1
|
Zeydan Ö, Ülker U. Assessment of ground-level ozone pollution in Türkiye according to new WHO limits. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:549. [PMID: 38743179 DOI: 10.1007/s10661-024-12718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Ground-level ozone is a secondary pollutant and is attributable to respiratory diseases and mortality. For this reason, the World Health Organization (WHO) implemented a new long-term (peak season) limit value for ozone. The previous studies related to ozone in Türkiye were spatially limited to certain locations. In this study, annual mean and peak season ozone concentrations, and limit exceedances were investigated for Türkiye for the year 2021. Moreover, ozone peak seasons were determined for the first time for 126 air quality monitoring stations. The annual mean ozone concentration was determined as 44.3 ± 19.3 µg/m3 whereas the peak season average ozone level was 68.4 ± 27.2 µg/m3. April-September period was the most frequently observed ozone peak season. Among all stations, Erzurum Palandöken was by far the most polluted station in terms of annual mean and limit exceedances of ozone. Ankara Siteler stations have the highest rank in peak season mean. 87 and 83 stations exceeded the short-term and long-term recommendations of WHO, respectively. Four hotspot regions were revealed in terms of peak season exceedance: Adana and surrounding provinces, the surroundings of Burdur and Isparta provinces, and the northeastern and northwestern parts of Türkiye. To protect public health, WHO recommendations for 8-h and peak season limits should be immediately implemented in Turkish regulations.
Collapse
Affiliation(s)
- Özgür Zeydan
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye.
| | - Uğur Ülker
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye
| |
Collapse
|
2
|
Zhang Y, Pei Y, Liu QS, Gao Y, Min K, Chen Z, Shu Z, Liu Q, Zhou Q, Jiang G. Tracing the plasma kallikrein-kinin system-activating component in the atmospheric particulate matter with different origins. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132044. [PMID: 37451104 DOI: 10.1016/j.jhazmat.2023.132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Atmospheric particulate matter (PM) perturbs hematological homeostasis by targeting the plasma kallikrein-kinin system (KKS), causing a cascade of zymogen activation events. However, the causative components involved in PM-induced hematological effects are largely unknown. Herein, the standard reference materials (SRMs) of atmospheric PM, including emissions from the diesel (2975), urban (1648a), and bituminous coal (2693), were screened for their effects on plasma KKS activation, and the effective constituent contributing to PM-induced KKS activation was further explored by fraction isolation and chemical analysis. The effects of three SRMs on KKS activation followed the order of 2975 > 1648a > 2693, wherein the fractions of 2975 isolated by acetone and water, together with the insoluble particulate residues, exerted significant perturbations in the hematological homeostasis. The soot contents in the SRMs and corresponding isolated fractions matched well with their hematological effects, and the KKS activation could be dependent on the soot surface oxidation degree. This study, for the first time, uncovered the soot content in atmospheric PM with different origins contributed to the distinct effects on plasma KKS activation. The finding would be of utmost importance for the health risk assessment on inhaled airborne fine PM, given its inevitable contact with human circulatory system.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Shu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Borhani F, Shafiepour Motlagh M, Ehsani AH, Rashidi Y, Maddah S, Mousavi SM. On the predictability of short-lived particulate matter around a cement plant in Kerman, Iran: machine learning analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:1513-1526. [PMID: 36405244 PMCID: PMC9643923 DOI: 10.1007/s13762-022-04645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED One of the greatest environmental risks in the cement industry is particulate matter emission (i.e., PM2.5 and PM10). This paper aims to develop descriptive-analytical solutions for increasing the accuracy of predicting particulate matter emissions using resample data of Kerman cement plant. Photometer instruments DUST TRAK and BS-EN-12341 method were used to determine concentration of PM2.5 and PM10. Sampling was performed on 4 environmental stations of Kerman cement plant in the four seasons. In order to accurate assessment of particulate matter concentration, a new model was proposed to resample cement plant time series data using Pandas in Python. The effect of meteorological parameters including wind speed, relative humidity, air temperature and rainfall on the particulate matter concentration was investigated through statistical analysis. The results indicated that the maximum annual average of 24-h of PM2.5 belonged to the east side (opposite the clinker depot) in 2019 (31.50 μg m-3) and west side (in front of the mine) in 2020 (31.00 μg m-3). Also, maximum annual average of 24-h of PM10 belonged to the west side (in front of the mine) in 2020 (121.00 μg m-3) and east side (opposite the clinker depot) in 2020 (120.75 μg m-3). The PM2.5 and PM10 concentrations are more than the allowable limit. The results demonstrate that particulate matter concentration increases with increasing relative humidity and rainfall. Finally, the SARIMA model was used to predict the particulate matter concentration. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13762-022-04645-3.
Collapse
Affiliation(s)
- F. Borhani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | | - A. H. Ehsani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Y. Rashidi
- Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - S. Maddah
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - S. M. Mousavi
- Department of Environmental Planning and Design, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
4
|
Shillito LM, Namdeo A, Bapat AV, Mackay H, Haddow SD. Analysis of fine particulates from fuel burning in a reconstructed building at Çatalhöyük World Heritage Site, Turkey: assessing air pollution in prehistoric settled communities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1033-1048. [PMID: 34155558 PMCID: PMC8863713 DOI: 10.1007/s10653-021-01000-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The use of wood, dung and other biomass fuels can be traced back to early prehistory. While the study of prehistoric fuel use and its environmental impacts is well established, there has been little investigation of the health impacts this would have had, particularly in the Neolithic period, when people went from living in relatively small groups, to living in dense settlements. The UNESCO World Heritage Site of Çatalhöyük, Turkey, is one of the earliest large 'pre-urban' settlements in the world. In 2017, a series of experiments were conducted to measure fine particulate (PM2.5) concentrations during typical fuel burning activities, using wood and dung fuel. The results indicate that emissions from both fuels surpassed the WHO and EU standard limits for indoor air quality, with dung fuel being the highest contributor for PM2.5 pollution inside the house, producing maximum values > 150,000 µg m-3. Maximum levels from wood burning were 36,000 µg m-3. Average values over a 2-3 h period were 13-60,000 µg m-3 for dung and 10-45,000 µg m-3 for wood. The structure of the house, lack of ventilation and design of the oven and hearth influenced the air quality inside the house. These observations have implications for understanding the relationship between health and the built environment in the past.
Collapse
Affiliation(s)
- Lisa-Marie Shillito
- School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne, UK.
| | - Anil Namdeo
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | - Helen Mackay
- Department of Geography, Durham University, Durham, UK
| | - Scott D Haddow
- Department of Cross-Cultural and Regional Studies, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
5
|
Li A, Chen C, Chen J, Lei P. Environmental investigation of pollutants in coal mine operation and waste dump area monitored in Ordos Region, China. RSC Adv 2021; 11:10340-10352. [PMID: 35423509 PMCID: PMC8695702 DOI: 10.1039/d0ra10586d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
The increasingly severe emissions of greenhouse and poisonous gases from environmentally unsafe stockpiled coal mine waste dumps have urged people from the academia as well as the industry to focus on environmental impact assessment. In this study, one-year air pollutant monitoring was conducted at the Qipanjing coalfield in Inner Mongolia of China for determining the distribution pattern statue of pollutant exposure and its main driving factors. We used FTIR spectroscopy to measure the inorganic compounds in particulate matter with a diameter of less than 2.5 μm. The spatial and temporal distribution characteristics of leading pollutants, including PM2.5, PM10, SO2, NO2, O3 and CO were analyzed. Firstly, the research showed that the temporal and spatial distribution of pollutants in the coal mine waste area is non-homogeneous. Secondly, some meteorological parameters, such as wind speed, relative humidity, temperature, and rainfall, were found to have significant effects on air pollutant distribution. Stable atmospheric conditions were unfavorable for the diffusion of pollutants and prolong the pollution process. Finally, in the vicinity of coalfields, SO2 and NO2 are present in high concentrations in air. Primary reasons for such high values are coal mining-related activities and active mine fires. This study will help to offer valuable and detailed information for understanding and interpreting the pollution source.
Collapse
Affiliation(s)
- Ang Li
- Institute of Disaster Prevention Science and Safety Technology, Central South University Changsha 410075 China
- College of Forestry, Inner Mongolia Agricultural University Hohhot 010019 China
| | - Changkun Chen
- Institute of Disaster Prevention Science and Safety Technology, Central South University Changsha 410075 China
| | - Jie Chen
- Institute of Disaster Prevention Science and Safety Technology, Central South University Changsha 410075 China
| | - Peng Lei
- Institute of Disaster Prevention Science and Safety Technology, Central South University Changsha 410075 China
| |
Collapse
|
6
|
Environmental and Health Impacts of Domestic Hot Water (DHW) Boilers in Urban Areas: A Case Study from Turin, NW Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020595. [PMID: 31963379 PMCID: PMC7013519 DOI: 10.3390/ijerph17020595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
Abstract
Domestic hot water heat pumps (DHW HPs) have spread fast in recent years in Europe and they now represent an interesting opportunity for implementing renewable energy sources in buildings with a centralized/district heating system, where DWH is generally produced by a gas boiler or an electric water heater. Replacing these appliances has several environmental benefits, including the removal of air pollution sources and the reduction of Green House Gasses (GHG) emissions. In this work, we present the techno-economic and environmental evaluation of implementing DHW HPs in Turin, where 66% of the DHW demand is covered by dedicated gas boilers. The impact of such boilers was assessed through numerical air dispersion modeling conducted with the software SPRAY (Aria Technologies, Paris, French). Results show that removing these sources would reduce yearly average concentrations of NOx up to 1.4 µg/m3, i.e., about 1% of monitored concentrations of NOx, with a benefit of 1.05 ÷ 15.15 M€/y of avoided health externalities. Replacing boilers with DHW HPs is always financially feasible with current incentives while, in their absence, it would be convenient for residential units with 3 cohabitants or more (51.22% of the total population), thanks to scale economies.
Collapse
|
7
|
Characteristics and health effects of BTEX in a hot spot for urban pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:133-143. [PMID: 29510308 DOI: 10.1016/j.ecoenv.2018.02.065] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/07/2022]
Abstract
This study reports a spatiotemporal characterization of toluene, benzene, ethylbenzene, and xylenes concentrations (BTEX) in an urban hot spot in Iran, specifically at an bus terminal region in Shiraz. Sampling was carried out according to NIOSH Compendium Method 1501. The inverse distance weighting (IDW) method was applied for spatial mapping. The Monte Carlo simulation technique was applied to evaluate carcinogenic and non-carcinogenic risk owing to BTEX exposure. The highest average BTEX concentrations were observed for benzene in the morning (at 7:00-9:00 A.M. local time) (26.15 ± 17.65 µg/m3) and evening (at 6:00-8:00 P.M. local time) (34.44 ± 15.63 µg/m3). The benzene to toluene ratios in the morning and evening were 2.02 and 3.07, respectively. The main sources of BTEX were gas stations and a municipal solid waste transfer station. The inhalation lifetime cancer risk (LTCR) for benzene in the morning and evening were 1.96 × 10-4 and 2.49 × 10-4, respectively, which exceeds the recommended value by US EPA and WHO. The hazard quotient (HQ) of all these pollutants was less than 1. The results of this work have implications for public health near 'hot spots' such as IKBT where large populations are exposed to carcinogenic emissions.
Collapse
|
8
|
Khan A, Kim KH, Szulejko JE, Brown RJC, Jeon EC, Oh JM, Shin YS, Adelodun AA. Long-term trends in airborne SO 2 in an air quality monitoring station in Seoul, Korea, from 1987 to 2013. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:923-932. [PMID: 28388332 DOI: 10.1080/10962247.2017.1305009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Atmospheric concentration of sulfur dioxide (SO2) was intermittently measured at an air quality monitoring (AQM) station in the Yong-san district of Seoul, Korea, between 1987 and 2013. The SO2 level was compared with other important pollutants concurrently measured, including methane (CH4), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM10). If split into three different periods (period 1, 1987-1988, period 2, 1999-2000, and period 3, 2004-2013), the respective mean [SO2] values (6.57 ± 4.29, 6.30 ± 2.44, and 5.29 ± 0.63 ppb) showed a slight reduction across the entire study period. The concentrations of SO2 are found to be strongly correlated with other pollutants such as CO (r = 0.614, p = 0.02), which tracked reductions in reported emissions due to tighter emissions standards enacted by the South Korean government. There was also a clear seasonal trend in the SO2 level, especially in periods 2 and 3, reflecting the combined effects of domestic heating by coal briquettes and meteorological conditions. Although only a 16% concentration reduction was achieved during the 27-year study duration, this is significant if one considers rapid urbanization, an 83.2% increase in population, and rapid industrialization that took place during that period. IMPLICATIONS Since 1970, a network of air quality monitoring (AQM) stations has been operated by the Korean Ministry of Environment (KMOE) for routine nationwide monitoring of air pollutant concentrations in urban/suburban areas. To date, the information obtained from these stations has provided a platform for analyzing long-term trends of major pollutant species. In this study, we examined the long-term trends of SO2 levels and relevant environmental parameters monitored continuously in the Yong-san district of Seoul between 1987 and 2013. The data were analyzed over various time scales (i.e., monthly, seasonal, and annual intervals). The results obtained from this study will allow us to assess the effectiveness of abatement strategy and to predict future concentrations trends in association with future abatement strategies and technologies.
Collapse
Affiliation(s)
- Azmatullah Khan
- a Department of Civil and Environmental Engineering , Hanyang University , Seoul , Korea
| | - Ki-Hyun Kim
- a Department of Civil and Environmental Engineering , Hanyang University , Seoul , Korea
| | - Jan E Szulejko
- a Department of Civil and Environmental Engineering , Hanyang University , Seoul , Korea
| | - Richard J C Brown
- b Environment Division , National Physical Laboratory, Teddington , Middlesex , United Kingdom
| | - Eui-Chan Jeon
- c Department of Environment and Energy , Sejong University , Seoul , Korea
| | - Jong-Min Oh
- d Department of Environmental Application Science , Kyung Hee University , Suwon , Korea
| | - Yong Soon Shin
- e Division of Nursing , Hanyang University , Seoul , Korea
| | - Adedeji A Adelodun
- f Department of Marine Science & Technology , School of Earth and Mineral Sciences, Federal University of Technology , Akure , Nigeria
| |
Collapse
|
9
|
Tuygun GT, Altuğ H, Elbir T, Gaga EE. Modeling of air pollutant concentrations in an industrial region of Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8230-8241. [PMID: 28160171 DOI: 10.1007/s11356-017-8492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The hourly SO2 and PM10 concentrations in ambient air of the Kutahya city located at the western part of Turkey have exceeded the air quality limits in winter months since several years. The region has major industrial plants including lignite-fired power plants and open-cast mining activities, residential areas, and traffic sources. To obtain and quantify the sector-wise anthropogenic emissions and spatial distribution of the major pollutants including SO2, NO x , PM10, and CO, a comprehensive emission inventory with 1-km spatial resolution was prepared for the year of 2014, and the AERMOD dispersion model was used to predict ambient air concentrations in a domain of 140 km by 110 km. Validation of the model results was also done referring to in situ routine measurements at two monitoring stations located in the study area. Total emissions of SO2, PM10, NO x , and CO in the study area were calculated as 64,399, 9770, 24,627, and 29,198 tons/year, respectively. The results showed that industrial plants were the largest sources of SO2, NO x , and PM10 emissions, while residential heating and road traffic were the most contributing sectors for CO emissions. Three major power plants in the region with total annual lignite consumption of 10 million tons per year were main sources of high SO2 concentrations, while high PM10 concentrations mainly originated from two major open-cast lignite mines. Major contributors of high NO x and CO concentrations were traffic including highways and urban streets, and residential heating with high lignite consumption in urban areas. Results of the dispersion model run with the emission inventory resulted in partially high index of agreement (0.75) with SO2 measured in the urban station within the modeled area.
Collapse
Affiliation(s)
- Gizem Tuna Tuygun
- Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey
| | - Hicran Altuğ
- Department of Environmental Engineering, Anadolu University, Eskişehir, Turkey
| | - Tolga Elbir
- Department of Environmental Engineering, Dokuz Eylül University, İzmir, Turkey.
| | - Eftade E Gaga
- Department of Environmental Engineering, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
10
|
Liang CS, Liu H, He KB, Ma YL. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index. Sci Rep 2016; 6:34891. [PMID: 27731344 PMCID: PMC5059628 DOI: 10.1038/srep34891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations.
Collapse
Affiliation(s)
- Chun-Sheng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Tsinghua University, Beijing 100084, China
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Tsinghua University, Beijing 100084, China
| | - Yong-Liang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Oztetik E. Biomarkers of ecotoxicological oxidative stress in an urban environment: using evergreen plant in industrial areas. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:903-14. [PMID: 25716306 DOI: 10.1007/s10646-015-1433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 05/08/2023]
Abstract
Plants react to air pollution by increased production of reactive oxygene species and oxidative stress, which triggers multiple defense mechanisms. In this study, some parameters that serve as biomarkers for antioxidative defense, such as glutathione S-transferase (GST) activity, glutathione (GSH), malondialdehyde, chlorophyll and total soluble protein contents, were investigated on the needles of Cedrus libani (A. Rich.) grown around two industrial areas in Eskisehir. The measurements revealed that metabolism in needles of C. libani trees is largely directed towards defence against ROS, due to effects of air pollution in the sampling areas. We observed significant increases in all parameters, except chlorophyll contents, which were strongly decreased. However, these sharp changes were also prominent not only between sampling sites and control site, but also among the areas investigated, suggesting the quantitative influence of the extent of pollution. Together with total soluble protein contents, the correlation between GST activities and GSH contents suggests that damage due to oxidative stress was most probably reduced due to the increased antioxidant capacity. Therefore, we can suggest C. libani as a good model for biomonitoring atmospheric quality with the oxidative stress parameters providing an effective measure for early environmental assessment due to their sensitivities of even low levels of pollution.
Collapse
Affiliation(s)
- Elif Oztetik
- Department of Biology, Science Faculty, Anadolu University, 26470, Eskisehir, Turkey,
| |
Collapse
|
12
|
Alghamdi MA, Shamy M, Redal MA, Khoder M, Awad AH, Elserougy S. Microorganisms associated particulate matter: a preliminary study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 479-480:109-16. [PMID: 24561289 DOI: 10.1016/j.scitotenv.2014.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/01/2014] [Accepted: 02/02/2014] [Indexed: 05/04/2023]
Abstract
This study aims to determine the microbiological quality of particulate matter (PM) in an urban area in Jeddah, Saudi Arabia, during December 2012 to April 2013. This was achieved by the determination of airborne bacteria, fungi, and actinobacteria associated PM10 and PM2.5, as well as their relationships with gaseous pollutants, O3, SO2 and NO2, and meteorological factors (T°C, RH% and Ws). High volume samplers with PM10 and PM2.5 selective sizes, and glass fiber filters were used to collect PM10 and PM2.5, respectively. The filters were suspended in buffer phosphate and aliquots were spread plated onto the surfaces of trypticase soy agar, malt extract agar, and starch casein agar media for counting of bacteria, fungi and actinobacteria-associated PM, respectively. PM10 and PM2.5 concentrations averaged 159.9 μg/m(3) and 60 μg/m(3), respectively, with the ratio of PM2.5/PM10 averaged ~0.4. The concentrations of O3, SO2 and NO2 averaged 35.73 μg/m(3), 38.1μg/m(3) and 52.5 μg/m(3), respectively. Fungi and actinobacteria associated PM were found in lower concentrations than bacteria. The sum of microbial loads was higher in PM10 than PM2.5, however a significant correlation (r=0.57, P ≤ 0.05) was found between the sum of microbial loads associated PM10 and PM2.5. Aspergillus fumigatus and Aspergillus niger were the common fungal types associated PM. Temperature significantly correlated with both PM10 (r=0.44), and PM2.5 (r=0.5). Significant negative correlations were found between O3 and PM2.5 (r=-0.47), and between SO2 with PM10 (r=-0.48). Wind speed positively correlated with airborne microorganisms associated PM. The regression model showed that the inverse PM2.5 concentration (1/PM2.5) was a significant determinant of fungal count associated PM. Chemical processes and environmental factors could affect properties of PM and in turn its biological quality.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Maria Ana Redal
- Unidad de Medicina Molecular y Genómica del Instituto de Ciencias Básicas y Medicina Experimental, Escuela de Medicina del Hospital Italiano de Buenos Aires, Argentina
| | - Mamdouh Khoder
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdel Hameed Awad
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al Qura University, P.O. Box 6287, Makkah 21955, Saudi Arabia.
| | - Safaa Elserougy
- Department of Environmental and Occupational Medicine, National Research Centre, Egypt
| |
Collapse
|
13
|
Altuğ H, Gaga EO, Döğeroğlu T, Brunekreef B, Hoek G, Van Doorn W. Effects of ambient air pollution on respiratory tract complaints and airway inflammation in primary school children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 479-480:201-9. [PMID: 24561926 DOI: 10.1016/j.scitotenv.2014.01.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 05/13/2023]
Abstract
Respiratory health effects of ambient air pollution were studied in 605 school children 9 to 13 years in Eskişehir, Turkey. Each child performed a fractional exhaled nitric oxide (FENO) measurement and a lung function test (LFT). Self-reported respiratory tract complaints (having cold, complaints of throat, runny nose and shortness of breath/wheezing) in the last 7 days and on the day of testing were also recorded. As acute health outcomes were investigated, weekly average ambient concentrations of ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) were determined by passive sampling in the school playgrounds simultaneously with the health survey. Effects of air pollution on respiratory tract complaints and exhaled NO/lung function were estimated by multivariate logistic regression and multivariate linear mixed effects models, respectively. Upper respiratory tract complaints were significantly (p<0.05) associated with weekly average O3 concentrations during the health survey (adjusted odds ratios (OR) of 1.21 and 1.28 for a 10 μgm(-3) increment for having cold and a runny nose on day of testing, respectively). FENO levels were significantly (p<0.05) increased in children with various upper respiratory tract complaints (ratio in FENO varied between 1.16 and 1.40). No significant change in FENO levels was detected in association with any of the measured pollutants (p ≥ 0.05). Lung function was not associated with upper respiratory tract complaints and FENO levels. Peak Expiratory Flow (PEF) levels were negatively associated with weekly average O3 levels for children without upper respiratory tract complaints. In summary, elevated levels of air pollutants increased respiratory tract complaints in children.
Collapse
Affiliation(s)
- Hicran Altuğ
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | - Eftade O Gaga
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | - Tuncay Döğeroğlu
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | - Bert Brunekreef
- IRAS Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| | - Gerard Hoek
- IRAS Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| | - Wim Van Doorn
- Royal Haskoning, Business line Industry and Energy, P.O. Box 151, 6500 AD Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Demircigil GÇ, Erdem O, Gaga EO, Altuğ H, Demirel G, Özden Ö, Arı A, Örnektekin S, Döğeroğlu T, van Doorn W, Burgaz S. Cytogenetic biomonitoring of primary school children exposed to air pollutants: micronuclei analysis of buccal epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1197-1207. [PMID: 23884878 DOI: 10.1007/s11356-013-2001-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
There is an increasing attempt in the world to determine the exposures of children to environmental chemicals. To analyze the genotoxic effect of air pollution, micronucleus (MN) assay was carried out in buccal epithelial cells (BECs) of children living in an urban city of Turkey. Children from two schools at urban-traffic and suburban sites were investigated in summer and winter seasons for the determination of BEC-MN frequency (per mille) and frequency of BEC with MN (per mille). The same children were also recruited for lung function measurements within a MATRA project ("Together Towards Clean Air in Eskisehir and Iskenderun") Measured NO2 and SO2 concentrations did not exceed the European Union (EU) limit levels either in urban-traffic or suburban regions. Higher O3 concentrations were measured in the suburban site especially in the summer period. Particulate matter (PM2.5 and PM10) levels which did not differ statistically between two regions were above the EU limits in general. Although BEC-MN frequencies of children living in the suburban sites were higher in general, the difference between two regions was not significant either in the summer or winter periods. BEC-MN frequencies of the urban-traffic children were found to be significantly higher in summer period (mean ± SD, 2.68 ± 1.99) when compared to winter period (1.64 ± 1.59; p = 0.004). On the other hand, no seasonality was observed for the suburban children. Similar results have been obtained in the BEC frequency with MN in our study. In summer, BEC-MN frequencies were significantly increased with the decrease in pulmonary function levels based on forced expiratory flow between 25 and 75% of vital capacity (FEF25-75%) levels (p < 0.05). As a conclusion, children living in urban-traffic and suburban areas in the city of Eskişehir exhibited similar genotoxicity. Seasonal variation in genotoxicity may be interpreted as relatively high ozone levels and increasing time spent at outdoors in the summer.
Collapse
|
15
|
Altuğ H, Gaga EO, Döğeroğlu T, Ozden O, Ornektekin S, Brunekreef B, Meliefste K, Hoek G, Van Doorn W. Effects of air pollution on lung function and symptoms of asthma, rhinitis and eczema in primary school children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6455-6467. [PMID: 23591930 DOI: 10.1007/s11356-013-1674-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
Health effects of ambient air pollution were studied in three groups of schoolchildren living in areas (suburban, urban and urban-traffic) with different air pollution levels in Eskişehir, Turkey. This study involved 1,880 students aged between 9 and 13 years from 16 public primary schools. This two-season study was conducted from January 2008 through March 2009. Symptoms of asthma, rhinitis and eczema were determined by the International Study of Asthma and Allergies in Childhood questionnaire in 2008. Two lung function tests were performed by each child for summer and winter seasons with simultaneous ambient air measurements of ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) by passive sampling. Effects of air pollution on impaired lung function and symptoms in schoolchildren were estimated by multivariate logistic regression analyses. Girls with impaired lung function (only for the summer season evaluation) were more observed in suburban and urban areas when compared to urban-traffic area ([odds ratio (OR) = 1.49; 95 % confidence interval (CI) 1.04-2.14] and [OR = 1.69 (95 % CI 1.06-2.71)] for suburban vs. urban-traffic and urban vs. urban-traffic, respectively). Significant association between ambient ozone concentrations and impaired lung function (for an increase of 10 μg m(-3)) was found only for girls for the summer season evaluation [OR = 1.11 (95 % CI 1.03-1.19)]. No association was found for boys and for the winter season evaluation. No association was found between any of the measured air pollutants and symptoms of current wheeze, current rhinoconjunctivitis and current itchy rash. The results of this study showed that increasing ozone concentrations may cause a sub-acute impairment in lung function of school aged children.
Collapse
Affiliation(s)
- Hicran Altuğ
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555, Eskişehir, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gaga EO, Döğeroğlu T, Ozden O, Ari A, Yay OD, Altuğ H, Akyol N, Ornektekin S, Van Doorn W. Evaluation of air quality by passive and active sampling in an urban city in Turkey: current status and spatial analysis of air pollution exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3579-3596. [PMID: 22535226 DOI: 10.1007/s11356-012-0924-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/10/2012] [Indexed: 05/31/2023]
Abstract
Concentrations of air pollutants, nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), ozone (O(3)), particulate matter (PM(2.5) and PM(10)), trace metals, and polycyclic aromatic hydrocarbons (PAHs) were measured in 2008 and 2009 in the city of Eskişehir, central Turkey. Spatial distributions of NO(2), SO(2), and ozone were determined by passive sampling campaigns carried out during two different seasons with fairly large spatial coverage. A basic population exposure assessment was carried out employing Geographical Information System techniques by combining population density maps with pollutant distribution maps of NO(2) and SO(2). It was found that 95 % of the population is exposed to NO(2) levels close to the World Health Organization guideline value. Regarding SO(2), a large proportion of the population (83 %) is exposed to levels above the WHO second interim target value. Concentrations of all the pollutants showed a seasonal pattern increasing in winter period, except for ozone having higher concentrations in summer season. Daily PM(10) and PM(2.5) concentrations exceeded European Union limit values almost every sampling day. Toxic fractions of the measured PAHs were calculated and approximately fourfold increase was observed in winter period. Copper, Pb, Sn, As, Cd, Zn, Sb, and Se were found to be moderately to highly enriched in PM(10) fraction, indicating anthropogenic input to those elements measured. Exposure assessment results indicate the need for action to reduce pollutant emissions especially in the city center. Passive sampling turns out to be a practical and economical tool for air quality assessment with large spatial coverage.
Collapse
Affiliation(s)
- Eftade O Gaga
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ozden O, Döğeroğlu T. Performance evaluation of a tailor-made passive sampler for monitoring of tropospheric ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3200-3209. [PMID: 22392689 DOI: 10.1007/s11356-012-0825-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone. METHODS The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers. RESULTS There was an agreement (R (2) = 0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42 μg m(-3) for an exposure period of 1 week, and the sampler can be stored safely for a period of up to 8 weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21 mL min(-1) in a very good agreement with the theoretical uptake rate (10.32 mL min(-1)). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R (2) = 0.93) between two passive samplers. CONCLUSIONS The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.
Collapse
Affiliation(s)
- Ozlem Ozden
- Environmental Engineering Department, Faculty of Engineering & Architecture, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | | |
Collapse
|
18
|
Karaca F. Determination of air quality zones in Turkey. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2012; 62:408-419. [PMID: 22616283 DOI: 10.1080/10473289.2012.655883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, the particulate matter (with an aerodynamic diameter <10 microm; PM10) profile of Turkey with data from the air quality monitoring stations located throughout the country was used. The number of stations (119) was reduced to 55 after a missing data treatment for statistical analyses. First, a classification method was developed based on ongoing national and international (European Commission directives) legislations to categorize air zones into six groups, from a "Very Clear Air Zone" to a "Polluted Air Zone". Then, a Geographic Information System (GIS)-based interpolation technique and statistical analyses (correlation analysis and factor analysis) were used to generate PM10 pollution profiles of the annual heating time and nonheating time periods. Finally, the coherent air pollution management zones of Turkey, based on air quality criteria and measured data using a GIS-based model supported by statistical analyses, were suggested. Based on the analysis, four hot spots were identified: (i) the eastern part of the Black Sea region; (ii) the northeastern part of inland Anatolia; (iii) the western part of Northeastern Anatolia; and (vi) the eastern part of Turkey. The possible reasons for the elevated PM10 levels are discussed using topographic, climatologic, land use, and energy utilization parameters. Finally, the suggested air zones were compared with the administrative air zones, which were newly developed by the Turkish Ministry of Environment and Forestry, to evaluate the level of agreement between the two.
Collapse
Affiliation(s)
- Ferhat Karaca
- Department of Environmental Engineering, Fatih University, Istanbul, Turkey.
| |
Collapse
|
19
|
Gaidajis G, Angelakoglou K, Gazea E. Ambient air quality at the wider area of an industrial mining facility at Stratoni, Chalkidiki, Greece. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1869-1877. [PMID: 22755534 DOI: 10.1080/10934529.2012.689581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To assess ambient air quality at the wider area of a mining-industrial facility in Chalkidiki, Greece, the particulate matter with an aerodynamic diameter of 10 μm (PM(10)) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn were monitored for a period of three years (2008-2010). Gravimetric air samplers were employed for the particulate matter sampling at three sampling stations located in the immediate vicinity of the industrial facility and at a neighbouring residential site. Monitoring data indicated that the 3-year median PM(10) concentrations were 23.3 μg/m(3) at the residential site close to the facility and 28.7 μg/m(3) at the site within the facility indicating a minimal influence from the industrial activities to the air quality of the neighbouring residential area. Both annual average and median PM(10) concentration levels were below the indicative European standards, whereas similar spatial and temporal variation was observed for the PM(10) constituents. The average Pb concentrations measured for the three sampling sites were 0.2, 0.146 and 0.174 μg/m(3) respectively, well below the indicative limit of 0.5 μg/m(3). The quantitative and qualitative comparison of PM(10) concentrations and its elemental constituent for the three sampling stations did not indicate any direct influence of the mining-industrial activities to the air quality of the Stratoni residential area.
Collapse
Affiliation(s)
- Georgios Gaidajis
- Department of Production Engineering and Management, School of Engineering, Democritus University of Thrace, Xanthi, Greece.
| | | | | |
Collapse
|
20
|
Abdel Hameed AA, Khoder MI, Ibrahim YH, Saeed Y, Osman ME, Ghanem S. Study on some factors affecting survivability of airborne fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 414:696-700. [PMID: 22137479 DOI: 10.1016/j.scitotenv.2011.10.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/28/2011] [Accepted: 10/20/2011] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to investigate the effect of some air pollutants and meteorological parameters on the survivability of airborne fungi. Fungi were collected by using a slit impactor sampler calibrated to draw 20 L/min, for 3 min. Nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), particulate matter (PM), relative humidity (RH %), temperature (T °C) and wind speed (WS) were also measured. Air samples were taken during the period from March 2006 to February 2007. Fungal concentrations ranged between 45 and 451 CFU/m(3) with an annual mean concentration of 216 CFU/m(3). The lowest fungal concentration was found in the summer, however the highest one was found in the autumn. NO(2,) SO(2) and PM averaged 83.66 μg/m(3), 67.01 μg/m(3), and 237.69 μg/m(3), respectively. T °C was positively and negatively correlated with Aspergillus (P = 0.000) and Penicillium (P = 0.007), respectively. RH% was positively correlated with total fungi (P = 0.001), Aspergillus (P = 0.002) and Cladosporium (P = 0.047). Multiple regression analysis showed that T °C and RH% were the most predicted variants. Non-significant correlations were found between fungal concentrations and air pollutants. Meteorological parameters were the critical factors affecting fungal survivability.
Collapse
Affiliation(s)
- A A Abdel Hameed
- Air Pollution Dept, National Research Centre, Dokki, Giza, Egypt
| | | | | | | | | | | |
Collapse
|
21
|
Kothai P, Saradhi IV, Prathibha P, Pandit GG, Puranik VD. Concentration levels and temporal variations of heavy elements in the urban particulate matter of Navi Mumbai, India. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1502-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Lv Y, Huang GH, Li YP, Yang ZF, Sun W. A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:813-826. [PMID: 21067860 DOI: 10.1016/j.jenvman.2010.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/21/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
A two-stage inexact joint-probabilistic programming (TIJP) method is developed for planning a regional air quality management system with multiple pollutants and multiple sources. The TIJP method incorporates the techniques of two-stage stochastic programming, joint-probabilistic constraint programming and interval mathematical programming, where uncertainties expressed as probability distributions and interval values can be addressed. Moreover, it can not only examine the risk of violating joint-probability constraints, but also account for economic penalties as corrective measures against any infeasibility. The developed TIJP method is applied to a case study of a regional air pollution control problem, where the air quality index (AQI) is introduced for evaluation of the integrated air quality management system associated with multiple pollutants. The joint-probability exists in the environmental constraints for AQI, such that individual probabilistic constraints for each pollutant can be efficiently incorporated within the TIJP model. The results indicate that useful solutions for air quality management practices have been generated; they can help decision makers to identify desired pollution abatement strategies with minimized system cost and maximized environmental efficiency.
Collapse
Affiliation(s)
- Y Lv
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | |
Collapse
|
23
|
Wan JM, Lin M, Chan CY, Zhang ZS, Engling G, Wang XM, Chan IN, Li SY. Change of air quality and its impact on atmospheric visibility in central-western Pearl River Delta. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 172:339-351. [PMID: 20217220 DOI: 10.1007/s10661-010-1338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 01/17/2010] [Indexed: 05/28/2023]
Abstract
Ambient air quality data, including atmospheric visibility, of Foshan city, a highly polluted city in the Pearl River Delta (PRD), and data obtained by the On-line Air Pollutant Exhaust Monitoring Network (OAPEMN), recently established by the National Emission Monitoring and Control Network for major industrial enterprises, were analyzed and are reported here for the first time, revealing the change in air pollution patterns and its impact on visibility degradation in the last decade. Reduced visibility of less than 8 km (after elimination of rainy and foggy periods) was found 22% of the time from 1998 to 2008, accompanied by elevated levels of pollutants, especially SO₂ and PM₁₀, in comparison with that of other developed cities. However, PM₁₀ showed a steady decreasing trend (0.004 mg m⁻³) year⁻¹) during 2001-2008, in contrast to the noticeable increase in ambient NO₂ concentrations from ~0.020 mg m⁻³ before 2005 to above 0.050 mg m⁻³ afterward. Multiple regression analysis revealed that the percentage of reduced visibility strongly correlated with PM₁₀ concentration, suggesting that visibility degradation was directly proportional to the loading of particles. Moreover, the fairly significant correlation between reduced visibility and NO₂ concentration also implied that the impact of primary emissions of NO₂ and enhanced secondary pollutants, formed via photochemical processes in the atmosphere, could not be ignored. The decreased PM₁₀levels were obviously the predominant factor for the improvement in visibility (5.0% per 0.01 mg m⁻³) and were likely due to the implementation of stricter air pollution control measures for industrial exhaust, which also resulted in reduced SO₂ pollution levels in the recent 2 years. In particular, the OAPEMN records showed an overall enhanced SO₂ removal by 64% in major industrial sectors. The continuous increase in road traffic and lack of efficient NO(x) control strategies in the PRD region, however, caused an increase in ambient NO₂ concentrations.
Collapse
Affiliation(s)
- Jun-Ming Wan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Azmi SZ, Latif MT, Ismail AS, Juneng L, Jemain AA. Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. AIR QUALITY, ATMOSPHERE, & HEALTH 2010; 3:53-64. [PMID: 20376168 PMCID: PMC2844963 DOI: 10.1007/s11869-009-0051-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 08/20/2009] [Indexed: 05/20/2023]
Abstract
Over the last decades, the development of the Klang Valley (Malaysia), as an urban commercial and industrial area, has elevated the risk of atmospheric pollutions. There are several significant sources of air pollutants which vary depending on the background of the location they originate from. The aim of this study is to determine the trend and status of air quality and their correlation with the meteorological factors at different air quality monitoring stations in the Klang Valley. The data of five major air pollutants (PM(10), CO, SO(2), O(3), NO(2)) were recorded at the Alam Sekitar Sdn Bhd (ASMA) monitoring stations in the Klang Valley, namely Petaling Jaya (S1), Shah Alam (S2) and Gombak (S3). The data from these three stations were compared with the data recorded at Jerantut, Pahang (B), a background station established by the Malaysian Department of Environment. Results show that the concentrations of CO, NO(2) and SO(2) are higher at Petaling Jaya (S1) which is due to influence of heavy traffic. The concentrations of PM(10) and O(3,) however, are predominantly related to regional tropical factors, such as the influence of biomass burning and of ultra violet radiation from sunlight. They can, though, also be influenced by local sources. There are relatively stronger inter-pollutant correlations at the stations of Gombak and Shah Alam, and the results also suggest that heavy traffic flow induces high concentrations of PM(10), CO, NO(2) and SO(2) at the three sampling stations. Additionally, meteorological factors, particularly the ambient temperature and wind speed, may influence the concentration of PM(10) in the atmosphere.
Collapse
Affiliation(s)
- Siti Zawiyah Azmi
- School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Mohd Talib Latif
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Aida Shafawati Ismail
- School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Liew Juneng
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Abdul Aziz Jemain
- School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
25
|
Vilavert L, Nadal M, Inza I, Figueras MJ, Domingo JL. Baseline levels of bioaerosols and volatile organic compounds around a municipal waste incinerator prior to the construction of a mechanical-biological treatment plant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:2454-2461. [PMID: 19346120 DOI: 10.1016/j.wasman.2009.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/28/2009] [Accepted: 03/05/2009] [Indexed: 05/27/2023]
Abstract
New waste management programs are currently aimed at developing alternative treatment technologies such as mechanical-biological treatment (MBT) and composting plants. However, there is still a high uncertainty concerning the chemical and microbiological risks for human health, not only for workers of these facilities, but also for the population living in the neighborhood. A new MBT plant is planned to be constructed adjacently to a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). In order to evaluate its potential impact and to differentiate the impacts of MSWI from those of the MBT when the latter is operative, a pre-operational survey was initiated by determining the concentrations of 20 volatile organic compounds (VOCs) and bioaerosols (total bacteria, gram-negative bacteria, fungi and Aspergillus fumigatus) in airborne samples around the MSWI. The results indicated that the current concentrations of bioaerosols (ranges: 382-3882, 18-790, 44-926, and <1-7 CFU/m(3) for fungi at 25 degrees C, fungi at 37 degrees C, total bacteria, and gram-negative bacteria, respectively) and VOCs (ranging from 0.9 to 121.2 microg/m(3)) are very low in comparison to reported levels in indoor and outdoor air in composting and MBT plants, as well in urban and industrial zones. With the exception of total bacteria, no correlations were observed between the environmental concentrations of biological agents and the direction/distance from the facility. However, total bacteria presented significantly higher levels downwind. Moreover, a non-significant increase of VOCs was detected in sites closer to the incinerator, which means that the MSWI could have a very minor impact on the surrounding environment.
Collapse
Affiliation(s)
- Lolita Vilavert
- Laboratory of Toxicology and Environmental Health, School of Medicine,Rovira i Virgili University, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | | | | | | | | |
Collapse
|