide Synthase) and histopathological examination. Nanoparticles' treatment recorded a drastic reduction of inflammatory markers' expression. No marked sign of inflammation was also observed in histopathological analysis of the nanoparticles' treatment group. The present study suggests the possible utilisation of T. bellirica-mediated gold nanoparticles as an effective therapeutic agent against a prolonged inflammatory disease that progressively develops into cancer.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - Gayathri Venkatachalam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - R S Arvind Bharani
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - J Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - S Sivasubramanian
- Department of Chemical Engineering, Higher College of Technology, Muscat, Oman
| |
Collapse
|
8
|
Huang CY, Yu WS, Liu GC, Hung SC, Chang JH, Chang JC, Cheng CL, Sun DS, Lin MD, Lin WY, Tzeng YJ, Chang HH. Opportunistic gill infection is associated with TiO2 nanoparticle-induced mortality in zebrafish. PLoS One 2021; 16:e0247859. [PMID: 34283836 PMCID: PMC8291654 DOI: 10.1371/journal.pone.0247859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
The large amounts of engineered titanium dioxide nanoparticles (TiO2NPs) that have been manufactured have inevitably been released into the ecosystem. Reports have suggested that TiO2 is a relatively inert material that has low toxicity to animals. However, as various types of NPs increasingly accumulate in the ocean, their effects on aquatic life-forms remain unclear. In this study, a zebrafish model was used to investigate TiO2NP-induced injury and mortality. We found that the treatment dosages of TiO2NP are positively associated with increased motility of zebrafish and the bacterial counts in the water. Notably, gill but not dorsal fin and caudal fin of the zebrafish displayed considerably increased bacterial load. Metagenomic analysis further revealed that gut microflora, such as phyla Proteobacteria, Bacteroidetes, and Actinobacteria, involving more than 95% of total bacteria counts in the NP-injured zebrafish gill samples. These results collectively suggest that opportunistic bacterial infections are associated with TiO2NP-induced mortality in zebrafish. Infections secondary to TiO2NP-induced injury could be a neglected factor determining the detrimental effects of TiO2NPs on wild fish.
Collapse
Affiliation(s)
- Chiao-Yi Huang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Wei-Sheng Yu
- Tzu-Chi Senior High School Affiliated with Tzu-Chi University, Tzu-Chi University, Hualien, Taiwan
| | - Geng-Chia Liu
- Tzu-Chi Senior High School Affiliated with Tzu-Chi University, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Jen-Hsiang Chang
- Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan
| | | | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yin-Jeh Tzeng
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Ibrahim ATA, Banaee M, Sureda A. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108942. [PMID: 33220515 DOI: 10.1016/j.cbpc.2020.108942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023]
Abstract
The considerable increment in the use of Nanoparticles in the industry has been recognized as an environmental concern today. Therefore, this study aimed to investigate the toxicity effects of green synthesized cadmium nanoparticles [Cd]NPs using Moringa oleifera leaves extract on multi-biomarkers in Oreochromis niloticus after four weeks of exposure. The results showed that LC50 values of [Cd]NPs for 24, 48, 72 and 96 h were 2.17, 1.75, 1.49 and 1.22 mg l-1, respectively. There was a significant decrease in the number of white and red blood cells, hemoglobin, hematocrit, mean corpuscular hemoglobin concentration value in fish exposed to [Cd]NPs. The mean corpuscular volume and neutrophils were increased. [Cd]NPs exposure to fish has led to cytotoxic and genotoxic changes in the erythrocytes. Significant changes were observed in the cortisol, triiodothyronine, and thyroxine levels of the fish exposed to [Cd]NPs. The activities of aspartate aminotransferase and alanine aminotransferase increased. Glucose, total lipids, urea, and creatinine levels increased in the serum of fish exposed to [Cd]NPs, whereas total protein contents and alkaline phosphatase activity decreased. A significant reduction was observed in glycogen, total antioxidant levels, and superoxide dismutase, catalase and glutathione S-transferase activities of fish exposed to [Cd]NPs. In contrast, the [Cd]NPs exposure resulted in a significant increase in DNA fragmentation percentages, lipid peroxidation, and carbonyl protein levels in different tissues. The results of the present study confirmed that [Cd]NPs has the toxicity potential to cause Cyto-genotoxicity, oxidative damages, changes in the hematological and biochemical changes, and endocrine disruptor in the fish.
Collapse
Affiliation(s)
| | - Mahdi Banaee
- Department of Aquaculture, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
10
|
Hamida RS, Ali MA, Goda DA, Al-Zaban MI. Lethal Mechanisms of Nostoc-Synthesized Silver Nanoparticles Against Different Pathogenic Bacteria. Int J Nanomedicine 2020; 15:10499-10517. [PMID: 33402822 PMCID: PMC7778443 DOI: 10.2147/ijn.s289243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing antibiotic resistance and the emergence of multidrug-resistant (MDR) pathogens have led to the need to develop new therapeutic agents to tackle microbial infections. Nano-antibiotics are a novel generation of nanomaterials with significant antimicrobial activities that target bacterial defense systems including biofilm formation, membrane permeability, and virulence activity. PURPOSE In addition to AgNO3, the current study aimed to explore for first time the antibacterial potential of silver nanoparticles synthesized by Nostoc sp. Bahar_M (N-SNPs) and their killing mechanisms against Streptococcus mutans, methicillin-resistant Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. METHODS Potential mechanisms of action of both silver species against bacteria were systematically explored using agar well diffusion, enzyme (lactate dehydrogenase (LDH) and ATPase) and antioxidant (glutathione peroxidase and catalase) assays, and morphological examinations. qRT-PCR and SDS-PAGE were employed to investigate the effect of both treatments on mfD, flu, and hly gene expression and protein patterns, respectively. RESULTS N-SNPs exhibited greater biocidal activity than AgNO3 against the four tested bacteria. E. coli treated with N-SNPs showed significant surges in LDH levels, imbalances in other antioxidant and enzyme activities, and marked morphological changes, including cell membrane disruption and cytoplasmic dissolution. N-SNPs caused more significant upregulation of mfD expression and downregulation of both flu and hly expression and increased protein denaturation compared with AgNO3. CONCLUSION N-SNPs exhibited significant inhibitory potential against E. coli by direct interfering with bacterial cellular structures and/or enhancing oxidative stress, indicating their potential for use as an alternative antimicrobial agent. However, the potential of N-SNPs to be usable and biocompatible antibacterial drug will evaluate by their toxicity against normal cells.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Park SJ. Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int J Nanomedicine 2020; 15:5783-5802. [PMID: 32821101 PMCID: PMC7418457 DOI: 10.2147/ijn.s254808] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon21936, Korea
| |
Collapse
|