1
|
Kleinbeck S, Wolkoff P. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors. Arch Toxicol 2024; 98:617-662. [PMID: 38243103 PMCID: PMC10861400 DOI: 10.1007/s00204-023-03642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
2
|
Toropov AA, Toropova AP, Roncaglioni A, Benfenati E. Semi-Correlations for Building Up a Simulation of Eye Irritation. TOXICS 2023; 11:993. [PMID: 38133394 PMCID: PMC10747944 DOI: 10.3390/toxics11120993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The OECD recognizes that data on a compound's ability to treat eye irritation are essential for the assessment of new compounds on the market. In silico models are frequently used to provide information when experimental data are lacking. Semi-correlations, as they are called, can be useful to build up categorical models for eye irritation. Semi-correlations are latent regressions that can be used when the endpoint is expressed by two values: 1 for an active molecule and 0 for an inactive molecule. The regression line is based on the descriptor values which serve to distribute the data into four classes: true positive, true negative, false positive, and false negative. These values are applied to calculate the corresponding statistical criterion for assessing the predictive potential of the categorical model. In our model, the descriptor is the sum of what are termed correlation weights. These are defined by optimization using the Monte Carlo method. The target function of the optimization is related to the determination coefficient and the mean absolute error for the training set. Our model gives results that are better than those previously reported for the same endpoint.
Collapse
Affiliation(s)
| | - Alla P. Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (A.A.T.); (A.R.); (E.B.)
| | | | | |
Collapse
|
3
|
Aakash A, Nabi D. Reliable prediction of sensory irritation threshold values of organic compounds using new models based on linear free energy relationships and GC×GC retention parameters. CHEMOSPHERE 2023; 313:137339. [PMID: 36423720 DOI: 10.1016/j.chemosphere.2022.137339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The human sensory irritation threshold (SIT) is an important biochemical parameter for the exposure assessment of organic air pollutants. First, we recalibrated the Abraham solvation models (ASMs) for 9 SIT endpoints by curating 720 individual experimental SIT values to find an accurate and parsimonious ASM variant, which exhibited root mean square error (RMSE) = 0.174-0.473 log unit. Second, we report linear free energy relationships - henceforth called partition models (PMs) - which exploit the correlations of 9 SIT endpoints with the linear combinations of partition coefficients for octanol-water and air-water systems showing RMSE = 0.221-0.591 log unit. These PMs can easily be integrated into widely used EPI-Suite™ screening tool. The explanatory and predictive performance of PMs were like parameter-intensive ASMs. Third, we present GC × GC models that are based on the retention times of the nonpolar analytes on the comprehensive two-dimensional gas chromatography (GC × GC), which successfully described the SIT variance (R2=0.959-0.996) and depicted a strong predictive power (RMSE = 0.359-0.660 log unit) for an independent set of nonpolar analytes. Taken together, PMs allow easy SIT screening of organic chemicals compared to ASMs. Unlike ASMs, our GC × GC models can be applied to estimate SIT of complex nonpolar mixtures.
Collapse
Affiliation(s)
- Ahmad Aakash
- Institute of Environmental Science and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan; Environment and Agriculture Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Deedar Nabi
- Institute of Environmental Science and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan; Environment and Agriculture Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
4
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
5
|
Paularokiadoss F, Adaikalaraj C, Marianathan MS, Anand G, Periyasamy S, Christopher Jeyakumar T, Reina M, Celaya CA. Exploring the Fe doped borazine system as a promising CFC adsorbent: A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Koide K, San LL, Pachanon R, Park JH, Ouchi Y, Kongsoi S, Utrarachkij F, Nakajima C, Suzuki Y. Amino Acid Substitution Ser83Ile in GyrA of DNA Gyrases Confers High-Level Quinolone Resistance to Nontyphoidal Salmonella Without Loss of Supercoiling Activity. Microb Drug Resist 2021; 27:1397-1404. [PMID: 33877914 DOI: 10.1089/mdr.2020.0437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aims: Quinolone-resistant nontyphoidal Salmonella having serine replaced by isoleucine at the 83rd amino acid in GyrA (GyrA-Ser83Ile) has recently been found in Asian countries. In this study, we aimed to examine the direct effect of substitution Ser83Ile on DNA gyrase activity and/or resistance to quinolones. Materials and Methods: Using 50% of the maximal inhibitory concentrations (IC50s) of quinolones, recombinant wild type (WT) and seven mutant DNA gyrases having amino acid substitutions, including Ser83Ile, were screened for enzymatic activity that causes supercoils in relaxed plasmid DNA and resistance to quinolones. Results: Little differences in supercoiling activity were observed between WT and mutant DNA gyrases. By contrast, the IC50s of ciprofloxacin and norfloxacin against GyrA-Ser83Ile/GyrB-WT were 11.6 and 73.3 μg/mL, respectively, which were the highest used against the DNA gyrases examined in this study. Conclusion: Ser83Ile in GyrA was shown to confer high-level quinolone resistance to DNA gyrases of nontyphoidal Salmonella, with no loss of supercoiling activity. Salmonella strain carrying GyrA with Ser83Ile may emerge under a high-concentration pressure of quinolones and easily spread even with no selection bias by quinolones. Hence, avoiding the overuse of quinolones is needed to prevent the spread of Salmonella with Ser83Ile in GyrA.
Collapse
Affiliation(s)
- Kentaro Koide
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Lai Lai San
- Department of Medical Research, Ministry of Health and Sports, Naypyidaw, Myanmar
| | - Ruttana Pachanon
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Jong-Hoon Park
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yuki Ouchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Gallego E, Folch J, Teixidor P, Roca FJ, Perales JF. Outdoor air monitoring: Performance evaluation of a gas sensor to assess episodic nuisance/odorous events using active multi-sorbent bed tube sampling coupled to TD-GC/MS analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133752. [PMID: 31401501 DOI: 10.1016/j.scitotenv.2019.133752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In order to evaluate the performance of a commercially available metal oxide semiconductor gas sensor (TGS 2602, Figaro Engineering Inc.) for activating a monitoring system when a nuisance/odorous pollution episode of volatile organic compounds (VOCs) occur, a widely used active sampling methodology based on multi-sorbent bed tubes (Carbotrap, Carbopack X and Carboxen 569) and analysis through automatic thermal desorption-gas chromatography/mass spectrometry was used. Daily 24 h samples of multi-sorbent bed tubes were taken over a period of 14 days using an air collector pump sampler specially designed in the LCMA-UPC laboratory. Simultaneously, daily episodic samples were taken according to the activation of another LCMA-UPC sampler by the metal oxide semiconductor gas sensor. Sampling was done throughout January-February 2019 at El Morell (Tarragona, Spain), near the petrochemical area. All episode samples present higher concentrations of VOCs than 24 h samples, with an average ratio of 3.5 times for Total VOCs. VOC familial distributions present very similar values in 24 h and episode samples (r2 = 0.7466), correlating significatively (F-Snedecor, p < 0.05). A higher level of VOCs in the atmosphere in general, not derived from a specific compound or a VOC/s family/ies, seems to be the trigger of the activation of the sampler by the sensor. On the other hand, no significant correlations are observed between alcohols concentrations and relative humidity (F-Snedecor, p < 0.05). Additionally, Total VOCs concentrations in episode samples are in agreement with higher percentages of NE-SSE wind directions, coming from the petrochemical complex. Hence, these aspects validate the use of the evaluated sensor for its application for the activation of samplers in air quality evaluations when episodic events occur, an interesting and innovative technique. Thus, this study is an important contribution to the understanding of the performance of gas sensors and proposes an expansion of their field of use.
Collapse
Affiliation(s)
- Eva Gallego
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain.
| | - Jaume Folch
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain
| | - Pilar Teixidor
- Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Lluís Solé Sabarís 1-3, E 08034 Barcelona, Spain.
| | - Francisco Javier Roca
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain
| | - José Francisco Perales
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain
| |
Collapse
|
8
|
Performance of Toluene Removal in a Nonthermal Plasma Catalysis System over Flake-Like HZSM-5 Zeolite with Tunable Pore Size and Evaluation of Its Byproducts. NANOMATERIALS 2019; 9:nano9020290. [PMID: 30791415 PMCID: PMC6410028 DOI: 10.3390/nano9020290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 11/18/2022]
Abstract
In this study, a series of HZSM-5 catalysts were prepared by the chemical liquid-phase deposition method, and low concentration toluene degradation was carried out in an atmospheric pressure dielectric barrier discharge (DBD) reactor. The catalysts were characterized by X-ray powder diffraction (XRD), SEM, TEM, and N2 adsorption analysis techniques. In addition, several organic contaminants were used to evaluate the adsorption performance of the prepared catalysts, and the effect of pore size on the removal efficiency of toluene and byproduct formation was also investigated. The unmodified HZSM-5 zeolite (Z0) exhibited good performance in toluene removal and CO2 selectivity due to the diffusion resistance of ozone and the amounts of active species (OH• and O•). Meanwhile, the time of flight mass spectrometry (TOF-MS) result showed that there were more byproducts of the benzene ring in the gas phase under the action of small micropore size catalysts. Moreover, the surface byproducts were detected by gas chromatography–mass spectrometry (GC-MS).
Collapse
|
9
|
Au–pd bimetallic alloy nanoparticle-decorated BiPO 4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J Catal 2017. [DOI: 10.1016/j.jcat.2017.08.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Shusterman D, Wang P, Kumagai K. Nasal Trigeminal Perception of Two Representative Microbial Volatile Organic Compounds (MVOCs): 1-Octen-3-ol and 3-Octanol—a Pilot Study. CHEMOSENS PERCEPT 2017. [DOI: 10.1007/s12078-017-9235-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Prediction of human sensory irritation due to ethyl acrylate: the appropriateness of time-weighted average concentration × time models for varying concentrations. Arch Toxicol 2017; 91:3051-3064. [DOI: 10.1007/s00204-017-1934-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
12
|
Toropov AA, Toropova AP, Cappellini L, Benfenati E, Davoli E. Odor threshold prediction by means of the Monte Carlo method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:390-394. [PMID: 27500544 DOI: 10.1016/j.ecoenv.2016.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
A large set of organic compounds (n=906) has been used as a basis to build up a model for the odor threshold (mg/m(3)). The statistical characteristics of the best model are the following: n=523, r(2)=0.647, RMSE=1.18 (training set); n=191, r(2)=0.610, RMSE=1.03, (calibration set); and n=192, r(2)=0.686, RMSE=1.06 (validation set). A mechanistic interpretation of the model is presented as the lists of statistical promoters of the increase and decrease in the odor threshold.
Collapse
Affiliation(s)
- Andrey A Toropov
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, Milan, Italy.
| | - Alla P Toropova
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, Milan, Italy
| | - Luigi Cappellini
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Department of Environmental Health Sciences, Laboratory of Mass Spectrometry, Milan, Italy
| | - Emilio Benfenati
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, Milan, Italy
| | - Enrico Davoli
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Department of Environmental Health Sciences, Laboratory of Mass Spectrometry, Milan, Italy
| |
Collapse
|