1
|
Yang J, Wang YYL, Kazmi SSUH, Mo J, Fan H, Wang Y, Liu W, Wang Z. Evaluation of in vitro toxicity information for zebrafish as a promising alternative for chemical hazard and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162262. [PMID: 36801337 DOI: 10.1016/j.scitotenv.2023.162262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In vitro assays are widely proposed as a test alternative to traditional in vivo standard acute and chronic toxicity tests. However, whether toxicity information derived from in vitro assays instead of in vivo tests could provide sufficient protection (e.g., 95 % of protection) for chemical risks remain evaluated. To investigate the feasibility of zebrafish (Danio rerio) cell-based in vitro test method as a test alternative, we comprehensively compared sensitivity differences among endpoints, among test methods (in vitro, FET and in vivo), and between zebrafish and rat (Rattus norvegicus), respectively using chemical toxicity distribution (CTD) approach. For each test method involved, sublethal endpoints were more sensitive than lethal endpoints for both zebrafish and rat, respectively. Biochemistry (zebrafish in vitro), development (zebrafish in vivo and FET), physiology (rat in vitro) and development (rat in vivo) were the most sensitive endpoints for each test method. Nonetheless, zebrafish FET test was the least sensitive one compared to its in vivo and in vitro tests for either lethal or sublethal responses. Comparatively, rat in vitro tests considering cell viability and physiology endpoints were more sensitive than rat in vivo test. Zebrafish was found to be more sensitive than rat regardless of in vivo or in vitro tests for each pairwise endpoint of concern. Those findings indicate that zebrafish in vitro test is a feasible test alternative to zebrafish in vivo and FET test and traditional mammalian test. It is suggesting that zebrafish in vitro test can be optimized by choosing more sensitive endpoints, such as biochemistry to provide sufficient protection for zebrafish in vivo test and to establish applications of zebrafish in vitro test in future risk assessment. Our findings are vital for evaluating and further application of in vitro toxicity toxicity information as an alternative for chemical hazard and risk assessment.
Collapse
Affiliation(s)
- Jing Yang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yolina Yu Lin Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hailin Fan
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yuwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Zhang Y, Chen J, Gong H, Zhou Y, Zhang J, Li M, Cui Y. Enantioselective evaluation of chiral cosmetic preservative chlorphenesin on cytotoxicity, pharmacokinetics and tissue distribution. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Hill CB, Yadav OP, Khan E. Examining hydraulic fracturing chemicals: A temporal and comparative analysis. WATER RESEARCH 2022; 208:117878. [PMID: 34837809 DOI: 10.1016/j.watres.2021.117878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Hydraulic fracturing (HF) remains a current global energy policy issue, and understanding risks to drinking water resources from HF chemicals is an important aspect of this topic. The quantity and quality of disclosed HF chemical information are significant barriers for stakeholders attempting to perform systemic environmental and public health research. A repeatable approach for processing HF chemical disclosure data is provided using United States FracFocus data as a case study. We fill research gaps by examining HF chemical trends between 2014 and 2020 and comparing HF chemicals with a list of reference chemicals known or suspected to be in contact (unrelated to HF) with drinking water, food, or cosmetics. In total, 1,244 unique HF chemicals were identified. Compared with EPA's 2016 HF chemical disclosure research, 480 new chemicals are identified, and 318 previously reported chemicals were not observed. The annual unique chemical counts have dropped from 878 to 594 (32.3%) over the research period, while data quality and transparency have increased. Approximately 69.7% of the identified HF ingredients were found in a list of reference chemicals known or suspected to be in contact (unrelated to HF) with drinking water, food, or cosmetics. Chemical differences between production types (gas and oil) and states are also reviewed. Our research reveals that the sociotechnical system surrounding HF is dynamic and moving toward fewer and, in general, safer chemicals, for those that are disclosed. This study highlights opportunities for new and updated systemic research regarding HF chemical hazard dynamics and associated risk to drinking water resources.
Collapse
Affiliation(s)
- Christopher B Hill
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, United States.
| | - Om P Yadav
- Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, ND 58108, United States; Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV 89154-4015, United States.
| |
Collapse
|
4
|
Wang Z, Wang YYL, Scott WC, Williams ES, Ciarlo M, DeLeo P, Brooks BW. Comparative influences of dermal and inhalational routes of exposure on hazards of cleaning product ingredients among mammalian model organisms. ENVIRONMENT INTERNATIONAL 2021; 157:106777. [PMID: 34314977 DOI: 10.1016/j.envint.2021.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Health risks resulting from dermal or inhalational exposures are frequently assessed based on rodent oral toxicity information due to a lack of species- or route-specific toxicity data. Default uncertainty factors (UFs; e.g., 10-fold) are also applied during risk assessments to account for variability such as inter-species, intra-species, exposure duration, dose-response, and route-to-route extrapolations. However, whether rodent oral data and a default UF approach can provide adequate protection for other mammalian species under dermal or inhalational exposure scenarios remains understudied, particularly for cleaning product ingredients. Therefore, we collated and examined publicly available median lethal dose (LD50), no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) values from different types of standard mammalian toxicity studies for rats (dermal and inhalational), mice, rabbits, guinea pigs, and dogs (oral, dermal and inhalational) using the Cleaning Product Ingredient Safety Initiative (CPISI) database. Probabilistic hazard assessments using chemical toxicity distributions (CTDs) were subsequently conducted, and threshold concentrations (TCs) and 95% confidence intervals (95% CIs) were derived to identify thresholds of toxicological concern (TTCs). Relative sensitivities among or between mammalian species, exposure routes, and chemical classes were also compared based on calculated TC5s and 95% CIs to support future toxicology studies and hazard and risk assessments. We then identified uncertainty factors (UFs) using both CTD comparisons and individual UF probability distributional approaches. Based on available rodent inhalational data, chemical category-specific UFs were derived for ethers. Additionally, we also determined whether default UFs of 10 or 100 would be protective for various distributions of cleaning product ingredients. Our novel observations among these routes of exposure and common mammalian model organisms appear particularly useful for read across and screening-level health hazard and risk assessments when limited data exists for specific chemicals.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Yolina Yu Lin Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - W Casan Scott
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | | | - Michael Ciarlo
- EA Engineering, Science & Technology, Inc., Baltimore, MD, USA
| | - Paul DeLeo
- American Cleaning Institute, Washington, DC, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou 510632, China; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
5
|
Bai Y, Lian D, Su T, Wang YYL, Zhang D, Wang Z, Gimeno S, You J. Species and Life-Stage Sensitivity of Chinese Rare Minnow (Gobiocypris rarus) to Chemical Exposure: A Critical Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2680-2692. [PMID: 34265131 DOI: 10.1002/etc.5165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Chemical production and consumption in Asia are increasing at an unprecedented rate, calling for regulations on chemical management. Under the New Chemical Substance Notification in China, information on ecotoxicological effects of chemicals is mandatory for the simplified registration of chemicals with the requirement that one ecotoxicological test is conducted locally. It is now mandatory to use the native fish species Chinese rare minnow (Gobiocypris rarus). However, its chemical sensitivity compared to that of fathead minnow (Pimephales promelas) or zebrafish (Danio rerio) is still unclear. We performed a holistic literature review on toxicity data with G. rarus from 1997 to 2020. Species sensitivity among G. rarus, P. promelas, and D. rerio and life-stage sensitivity of G. rarus were systematically investigated for various chemicals using both chemical ratio distribution and probabilistic chemical toxicity distribution approaches. Comparatively, the Chinese native fish species G. rarus was more sensitive than D. rerio, particularly to metals. Juvenile and adult G. rarus were more sensitive than its larvae and embryos. The observed lower sensitivity of G. rarus embryo was likely due to the thick embryonic chorion, discrepant methods of collecting embryos, and the paucity of toxicity data, implying the necessity to standardize G. rarus embryo tests and validate the sensitivity with various types of chemicals. This unique review allows us to conclude that G. rarus studies could be used in worldwide registrations and that further investigations are needed to use G. rarus embryos as alternatives to the fish test. Environ Toxicol Chem 2021;40:2680-2692. © 2021 SETAC.
Collapse
Affiliation(s)
- Yunfei Bai
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Deru Lian
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Tenghui Su
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Yolina Yu Lin Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Dainan Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Sylvia Gimeno
- Firmenich Belgium, Legal and Compliance, Global Registration Services, Louvain-La-Neuve, Belgium
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Raslan R, Hassim MH, Chemmangattuvalappil NG, Ng DK, Ten JY. Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regul Toxicol Pharmacol 2020; 116:104753. [DOI: 10.1016/j.yrtph.2020.104753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
|
7
|
Wang Z, Berninger JP, You J, Brooks BW. One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114262. [PMID: 32120260 DOI: 10.1016/j.envpol.2020.114262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
In ecological risk assessment, acute to chronic ratio (ACR) uncertainty factors are routinely applied to acute mortality benchmarks to estimate chronic toxicity thresholds. To investigate variability of aquatic ACRs, we first compiled and compared 56 and 150 pairs of acute and subchronic/chronic growth/reproductive toxicity data for fishes (Pimephales promelas (53), Danio rerio (2), and Oryzias latipes (1)) and the crustacean Daphnia magna, respectively, for 172 chemicals with different modes of action (MOA). We found that there were only significant relationships between P. promelas acute median lethal concentrations and growth lowest-observed effect concentrations for class 1 (nonpolar narcosis) chemicals, though significant relationships were demonstrated for D. magna to all Verhaar et al. MOA classes (Class 1: nonpolar narcosis, Class 2: polar narcosis, Class 3: reactive chemicals, and Class 4: AChE inhibitors and estrogenics). Probabilistic ecological hazard assessment using chemical toxicity distributions was subsequently employed for each MOA class to estimate acute and chronic thresholds, respectively, to identify MOA and species specific ecological thresholds of toxicological concern. Finally, novel MOA and species specific ACRs using both chemical toxicity distribution comparison and individual ACR probability distribution approaches were identified using representative MOA and chemical categories. Our data-driven approaches and newly identified ACR values represent robust alternatives to application of default ACR values, and can also support future research and risk assessment and management activities for other chemical classes when toxicity information is limited for chemicals with specific MOAs within invertebrates and fish.
Collapse
Affiliation(s)
- Zhen Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jason P Berninger
- Department of Environmental Science and Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Bryan W Brooks
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Department of Environmental Science and Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| |
Collapse
|
8
|
Photocatalytic Evaluation of Ag2CO3 for Ethylparaben Degradation in Different Water Matrices. WATER 2020. [DOI: 10.3390/w12041180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study examines the photocatalytic properties of silver carbonate (Ag2CO3) for ethyl paraben (EP) degradation under simulated solar irradiation. Ag2CO3 was prepared according to a solution method and its physicochemical characteristics were studied by means of X-ray diffraction (XRD), the Brunauer–Emmett–Teller (BET) method, diffuse reflectance spectroscopy (DRS), and transmission electron microscopy (TEM). Complete EP (0.5 mg/L) removal was achieved after 120 min of irradiation with the use of 750 mg/L Ag2CO3 in ultrapure water (UPW), with EP degradation following pseudo-first-order kinetics. The effect of several experimental parameters was investigated; increasing catalyst concentration from 250 mg/L to 1000 mg/L led to an increase in EP removal, while increasing EP concentration from 0.25 mg/L to 1.00 mg/L slightly lowered kapp from 0.115 min−1 to 0.085 min−1. Experiments carried out with the use of UV or visible cut-off filters showed sufficient EP degradation under visible irradiation. A series of experiments were performed in real water matrices such as bottled water (BW) and wastewater (WW), manifesting Ag2CO3’s equally high photocatalytic activity for EP degradation. To interpret these results different concentrations of inorganic anions (bicarbonate 100–500 mg/L, chloride 100–500 mg/L) present in aqueous media, as well as 10 mg/L organic matter in the form of humic acid (HA), were added sequentially in UPW. Results showed accelerating effects on EP degradation for the lowest concentrations tested in all cases.
Collapse
|
9
|
Juárez-Jiménez B, Pesciaroli C, Maza-Márquez P, López-Martínez S, Vílchez-Quero JL, Zafra-Gómez A. Biodegradation of methyl and butylparaben by bacterial strains isolated from amended and non-amended agricultural soil. Identification, behavior and enzyme activities of microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:245-254. [PMID: 31154171 DOI: 10.1016/j.jenvman.2019.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to investigate the kinetics of methylparaben (MPB) and butylparaben (BPB) removal, two emerging pollutants with possible endocrine disrupting effects, from agricultural soil with and without amendment with compost from sewage sludge used as biostimulant. Compound removal is explained by a first-order kinetic model with half-life times of 6.5/6.7 days and 11.4/8.2 days, in presence/absence of compost, for MPB and BPB respectively. % R2 for the fitted model were higher than 96% in all cases. Additionally, isolation of bacteria capable to grow using MPB or BPB as carbon source was also carry out. Laboratory tests demonstrated the ability of these bacteria to biodegrade MPB and BPB from culture media in more than 95% in some cases. These strains showed high ability to biodegrade the compounds. Ten isolates, most of them related to Gram positive bacteria of the genus Bacillus, were identified by 16S rRNA gene sequencing. The study of the enzymatic activities of the isolates revealed both esterase (C4) and esterase-lipase activities.
Collapse
Affiliation(s)
- Belén Juárez-Jiménez
- Research Group of Environmental Microbiology, Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, And Water Institute, C/ Ramon y Cajal s/n, University of Granada, E-18071, Granada, Spain.
| | - Chiara Pesciaroli
- Department of Biotechnology and Bioscience, University of Milan Bicocca, Italy
| | - Paula Maza-Márquez
- Research Group of Environmental Microbiology, Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, And Water Institute, C/ Ramon y Cajal s/n, University of Granada, E-18071, Granada, Spain
| | - Sergio López-Martínez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain
| | - José Luís Vílchez-Quero
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain.
| |
Collapse
|
10
|
Bilal M, Iqbal HMN. An insight into toxicity and human-health-related adverse consequences of cosmeceuticals - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:555-568. [PMID: 30909033 DOI: 10.1016/j.scitotenv.2019.03.261] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/17/2019] [Indexed: 02/05/2023]
Abstract
In recent years, the use of cosmeceutical-based personal care and beauty products has ever increased, around the world. Currently, an increasing number of compounds are being assimilated in the formulation of cosmetic products as preservatives, fragrances, surfactants, etc. to intensify the performance, quality, value, and lifespan of cosmetics. Nevertheless, many of these chemical additives pose toxic effects to the human body, exhibiting health risks from a mild hypersensitivity to life-threatening anaphylaxis or lethal intoxication. Therefore, the indiscriminate application of cosmeceuticals has recently become a mounting issue confronting public health. The present review focuses on exposure to a large variety of toxic substances used in cosmetic formulations such as 1,4-dioxane formaldehyde, paraformaldehyde, benzalkonium chloride, imidazolidinyl urea, diazolidinyl urea, trace heavy metals, parabens derivatives, phthalates, isothiazolinone derivatives (methylchloroiso-thiazolinone, and methylisothiazolinone), methyldibromo glutaronitrile, and phenoxy-ethanol. The biological risks related to these substances that they can pose to human health in terms of cytotoxicity, genotoxicity, mutagenicity, neurotoxicity oestrogenicity or others are also discussed. Researchers from academia, consultancy firms, governmental organizations, and cosmetic companies should carry out further progress to keep updating the consumers regarding the dark-sides, and health-related harmful apprehensions of cosmetics. In addition, the industry-motivated initiatives to abate environmental impact through green, sustainable and eco-friendly product development grasp significant perspective.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|