1
|
Huang Y, Miao Q, Kwong RWM, Zhang D, Fan Y, Zhou M, Yan X, Jia J, Yan B, Li C. Leveraging the One Health concept for arsenic sustainability. ECO-ENVIRONMENT & HEALTH 2024; 3:392-405. [PMID: 39281074 PMCID: PMC11401129 DOI: 10.1016/j.eehl.2024.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 09/18/2024]
Abstract
Arsenic (As) is a naturally occurring chemical element widely distributed in the Earth's crust. Human activities have significantly altered As presence in the environment, posing significant threats to the biota as well as human health. The environmental fates and adverse outcomes of As of various species have been extensively studied in the past few decades. It is imperative to summarize these advances as a whole to provide more profound insights into the As cycle for sustainable development. Embracing the One Health concept, we systematically reviewed previous studies in this work and explored the following three fundamental questions, i.e., what the trends and associated changes are in As contamination, how living organisms interact and cope with As contamination, and most importantly what to do to achieve a sustainable future with As. By focusing on one critical question in each section, this review aims to provide a full picture of the complexity of environmental As. To tackle the significant research challenges and gaps in As pollution and mitigation, we further proposed a One Health framework with potential coping strategies, guiding a coordinated agenda on dealing with legacy As in the environment and ensuring a sustainable As future.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Qi Miao
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | | | - Dapeng Zhang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Yuchuan Fan
- Department of Soil, Water, and Ecosystem Sciences, University of Florida-IFAS, Gainesville, FL 32603, USA
| | - Ming Zhou
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Umare S, Thawait AK, Dhawane SH. Remediation of arsenic and fluoride from groundwater: a critical review on bioadsorption, mechanism, future application, and challenges for water purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37877-37906. [PMID: 38771540 DOI: 10.1007/s11356-024-33679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
In the past few decades, the excessive and inadequate use of technological advances has led to groundwater contamination, mainly caused by organic and inorganic pollutants, which are highly harmful to human health, agriculture, water bodies, and aquaculture. Among all toxic pollutants, As and F- play a significant role in groundwater contamination due to their excellent reactivity with other elements. To mitigate the prevalence of arsenic and fluoride within the water system, the use of biochar gives an attractive strategy for removing them mainly because of the substantial surface area, pore size, pH, aromatic structure, and functional groups inherent in biochar, which are primarily dependent upon its raw material and pyrolysis temperature. Researcher develops different methods like physiochemical and electrochemical for treating arsenic and fluoride contamination. Among all removal methods, bioadsorption using agricultural waste residues shows effective/feasible removal of As and F- due to its low cost, ecofriendly nature, readily available, and efficient reuse compared with several other harmful synthetic materials that demand costly design specifications. This study discusses current developments in bioadsorption methods for As and F- that use agricultural-based biomaterials and describes the prevailing state of arsenic and fluoride removal strategies that use biomaterials precisely.
Collapse
Affiliation(s)
- Shubhangi Umare
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Ajay K Thawait
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Sumit H Dhawane
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
| |
Collapse
|
3
|
Yan L, Liu R, Zhang C, Fu D. Investigation into the electrochemical advanced oxidation of p-arsanilic acid: Peculiar role of electrolytes and unexpected formation of coupling byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167538. [PMID: 37797755 DOI: 10.1016/j.scitotenv.2023.167538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Although banned in some countries, p-arsanilic acid (ASA) is still widely used as feed additive in poultry production. As a result, ASA is usually released into the aquatic environment without any treatments. Although ASA exhibits low toxicity, it can be transformed into highly toxic aromatic amines and inorganic arsenic species (As (V) as H2AsO4- and HAsO42-) under natural environmental conditions. Hence, it is necessary to develop efficient technologies for its removal or degradation. In this contribution, electrochemical advanced oxidation technology with boron-doped diamond (BDD) had been initially used to degrade ASA pollutants. A five-level central composite rotatable design (CCRD) was implemented to optimize the various influencing factors involved, among applied current density, NaCl concentration, Na2SO4 concentration and NaHCO3 concentration on the oxidation efficiency; the latter was assessed in terms of ASA degradation percentage. The results obtained highlighted the unique and important roles of electrolytes during the electrolytic oxidations. Meanwhile, the major degradation byproducts detected were also strongly dependent on the electrolyte adopted. In particular, several oligomer byproducts with novel structures were initially identified in BDD-treated ASA solutions. Two different electrochemical transformation pathways of ASA on BDD anode were thus proposed. This study demonstrated the effectiveness of BDD technology in the degradation of ASA, as well as the potential minor risk of its application in actual ASA wastewater treatment.
Collapse
Affiliation(s)
- Lihua Yan
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruochen Liu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyong Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Liu N, Gao R, Xiao S, Xue B. Visualizing the bibliometrics of biochar research for remediation of arsenic pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119513. [PMID: 37944320 DOI: 10.1016/j.jenvman.2023.119513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Arsenic-contamination of soil and water has always been a topic of considerable concern, and the potential of biochar for remediation of arsenic contamination has been widely recognized due to its advantages, including abundant sources, simple preparation, large surface area, significant pore size, and rich functional groups. To gain insights into the development trends in this field and provide suggestions for future research directions, scientometric analysis was conducted on articles sourced from the Web of Science core collection database by using the CiteSpace and VOSviewer software. In total, 637 bibliographic records, retrieved using the keywords "biochar" and "arsenic" were analyzed based on publication distribution over the years, contributing countries, keywords, authors, cited authors, publishing journals, and highly cited articles. Further, progress maps were generated from these data sets to assess the current research landscape. Results revealed a steady increase in annual publications since 2009, and China has the most publications. Notably, Daniel C. W. Tsang stood out as a representative author. The journal "Science of the Total Environment" published the most articles related to biochar and arsenic. "Adsorption" is the most frequently occurring keyword. The investigations of the impact and mechanism of biochar and modified biochar on inorganic arsenic removal from water and immobilization in soil have been identified as current research focal points. In order to realize the efficient and safe use of biochar, the future necessitates the implementation of advanced technology to conduct further comprehensive research. This study highlights the ongoing advancements in the research field on biochar and arsenic. Valuable insights are provided for future researchers and policymakers to guide their significant efforts toward addressing the issue of soil and water contamination caused by arsenic and exploring the potential of biochar for effective remediation strategies.
Collapse
Affiliation(s)
- Na Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ruili Gao
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Shuai Xiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Bin Xue
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Liu J, Jia H, Xu Z, Wang T, Mei M, Chen S, Li J, Zhang W. An impressive pristine biochar from food waste digestate for arsenic(V) removal from water: Performance, optimization, and mechanism. BIORESOURCE TECHNOLOGY 2023; 387:129586. [PMID: 37516138 DOI: 10.1016/j.biortech.2023.129586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Anaerobic digestion has become a global practice for valorizing food waste, but the recycling of the digestate (FWD) remains challenging. This study aimed to address this issue by utilizing FWD as a low-cost feedstock for Ca-rich biochar production. The results demonstrated that biochar pyrolyzed at 900 °C exhibited impressive As(V) adsorption performance without any modifications. Kinetic analysis suggested As(V) was chemisorbed onto CDBC9, while isotherm data conformed well to Langmuir model, indicating monolayer adsorption with a maximum capacity of 76.764 mg/g. Further analysis using response surface methodology revealed that pH value and adsorbent dosage were significant influencing factors, and density functional theory (DFT) calculation visualized the formation of ionic bonds between HAsO42- and CaO(110) and Ca(OH)2(101) surfaces. This work demonstrated the potential of using FWD for producing Ca-rich biochar, providing an effective solution for As(V) removal and highlighting the importance of waste material utilization in sustainable environmental remediation.
Collapse
Affiliation(s)
- Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Hang Jia
- Beijing Graphene Institute, Beijing 100095, China
| | - Zelin Xu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Teng Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Meng Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Si Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Wenjuan Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Bolan S, Hou D, Wang L, Hale L, Egamberdieva D, Tammeorg P, Li R, Wang B, Xu J, Wang T, Sun H, Padhye LP, Wang H, Siddique KHM, Rinklebe J, Kirkham MB, Bolan N. The potential of biochar as a microbial carrier for agricultural and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163968. [PMID: 37164068 DOI: 10.1016/j.scitotenv.2023.163968] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, United States
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University (TIIAME), Tashkent 100000, Uzbekistan; Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Priit Tammeorg
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Rui Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, People's Republic of China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Ting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
7
|
Piccirillo C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117896. [PMID: 37080100 DOI: 10.1016/j.jenvman.2023.117896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The production of increasing quantities of by-products is a key challenge for modern society; their valorisation - turning them into valuable compounds with technological applications - is the way forward, in line with circular economy principles. In this review, the conversion of bones (by-products of the agro-food industry) into bone char is described. Bone char is obtained with a process of pyrolysis, which converts the organic carbon into an inorganic graphitic one. Differently from standard biochar of plant origin, however, bone char also contains calcium phosphates, the main component of bone (often hydroxyapatite). The combination of calcium phosphate and graphitic carbon makes bone char a unique material, with different possible uses. Here bone chars' applications in environmental remediation, sustainable agriculture, catalysis and electrochemistry are discussed; several aspects are considered, including the bones used to prepare bone char, the preparation conditions, how these affect the properties of the materials (i.e. porosity, surface area) and its functional properties. The advantages and limitations of bone chars in comparison to traditional biochar are discussed, highlighting the directions the research should take for bone chars' performances to improve. Moreover, an analysis on the sustainability of bone chars' preparation and use is also included.
Collapse
Affiliation(s)
- Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
8
|
Liu W, Zhang X, Ren H, Hu X, Yang X, Liu H. Co-production of spirosiloxane and biochar adsorbent from wheat straw by a low-cost and environment-friendly method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117851. [PMID: 37019023 DOI: 10.1016/j.jenvman.2023.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
To enhance the value of wheat straw derivatives, wheat straw ash (WSA) was used as a reactant for the first time to synthesize spirocyclic alkoxysilane, an important organosilicon raw material, using an energy-saving and environmentally friendly non-carbon thermal reduction method. After spirocyclic alkoxysilane extraction, the biochar in the wheat straw ash prepared an adsorbent for Cu2+. The maximum copper ion adsorption capacity (Qm) of silica-depleted wheat straw ash (SDWSA) was 31.431nullmg/g, far exceeding those of WSA and similar biomass adsorbents. The effects of the pH, adsorbent dose, and contact time on the adsorption behaviour of the SDWSA for Cu2+ adsorption were systematically investigated. The adsorption mechanism of Cu2+ by the SDWSA was investigated using the Langmuir, Freundlich, pseudo-first-order kinetic, pseudo-second-order kinetic, and Weber and Morris models by combining the preliminary experimental data and characterization results. The adsorption isotherm and Langmuir equation matched perfectly. The Weber and Morris model can describe the mass-transfer mechanism of Cu2+ adsorption by SDWSA. Both film and intraparticle diffusion are rapid control steps. Compared to WSA, SDWSA has a larger specific surface area and a higher content of oxygen-containing functional groups. A large specific surface area provides more adsorption sites. Oxygen-containing functional groups react with Cu2+ through electrostatic interactions, surface complexation, and ion exchange, which are the possible adsorption mechanisms for SDWSA. These methods improve the added value of wheat straw derivatives and promote wheat straw ash recovery and centralized treatment. This makes it possible to use the thermal energy of wheat straw and facilitates the treatment of exhaust gases and carbon capture.
Collapse
Affiliation(s)
- Wenlong Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xingwen Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| | - Hongyu Ren
- School of Resources and Environment, Northeast Agricultural University, No. 600, Changjiang Street, Harbin, 150030, China.
| | - Xingcheng Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xinyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Hui Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| |
Collapse
|
9
|
Tian L, Li H, Chang Z, Liang N, Wu M, Pan B. Biochar modification to enhance arsenic removal from water: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2763-2778. [PMID: 36576663 DOI: 10.1007/s10653-022-01462-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Arsenic (As) contamination is a major threat to drinking water quality throughout the world, and the development of appropriate remediation methods is critical. Adsorption is considered the most effective method for remediation of As-contaminated water. Biochar is a promising adsorbent and widely discussed for As removal due to its potential low cost and environmental friendliness. However, pristine biochar generally exhibited relatively low adsorption capacity for As mainly due to the electrostatic repulsion between the negatively charged biochar and As. Biochar modification, especially metal modification, was developed to boost the adsorption capacity for As. A systematic analysis of As removal as affected by biochar properties and modification will be of great help for As removal. This paper presents a comprehensive review on As removal by biochars from different feedstock, preparation procedures, and modification methods, with a major focus on the possible mechanisms of interaction between As and biochar. Biochar derived from sewage sludge exhibited relatively high adsorption capacity for As. Considering energy conservation, biochars prepared at 401-500 °C were more favorable in adsorbing As. Fe-modified biochar was the most popular modified biochar for As remediation due to its low cost and high efficiency. In addition, the limitations of the current studies and future perspectives are presented. The aim of this review is to provide guidance for the preparation of low-cost, environmentally friendly, and high efficiency biochar for the remediation of As-contaminated water.
Collapse
Affiliation(s)
- Luping Tian
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Zhaofeng Chang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ni Liang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Min Wu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
10
|
Wilson W, Yeboah B, Govender P. Evaluation of the suitability of integrated bone char- and biochar-treated groundwater for drinking using single-factor, Nemerow, and heavy metal pollution indexes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:647. [PMID: 37154981 DOI: 10.1007/s10661-023-11249-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
The treatment of contaminated groundwater using integrated bone char and biochar beds has been studied. The bone char and biochar were made in a locally built double-barrel retort utilising cow bones, coconut husks, bamboo, neem trees, and palm kernel shells at 450 °C and were graded into 0.05- and 0.315-mm sizes. Eight groundwater treatment experiments (BF2-BF9) were performed in columns with bed heights of 8.5-16.5 cm to remove nutrients, heavy metals, microorganisms, and interfering ions from groundwater using bone char, biochar, and a combination of bone and biochar. The water samples were analysed for twenty-one water quality parameters including pH, total dissolved solids, conductivity, turbidity, fluoride, chloride, sodium, and potassium. The rest were total coliforms, faecal coliforms, total heterotrophic bacteria, Escherichia coli, manganese, and total iron. The effectiveness of the treatment processes was assessed using the Ghana standard authority and the World Health Organisation's recommended values for drinking water quality. The results were shared using a simplified single-factor index, Nemerow's pollution index, and a heavy metal pollution index with decision-makers as a technology for groundwater treatment in rural communities in Africa. Bone char was more effective in removing total heterotrophic bacteria than any of the other treatment agents tested. This is because of its compact nature and small particle size. The quality of water treated by BF3, BF5, BF6, BF7, BF8, and BF9 was fit for drinking based on the single-factor and heavy-metal pollution evaluation because they have the lowest level of pollution. However, Nemerow pollution analysis found only BF5 to be the most suitable for public use.
Collapse
Affiliation(s)
- William Wilson
- Faculty of Science, Department of Chemical Sciences-DFC, University of Johannesburg, P. O. Box 17011, Johannesburg, South Africa.
- CSIR-Water Research Institute, Environmental Chemistry and Sanitation Engineering Division, P.O. Box AH 38, Achimota-Accra, Ghana.
| | - Boniface Yeboah
- CSIR-Institute of Industrial Research, Materials and Manufacturing Division, P. O. Box LG 576, Legon-Accra, Ghana
| | - Poomani Govender
- Faculty of Science, Department of Chemical Sciences-DFC, University of Johannesburg, P. O. Box 17011, Johannesburg, South Africa
| |
Collapse
|
11
|
Penke YK, Kar KK. A review on multi-synergistic transition metal oxide systems towards arsenic treatment: Near molecular analysis of surface-complexation (synchrotron studies/modeling tools). Adv Colloid Interface Sci 2023; 314:102859. [PMID: 36934514 DOI: 10.1016/j.cis.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
The science and interface chemistry between the arsenic (As) anions and the different adsorbent systems have been gaining interest in recent years in environmental remediation applications. Metal-oxides and the corresponding hybrid systems have shown promising performance as novel adsorbents in various treatment technologies. The abundance, surface chemistry, high surface area (active-centres), various synthesis and functionalization methodologies, and good recyclability make these metal oxide-based nanomaterials as potential remediating agents for As oxyanions. This work critically reviews eight different platforms focused on the arsenic contamination issue, where the first classification describes the origin of arsenic contamination and presents geographical and demo-graphical considerations. The following section briefs the state-of-the-art remediation techniques for arsenic treatment with a comparative evaluation. An emphasized discussion has been provided regarding the adsorption and classification of various metal oxide adsorbents. In the next classification, various multi-synergism abilities like Redox activity, Surface functional groups, Surface area/morphology, Heterogeneous catalysis, Reactive oxygen species, Photo-catalytic/electro-catalytic reactions, and Electrosorption are detailed. The classification of various characterization tools for accessing the arsenic remediation qualitatively and quantitatively are given in the fifth chapter. The first-of-its-kind dedicated analysis has been given on the surface complexation aspects of the arsenic speciation onto various metal adsorbent systems using synchrotron results, surface-complexation modeling, and molecular simulation (e.g., DFT) in the sixth chapter. The current sensing applications of these novel nano-material systems for arsenic determination using colorimetric and electrochemical-based analytical tools and a note about the economic parameters, i.e., regeneration aspects of various adsorbent systems/the sustainable applications of the treated sludge materials, are provided in the final sections. This work makes a critical analysis of 'Environmental Nanotechnology' towards 'Arsenic Treatment'.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| |
Collapse
|
12
|
Liu J, Xu Z, Zhang W. Unraveling the role of Fe in As(III & V) removal by biochar via machine learning exploration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Zhang K, Yi Y, Fang Z. Remediation of cadmium or arsenic contaminated water and soil by modified biochar: A review. CHEMOSPHERE 2023; 311:136914. [PMID: 36272628 DOI: 10.1016/j.chemosphere.2022.136914] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Biochar has a high specific surface area with abundant pore structure and functional groups, which has been widely used in remediation of cadmium or arsenic contaminated water and soil. However, the bottleneck problem of low-efficiency of pristine biochar in remediation of contaminated environments always occurs. Nowadays, the modification of biochar is a feasible way to enhance the performance of biochar. Based on the Web of science™, the research progress of modified biochar and its application in remediation of cadmium or arsenic contaminated water and soil have been systematically summarized in this paper. The main modification strategies of biochar were summarized, and the variation of physicochemical properties of biochar before and after modification were illustrated. The efficiency and key mechanisms of modified biochar for remediation of cadmium or arsenic contaminated water and soil were expounded in detail. Finally, some constructive suggestions were given for the future direction and challenges of modified biochar research.
Collapse
Affiliation(s)
- Kai Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China.
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511500, China; Normal University Environmental Remediation Technology Co., Ltd, Qingyuan, 511500, China.
| |
Collapse
|
14
|
Qin Y, Wu X, Huang Q, Beiyuan J, Wang J, Liu J, Yuan W, Nie C, Wang H. Phosphate Removal Mechanisms in Aqueous Solutions by Three Different Fe-Modified Biochars. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010326. [PMID: 36612648 PMCID: PMC9820018 DOI: 10.3390/ijerph20010326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/05/2023]
Abstract
Iron-modified biochar can be used as an environmentally friendly adsorbent to remove the phosphate in wastewater because of its low cost. In this study, Fe-containing materials, such as zero-valent iron (ZVI), goethite, and magnetite, were successfully loaded on biochar. The phosphate adsorption mechanisms of the three Fe-modified biochars were studied and compared. Different characterization methods, including scanning electron microscopy/energy-dispersive spectrometry (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), were used to study the physicochemical properties of the biochars. The dosage, adsorption time, pH, ionic strength, solution concentration of phosphate, and regeneration evaluations were carried out. Among the three Fe-modified biochars, biochar modified by goethite (GBC) is more suitable for phosphate removal in acidic conditions, especially when the pH = 2, while biochar modified by ZVI (ZBC) exhibits the fastest adsorption rate. The maximum phosphate adsorption capacities, calculated by the Langmuir-Freundlich isothermal model, are 19.66 mg g-1, 12.33 mg g-1, and 2.88 mg g-1 for ZBC, GBC, and CSBC (biochar modified by magnetite), respectively. However, ZBC has a poor capacity for reuse. The dominant mechanism for ZBC is surface precipitation, while for GBC and CSBC, the major mechanisms are ligand exchange and electrostatic attraction. The results of our study can enhance the understanding of phosphate removal mechanisms by Fe-modified biochar and can contribute to the application of Fe-modified biochar for phosphate removal in water.
Collapse
Affiliation(s)
- Yiyin Qin
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
- School of Food Science and Technology, Foshan University, Foshan 528000, China
| | - Xinyi Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
- School of Food Science and Technology, Foshan University, Foshan 528000, China
| | - Qiqi Huang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
- School of Food Science and Technology, Foshan University, Foshan 528000, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
- Foshan Engineering and Technology Research Center for Contaminated Soil Remediation, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Jin Wang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Chengrong Nie
- School of Food Science and Technology, Foshan University, Foshan 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| |
Collapse
|
15
|
Amalina F, Syukor Abd Razak A, Krishnan S, Sulaiman H, Zularisam A, Nasrullah M. Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications. CLEANER MATERIALS 2022; 6:100137. [DOI: 10.1016/j.clema.2022.100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Amiri MJ, Bahrami M, Nekouee N. Analysis of Breakthrough Curve Performance Using Theoretical and Empirical Models: Hg2+ Removal by Bone Char from Synthetic and Real Water. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Sema AI, Bhattacharyya J. Biochar derived from waste bamboo shoots for the biosorptive removal of ferrous ions from aqueous solution. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Huang X, Liu Y, Wang X, Zeng L, Xiao T, Luo D, Jiang J, Zhang H, Huang Y, Ye M, Huang L. Removal of Arsenic from Wastewater by Using Nano Fe 3O 4/Zinc Organic Frameworks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10897. [PMID: 36078622 PMCID: PMC9517873 DOI: 10.3390/ijerph191710897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of arsenic in wastewater is of fundamental importance due to the increasingly severe arsenic pollution. In this study, a new composite adsorbent (Fe3O4@ZIF-8) for As(V) removal from wastewater was synthesized by encapsulating magnetic Fe3O4 nanoparticles into metal organic frameworks. In order to evaluate the feasibility of Fe3O4@ZIF-8 as an adsorbent for As(V) removal, the adsorption properties of Fe3O4@ZIF-8 were systematically explored by studying the effects of dosage, pH, adsorption isotherm, kinetics, and thermodynamics. Additionally, the characterization of Fe3O4@ZIF-8 before and after adsorption was analyzed thoroughly using various tests including SEM-EDS, XPS, BET, XRD, TG, FTIR, and the properties and arsenic removal mechanism of the Fe3O4@ZIF-8 were further studied. The results showed that the Fe3O4@ZIF-8 has a specific surface area of 316 m2/g and has excellent adsorption performance. At 25 °C, the initial concentration of arsenic was 46.916 mg/L, and pH 3 was the optimum condition for the Fe3O4@ZIF-8 to adsorb arsenic. When the dosage of the Fe3O4@ZIF-8 was 0.60 g/L, the adsorption of arsenic by the Fe3O4@ZIF-8 can reach 76 mg/g, and the removal rate can reach 97.20%. The adsorption process of arsenic to the Fe3O4@ZIF-8 can be well described by the Langmuir isotherm model and the second-order kinetic equation. At pH 3 and temperature 298 K, the maximum adsorption capacity of arsenic by the Fe3O4@ZIF-8 was 116.114 mg/g. Through the analysis of thermodynamic parameters, it is proved that the adsorption process of arsenic by the Fe3O4@ZIF-8 is a spontaneous endothermic reaction. The Fe3O4@ZIF-8 has broad prospects for removing As(V) pollution in wastewater, because of its strong adsorption capacity, good water stability, and easy preparation.
Collapse
Affiliation(s)
- Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yun Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xinyi Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Linwei Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jia Jiang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Linkoping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Yuhui Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mingzhen Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
19
|
Srivastava V, Karim AV, Babu DS, Nidheesh PV, Kumar MS, Gao B. Metal‐Loaded Biochar for the Removal of Arsenic from Water: A Critical Review on Overall Effectiveness, Governing Mechanisms, and Influential Factors. ChemistrySelect 2022. [DOI: 10.1002/slct.202200504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Vartika Srivastava
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra 440020 India
| | - Ansaf V. Karim
- Environmental Science and Engineering Department Indian Institute of Technology Bombay 400076 India
| | - Davuluri Syam Babu
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra 440020 India
| | | | - Manukonda Suresh Kumar
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra 440020 India
| | - Bin Gao
- Department of Agricultural and Biological Engineering University of Florida Gainesville FL 32611 USA
| |
Collapse
|
20
|
El Kaim Billah R, Aminul Islam M, Lgaz H, Lima EC, Abdellaoui Y, Rakhila Y, Goudali O, Majdoubi H, Alrashdi AA, Agunaou M, Soufiane A. Shellfish waste-derived mesoporous chitosan for impressive removal of arsenic(V) from aqueous solutions: A combined experimental and computational approach. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
21
|
Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Imtiaz M, Ditta A, Ali EF, Abdelrahman H, Slaný M, Antoniadis V, Rinklebe J, Shaheen SM, Li W. Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154043. [PMID: 35202685 DOI: 10.1016/j.scitotenv.2022.154043] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Fishpond sediments are rich in organic carbon and nutrients; thus, they can be used as potential fertilizers and soil conditioners. However, sediments can be contaminated with toxic elements (TEs), which have to be immobilized to allow sediment reutilization. Addition of biochars (BCs) to contaminated sediments may enhance their nutrient content and stabilize TEs, which valorize its reutilization. Consequently, this study evaluated the performance of BCs derived from Taraxacum mongolicum Hand-Mazz (TMBC), Tribulus terrestris (TTBC), and rice straw (RSBC) for Cu, Cr, and Zn stabilization and for the enhancement of nutrient content in the fishpond sediments from San Jiang (SJ) and Tan Niu (TN), China. All BCs, particularly TMBC, reduced significantly the average concentrations of Cr, Cu, and Zn in the overlying water (up to 51% for Cr, 71% for Cu, and 68% for Zn) and in the sediments pore water (up to 77% for Cr, 76% for Cu, and 50% for Zn), and also reduced metal leachability (up to 47% for Cr, 60% for Cu, and 62% for Zn), as compared to the control. The acid soluble fraction accounted for the highest portion of the total content of Cr (43-44%), Cu (38-43%), and Zn (42-45%), followed by the reducible, oxidizable, and the residual fraction; this indicates the high potential risk. As compared with the control, TMBC was more effective in reducing the average concentrations of the acid soluble Cr (15-22%), Cu (35-53%), and Zn (21-39%). Added BCs altered the metals acid soluble fraction by shifting it to the oxidizable and residual fractions. Moreover, TMBC improved the macronutrient status in both sediments. This work provides a pathway for TEs remediation of sediments and gives novel insights into the utilization of BC-treated fishpond sediments as fertilizers for crop production.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa 18000, Pakistan
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03 Bratislava, Slovakia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China.
| |
Collapse
|
22
|
Elvir-Padilla LG, Mendoza-Castillo DI, Reynel-Ávila HE, Bonilla-Petriciolet A. ADSORPTION OF DENTAL CLINIC POLLUTANTS USING BONE CHAR: ADSORBENT PREPARATION, ASSESSMENT AND MECHANISM ANALYSIS. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Azeem M, Shaheen SM, Ali A, Jeyasundar PGSA, Latif A, Abdelrahman H, Li R, Almazroui M, Niazi NK, Sarmah AK, Li G, Rinklebe J, Zhu YG, Zhang Z. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128131. [PMID: 34973578 DOI: 10.1016/j.jhazmat.2021.128131] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Conversion of hazardous waste materials to value-added products is of great interest from both agro-environmental and economic points of view. Bone char (BC) has been used for the removal of potentially toxic elements (PTEs) from contaminated water, however, its potential BC for the immobilization of PTEs in contaminated water and soil compared to bone (BBC)- and plant (PBC)-derived biochars has not been reviewed yet. This review presents an elaboration for the potentials of BC for the remediation of PTEs-contaminated water and soil in comparison with PBC and BBC. This work critically reviews the preparation and characterization of BC, BBC, and PBC and their PTEs removal efficiency from water and soils. The mechanisms of PTE removal by BC, BBC, and PBC are also discussed in relation to their physicochemical characteristics. The review demonstrates the key opportunities for using bone waste as feedstock for producing BC and BBC as promising low-cost and effective materials for the remediation of PTEs-contaminated water and soils and also elucidates the possible combinations of BC and BBC aiming to effectively immobilize PTEs in water and soils.
Collapse
Affiliation(s)
- Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China; Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab 46300, Pakistan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Parimala G S A Jeyasundar
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abdul Latif
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mansour Almazroui
- Center of Excellence for Climate Change Research (CECCR), Department of Meteorology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Zenqqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Srivastav AL, Pham TD, Izah SC, Singh N, Singh PK. Biochar Adsorbents for Arsenic Removal from Water Environment: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:616-628. [PMID: 34536097 DOI: 10.1007/s00128-021-03374-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic intake can cause human health disorders to the lungs, urinary tract, kidney, liver, hyper-pigmentation, muscles, neurological and even cancer. Biochar is potent, economical and ecologically sound adsorbents for water purification. After surface modifications, adsorption capacity of biochar significantly increased due to high porosity and reactivity. Adsorption capacities of the biochar derived from the municipal solid waste and KOH mixed municipal solid waste were increased from 24.49 and 30.98 mg/g for arsenic adsorption. Complex formation, electrostatic behavior and ion exchange are important mechanisms for arsenic adsorption. Organic arsenic removal using biochar is a major challenge. Hence, more innovative research should be conducted to achieve one of the 17 sustainable development goals of the United Nations i.e. "providing safe drinking water for all". This review is focused on the arsenic removal from water using pristine and modified biochar adsorbents. Recent advances in production methods of biochar adsorbents and mechanisms of arsenic removal from water are also illustrated.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, 174103, India.
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Vietnam.
| | - Sylvester Chibueze Izah
- Department of Microbiology, Faculty of Science, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria
| | - Nirankar Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
25
|
Hong C, Dong Z, Zhang J, Zhu L, Che L, Mao F, Qiu Y. Effectiveness and mechanism for the simultaneous adsorption of Pb(II), Cd(II) and As(III) by animal-derived biochar/ferrihydrite composite. CHEMOSPHERE 2022; 293:133583. [PMID: 35026201 DOI: 10.1016/j.chemosphere.2022.133583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
The emerging animal-derived biochar (AB) has shown potential for mitigating the contamination of cationic heavy metals, but has no affinity to oxyanionic metals. In this study, we developed an AB/ferrihydrite composite with a AB/Fe mass ratio of 4.0 (ABF-4) for the simultaneous adsorption of cationic Pb(II)/Cd(II) and anionic As(III). ABF-4 is a type of hydroxyapatite-rich biochar coated with nanoscale iron hydroxide aggregates. The adsorption of Pb(II), Cd(II), and As(III) on ABF-4 were 2.64, 1.55, and 0.48 mmol/g, and were 135%, 150%, and 4500% higher than those of pure AB, respectively. The enhanced adsorption of Pb(II) and Cd(II) by ABF-4 is partially due to the increase in surface area and micropores. The nano-sized ferrihydrite on ABF might help form surface complexation with As(III) and oxidize As(III) to As(V). In multimetal systems, Pb(II) and Cd(II) can promote As(III) adsorption due to the formation of NaPb4(AsO4)3 precipitate and the ternary complex of arsenite and cadmium with ABF-4, whereas Cd(II) adsorption might be inhibited because of the surface coverage of Pb5(PO4)3Cl precipitate on ABF-4. However, the coexistence of Pb in soils does not influence the immobilization of Cd. The amendment of ABF-4 can considerably decrease the availability of Pb, Cd, and As in soils from Pb-Zn smelting sites. Hence, ABF-4 is a promising multifunctional material for the potential immobilization of multicomponent heavy metals.
Collapse
Affiliation(s)
- Chengyi Hong
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiqiang Dong
- Municipal Environmental Protection Engineering Co. Ltd of CERC Shanghai Group, Shanghai, 201906, China
| | - Jichen Zhang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ling Zhu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Fuzhi Mao
- Zhejiang Eco Environmental Technology Co. Ltd, Huzhou, 313000, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
26
|
Nguyen MN, Nguyen ATQ, Dultz S, Tsubota T, Duong LT, Nguyen AM, Pham NTT. Thermal induced changes of rice straw phytolith in relation to arsenic release: A perspective of rice straw arsenic under open burning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114294. [PMID: 34920282 DOI: 10.1016/j.jenvman.2021.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
On-site open burning is a common practice for handling rice straw, but its negative impacts, e.g., biomass loss and air pollution, are largely debated worldwide. To address the negative effects of open burning, many efforts have been made to 'ignite' worldwide bans. However, these bans are likely based on a singular view in which some positive aspects of open burning are overlooked. In this study, we aimed to determine the thermal-induced changes of straw and straw arsenic (As) under open burning and heat-treatments (in the temperature range from 300 to 900 °C). It was found that silica phase in rice straw (so-called phytolith) can encapsulate As in its structure. Open burning or heat-treatment of straw resulted in a tighter association of As and phytolith, thereby reducing dissolution of As. We proposed an opinion that open burning causes air pollution, but it can increase the activity of phytolith in sequestrating As, enabling delayed As cycle in rice ecosystems. The combat of on-site open burning of rice straw to reduce air pollution will alter straw handling routines, thereby changing the cycle of straw phytolith and the route of straw As.
Collapse
Affiliation(s)
- Minh N Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| | - Anh T Q Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam; Hanoi University of Natural Resources & Environment, 41A Phu Dien, Bac Tu Liem, Hanoi, Viet Nam
| | - Stefan Dultz
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Toshiki Tsubota
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu-shi, Fukuoka, 804-8550, Japan
| | - Lim T Duong
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Anh M Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Nga T T Pham
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| |
Collapse
|
27
|
Song G, Qin F, Yu J, Tang L, Pang Y, Zhang C, Wang J, Deng L. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127663. [PMID: 34799169 DOI: 10.1016/j.jhazmat.2021.127663] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 05/28/2023]
Abstract
Biochar, a carbonaceous material with engineering potential, has gained attention as an efficient catalyst in persulfate-based advanced oxidation processes (PS-AOPs). Although biomass feedstocks are known as a critical factor for the performance of biochar, the relationship between the catalytic efficiency/mechanism and the types of biomass feedstocks is still unclear. Thus, according to recent advances in experimental and theoretical researches, this paper provides a systematic review of the properties of biochar, and the relationship between catalytic performance in PS-AOPs and biomass feedstocks, where the differences in physicochemical properties (surface properties, pore structure, etc.) and activation path of different sourced biochars, are introduced. In addition, how the tailoring of biochar (such as heteroatomic doping and co-pyrolysis of biomass) affects its activation efficiency and mechanism in PS-AOPs is summarized. Finally, the suitable application scenarios or systems of different sourced biochars, appropriate methods to improve the catalytic performance of different types of biochar and the prospects and challenges for the development of biochar in PS-AOPs are proposed.
Collapse
Affiliation(s)
- Ge Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Ya Pang
- Department of Biology and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lifei Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
28
|
Lignocellulosic Based Biochar Adsorbents for the Removal of Fluoride and Arsenic from Aqueous Solution: Isotherm and Kinetic Modeling. Polymers (Basel) 2022; 14:polym14040715. [PMID: 35215628 PMCID: PMC8880223 DOI: 10.3390/polym14040715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Eucalyptus wood is made up of lignocellulosic material; this lignocellulosic material contains two types of biopolymers, i.e., carbohydrate and aromatic polymers. In this study, this lignocellulosic material was used to prepare biochar. Three biochar, i.e., laboratory-based (B1), barrel-based (B2), and brick kiln-biochar (B3), were used for fluoride and arsenic removal from aqueous solution. Barrel-based biochar was prepared by using the two-barrel method’s alteration. The highest fluoride removal (99%) was attained at pH 2 in the presence of B1, while in the presence of B2 and B3, maximum fluoride removal was 90% and 45.7%, respectively. At pH 10, the maximum arsenic removal in the presence of B1, B2, and B3 was 96%, 94%, and 93%, respectively. The surface characteristics obtained by Fourier-transform infrared spectroscopy (FTIR) showed the presence of carbonyl group (C-O), and alkene (C=C) functional groups on all the three studied biochars. Isotherm studies showed that the adsorption was monolayered (all the adsorbed molecules were in contact with the surface layer of the adsorbent) as the Langmuir isotherm model best fits the obtained data. Adsorption kinetics was also performed. The R2 value supports the pseudo-second-order kinetics, which means that chemisorption was involved in adsorbing fluoride and arsenic. It is concluded that B1 gives maximum removal for both fluoride (99%) and arsenic (96%). The study shows that lignocellulose-based biochar can be used for arsenic and fluoride removal from water.
Collapse
|
29
|
Giri DD, Alhazmi A, Mohammad A, Haque S, Srivastava N, Thakur VK, Gupta VK, Pal DB. Lead removal from synthetic wastewater by biosorbents prepared from seeds of Artocarpus Heterophyllus and Syzygium Cumini. CHEMOSPHERE 2022; 287:132016. [PMID: 34523437 DOI: 10.1016/j.chemosphere.2021.132016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The present investigation deals with removal of lead (Pb+2) ions from waste water using biosorbent prepared from seeds of Artocarpus heterophyllus (SBAh) and Syzygium cumini (SBSc). Biosorbents surface has been characterized through FT-IR spectroscopy to probe the presence of functional groups. Response surface methodology enabled optimized conditions (Pb+2 concentration 2 μg/mL, pH 5.8 and bioadsorbent dose 60 mg) resulted in Pb+2 removal ~96% for SBAh and ~93% for SBSc at agitation speed 300 rpm. The adsorption capacity has been found to be 4.93 mg/g for SBAh and 3.95 mg/g for SBSc after 70 min. At optimal experimental conditions, kinetics of biosorption was explained well by inter-particle diffusion model for SBAh (R2 = 0.99) whereas Elovich model best fitted for SBSc (R2 = 0.98). Further, both the biosorbents followed Temkin adsorption isotherm model.
Collapse
Affiliation(s)
- Deen Dayal Giri
- Department of Botany, Maharaj Singh College, Saharanpur, Uttar Pradesh, 247001, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Neha Srivastava
- Department of Chemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
30
|
Lee S, Han J, Ro HM. Mechanistic insights into Cd(II) and As(V) sorption on Miscanthus biochar at different pH values and pyrolysis temperatures. CHEMOSPHERE 2022; 287:132179. [PMID: 34521014 DOI: 10.1016/j.chemosphere.2021.132179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/13/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Biochar has received great attention as a biosorbent, but explanations of the underlying sorption mechanisms are still unclear. Here, batch sorption of cadmium (Cd(II)) and arsenate (As(V)) to Miscanthus biochar at different pH values and pyrolysis temperatures and the sorption mechanisms were comprehensively investigated. The maximum sorption capacities for both Cd(II) and As(V) were observed under alkaline conditions. Physisorption was identified as a common sorption mechanism for both Cd(II) and As(V) irrespective of pH; however, inner-sphere complexation with acidic functional groups (AFGs) and crystallized precipitation as otavite predominate at higher pH values for Cd(II), while hydrophobic attraction of arsenite and metallic As and electrostatic bridging with multivalent ions at deprotonated AFGs are presumed to be dominant sorption mechanisms for As(V). Inner-sphere complexes of Cd(II) (98.6%) and electrostatic bridging complexes of As(V) (89.5%) were the dominant sorption forms for B400, while inner-sphere complexes (45.9%) and precipitates (50.5%) of Cd(II) and physisorption and hydrophobic interactions of As (63.7%) were abundant. The results challenge the widely held notion that the sorption of anions decreases as pH increases, while that of cations increases with increasing pH. This unexpected phenomenon can be explained by reduction of As(V) and by the difference in the charge densities between As(V) and basic functional groups of the biochar. Such biochar-induced reduction would cause an unexpected risk of exposing human health and ecosystems to reduceable pollutants. These findings contribute to a better explanation for the environmental fate and behavior of inorganic pollutants in biochar applications.
Collapse
Affiliation(s)
- Seoyeon Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junho Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee-Myong Ro
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Feng Y, Xu Y, Xie X, Gan Y, Su C, Pi K, Finfrock YZ, Liu P. The dual role of oxygen in redox-mediated removal of aqueous arsenic(III/V) by Fe-modified biochar. BIORESOURCE TECHNOLOGY 2021; 340:125674. [PMID: 34364086 DOI: 10.1016/j.biortech.2021.125674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The Fe-modified biochar (FeBC) was used to remove aqueous As(III/V), and the role of oxygen (O2) in As removal was investigated by integrating aqueous and solid analyses. The removal efficiencies for As(III) and As(V) increased from 86.4% and 99.2% under anoxic conditions, respectively, to >99.9% when O2 was available. FeBC removed As(III) from As(III)-spiked systems by surface-oxidation following adsorption, where oxidation of As(III) was promoted by O2. As(V) was first reduced, re-oxidized in solutions, and then adsorbed to FeBC in As(V)-spiked systems, where reduction of As(V) was inhibited at the presence of O2. Both As(III) and As(V) were bidentate corner-sharing complexed to Fe oxides/hydroxides on FeBC, with As coordinated to Fe at ~3.4 Å according to As extended X-ray absorption fine structure (EXAFS) modeling. These findings identified the effect of ambient O2 in As(III/V) redox transformations and removal, guiding the further application of FeBC in environmental treatment.
Collapse
Affiliation(s)
- Yu Feng
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yong Xu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Chongqing Nanjiang Engineering Survey and Design Group Co., Ltd., Chongqing 401147, China
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yiqun Gan
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chunli Su
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kunfu Pi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Y Zou Finfrock
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Peng Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
32
|
Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth. SUSTAINABILITY 2021. [DOI: 10.3390/su131911104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study is aimed at deriving biochar (BC) from rice straw (RS-BC) and waste bones (WB-BC), being wasted without adequate return at the expense of environmental degradation. The RS and WB feedstocks were pyrolyzed at 550 °C, and the potential of derived biochar as a slow nutrient releasing soil amendment was examined during the growth of ridge gourd. Proximate analysis of the prepared biochars showed significant improvement in ash content and fixed carbon as compared to their raw biomasses. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis of RS-BC and WB-BC displayed a diverse range of functional groups viz. derivatives of cellulose and hydroxylapatite (HA); macro and microporosity; multiple nutrients. Application of RS-BC and WB-BC in potted soil alone and as biochar composite (RS-BC+WB-BC) at 5, 10 and 15% (w/w) and chemical fertilizer (CF) resulted in a significant increase in soil pH, electrical conductivity (ECe), cation exchange capacity (CEC) and water holding capacity (WHC) in exchange for growth and yield of ridge gourd. However, there were insignificant differences in the growth of plants in response to RS-BC, WB-BC alone and CF with biochar composite at 15% amendment. For giving insignificantly different growth results than CF, the prepared biochar composite showed outstanding potential as an organic fertilizer applicable in agrarian soils to elevate soil properties and yield of agricultural commodities.
Collapse
|
33
|
Chen H, Xu J, Lin H, Zhao X, Shang J, Liu Z. Arsenic removal via a novel hydrochar from livestock waste co-activated with thiourea and γ-Fe 2O 3 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126457. [PMID: 34216968 DOI: 10.1016/j.jhazmat.2021.126457] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contaminants post tremendous threats to environment safety. Pristine hydrochar (PHC), thiourea-activated hydrochar (THC), and thiourea-Fe(NO3)3-activated hydrochar (Fe2O3@THC) were fabricated from dairy cattle manure via one-pot hydrothermal carbonization at 250 ℃ and applied for aqueous As(V) removal. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize hydrochars and As(V) adsorption. Thiourea increased N and S functional groups (-NH2, C-N, C=S and S=O). Fe(NO3)3 introduced γ-Fe2O3 nanoparticles and provided Fe2O3@THC with Fe-O. The combination of thiourea and Fe(NO3)3 granted Fe2O3@THC with the largest surface area (33.45 m2/g), and the highest total pore volume (0.095 cm3/g) among three hydrochars. As(V) adsorption was a physicochemical process involving electrostatic attraction, complexation, ion exchange and H-bond interaction. The maximum As(V) adsorption capacities and partition coefficients decreased as follows: Fe2O3@THC (44.80 mg/g; 38.44 L/g) > THC (38.77 mg/g; 5.94 L/g) > PHC (19.05 mg/g; 1.17 L/g). Three hydrochars exhibited preferable reusability in NaOH solution with only 24.2%, 11.8% and 14.1% decrease in adsorption rates after four cycles for PHC, THC and Fe2O3@THC, respectively. Fe2O3@THC is a promising adsorbent for efficient As(V) removal. This study explored the efficient As(V) removal by activated hydrochars with future research potential.
Collapse
Affiliation(s)
- Hongxu Chen
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jiatao Xu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Hailong Lin
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Zhao
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, 100021, China.
| |
Collapse
|
34
|
Nguyen AM, Pham NT, Nguyen LN, Nguyen AT, Nguyen HX, Nguyen DD, Tran TM, Nguyen AD, Tran PD, Nguyen MN. Silicic acid increases dispersibility of micro-sized biochars. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. J Colloid Interface Sci 2021; 587:767-779. [PMID: 33309243 DOI: 10.1016/j.jcis.2020.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022]
|
36
|
Alkurdi SSA, Al-Juboori RA, Bundschuh J, Bowtell L, Marchuk A. Inorganic arsenic species removal from water using bone char: A detailed study on adsorption kinetic and isotherm models using error functions analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124112. [PMID: 33158651 DOI: 10.1016/j.jhazmat.2020.124112] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 05/22/2023]
Abstract
The removal of inorganic arsenic (As) species from water using bone char pyrolyzed at 900 °C was investigated. Results revealed that the Sips model resulted in the best As(III) experimental data fit, while As(V) data were best represented by the Langmuir model. The adsorption rate and mechanisms of both As species were investigated using kinetic and diffusional models, respectively. At low As(III) and As(V) concentrations of 0.5 and 2.5 mg/L, the removal was due to intra-particle interactions and pore diffusion following Pseudo-first-order kinetics. However, at higher concentrations of 5 and 10 mg/L, the pore diffusion mechanism was ineffective, and the adsorption was best described by Pseudo-second-order and Elovich models. The goodness of the fit of linearized and nonlinear forms of all models against experimental data was thoroughly tested using error function analysis. Nonlinear regressions produced lower error values, so they were utilized to calculate the parameters of the models. The changes in bone char surface chemistry were examined using FTIR and Energy-dispersive X-ray spectroscopy (EDS). Arsenic oxide and complexes with metals were the confirmed immobilized forms of As on the bone-char surface. To the authors' knowledge, this study is the first attempt at As(III) adsorption analysis using bone char.
Collapse
Affiliation(s)
- Susan S A Alkurdi
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia; Northern Technical University, Engineering Technical College, Kirkuk, Iraq
| | - Raed A Al-Juboori
- Water Engineering Research Group, Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, FI-00076 Espoo, Finland
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia.
| | - Les Bowtell
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| | - Alla Marchuk
- University of Southern Queensland, Centre for Sustainable Agricultural Systems, Toowoomba, 4350 Queensland, Australia
| |
Collapse
|
37
|
Mukherjee S, Thakur AK, Goswami R, Mazumder P, Taki K, Vithanage M, Kumar M. Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111814. [PMID: 33401117 DOI: 10.1016/j.jenvman.2020.111814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As), a geogenic and extremely toxic metalloid can jeopardize terrestrial and aquatic ecosystems through environmental partitioning in natural soil-water compartment, geothermal and marine environments. Although, many researchers have investigated the decontamination potential of different mesoporous engineered bio sorbents for a suite of contaminants, still the removal efficiency of various pyrolyzed agricultural residues needs special attention. In the present study, rice straw derived biochar (RSBC) produced from slow pyrolysis process at 600 °C was used to remove As (V) from aqueous medium. Batch experiments were conducted at room temperature (25 ± 2 °C) under different initial concentrations (10, 30, 50, 100 μg L-1), adsorbent dosages (0.5-5 μg L-1), pH (4.0-10.0) and contact times (0-180 min). The adsorption equilibrium was established in 120 min. Adsorption process mainly followed pseudo-second order kinetics (R2 ≥ 0.96) and Langmuir isotherm models (R2 ≥ 0.99), and the monolayer sorption capacity of 25.6 μg g-1 for As (V) on RSBC was achieved. Among the different adsorbent dosages and initial concentrations used in the present study, 0.2 g L-1 (14.8 μg g-1) and 100 μg L-1 (13.1 μg g-1) were selected as an optimum parameters. A comparative analysis of RSBC with other pyrolyzed waste materials revealed that RSBC had comparable adsorption ability (per unit area). These acidic groups are responsible for the electron exchange (electrostatic attraction, ion-exchange, π-π/n-πinteractions) with the anionic arsenate, which facilitates optimum removal (>60%) at 7 < pH < pHPZC. The future areas of research will focus on decontamination of real wastewater samples containing mixtures of different emerging contaminants and installation of biofilter beds that contains different spent adsorbents/organic substrates (including biochar) for biopurification study in real case scenario.
Collapse
Affiliation(s)
- Santanu Mukherjee
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Alok Kumar Thakur
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Ritusmita Goswami
- Department of Environmental Science, The Assam Royal Global University, Guwahati, 781035, Assam, India; Centre for Ecology, Environment and Sustainable Development, Tata Institute of Social Sciences, Guwahati, 781013, Assam, India
| | - Payal Mazumder
- Center for the Environment, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Kaling Taki
- Discipline of Civil Engineering, Indian Institute of Technology, Gandhinagar, 382355, Gujarat, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
38
|
Penke YK, Yadav AK, Malik I, Tyagi A, Ramkumar J, Kar KK. Insights of arsenic (III/V) adsorption and electrosorption mechanism onto multi synergistic (redox-photoelectrochemical-ROS) aluminum substituted copper ferrite impregnated rGO. CHEMOSPHERE 2021; 267:129246. [PMID: 33359983 DOI: 10.1016/j.chemosphere.2020.129246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/14/2020] [Accepted: 12/05/2020] [Indexed: 05/04/2023]
Abstract
The understanding of mechanistic insights in environmental remediation and mitigation systems is attracting larger attention, in recent days. Here in, aluminium substituted copper ferrite impregnated rGO hybrid (CAF-rGO) is verified to understand the adsorption/electrosorption mechanism of arsenic in aqueous systems. Near-surface study (XPS: As 3d, Cu 2p, Fe 2p, Al 2p, O 1s, C 1s) proposes redox, and ligand exchange reactions between contaminant, and CAF-rGO. Adsorption capacities are observed around 128.8 mg g-1 [As(III)], 153.5 mg g-1 [As(V)] with Freundlich model isotherms. Kinetics study follows the PSO model with influence of solar light (> 420 nm). Cyclic voltammetry (CV) analysis in different molarity conditions observed with signals around +0.1 and -0.6 V confirm the redox abilities, and N2/O2 purged environments understood that electrosorption occurred through both reduction and sorption. Electrosorption study with pH variation shows the effect of protonation on the redox activity of individual arsenic species. Consistent signal around -0.6 ± 0.05 V in all the CV plots (i.e., Molarity, Environment, pH) recommends the usage of CAF-rGO for arsenic mitigation. Possible influence of photo-current (∼40 μA/cm2 at ∼ 0 V) towards As(III/V) decontamination is understood though photoelectrochemical analysis. Impedance plot shows low-resistance and better diffusion of arsenic oxy-anions during light irradiation. Synergistic nature of CAF-rGO generates reactive oxygen species (i.e., ●OH/●O2-/1O2) in mitigating highly toxic As(III) species is also detailed in the present work.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Amit K Yadav
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Iram Malik
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Alekha Tyagi
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Janakarajan Ramkumar
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
39
|
Zoroufchi Benis K, Shakouri M, McPhedran K, Soltan J. Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12659-12676. [PMID: 33085008 DOI: 10.1007/s11356-020-11140-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The impact of arsenic (As) contamination of water is an ongoing concern worldwide with As released from anthropogenic activities including mining and agriculture. Biosorption is a promising As treatment methodology used currently for arsenate (As(V)) sorption from water. The biosorbent was developed by a simple and inexpensive treatment of coating of canola straw particles with iron hydroxides. The modification procedure was optimized with consideration of the concentration of iron solution, pH of modification process, and sonication time. A higher concentration of iron and lower pH led to an improved sorption capacity of the iron-loaded canola straw (ICS), while impacts of sonication time were not conclusive. Pareto analyses indicated that the magnitude of the effect of the pH was higher than that of the iron concentration. Overall, the maximum As(V) sorption capacity of the ICS was 5.5 mg/g for an 0.25 M FeCl3 solution concentration at pH 3. Analysis of kinetic data showed that the sorption processes of As(V) followed pseudo-second order and Elovich mechanisms, while sorption isotherm data were best represented by Freundlich and Temkin isotherm models. Studying the effect of ionic strength using NaCl suggested that the inner-sphere complex was the probable sorption mechanism. The thermodynamic parameters including ΔS°, ΔH°, and ΔG° showed that the As(V) sorption was thermodynamically favorable and spontaneous. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that no reaction to As(III) occurred during the sorption of As(V) using the optimum ICS biosorbent. The evolutionary polynomial regression (EPR) approach was able to closely match predicted vs. experimental sorption capacities (R2 = 0.95). Overall, the improved understanding of the biosorbent's capability for removal of As(V) will be beneficial for assessment of its use for treatment of various water and wastewater matrices. In addition, knowledge gained from this research can assist in the understanding of sorption capacities of a variety of other biosorbents.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mohsen Shakouri
- Canadian Light Source, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, Saskatchewan, S7N 5A9, Canada.
| | - Jafar Soltan
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
40
|
Gwenzi W, Chaukura N, Wenga T, Mtisi M. Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142249. [PMID: 33207469 DOI: 10.1016/j.scitotenv.2020.142249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/09/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Biochars are low-cost and renewable biomaterials with several applications, including soil amendment, mitigation of greenhouse gas emissions, and removal of both inorganic and organic contaminants in aqueous systems. An increasing body of recent evidence indicates that biochars can also remove gaseous chemical contaminants, such as those occurring in industrial flue gases. However, unlike other applications such as in agroecosystems, soil amendments, and aquatic systems, comprehensive reviews on biochar applications in the field of air pollution control are still lacking. The current paper examined existing evidence to understand the nature of contaminants, particularly the gaseous ones, potential applications, constraints, and future research needs pertaining to biochar applications in air pollution control. The preparation of biochars and their functionalized derivatives, and the properties influencing their capacity to remove gaseous contaminants are summarized. The removal capacity and mechanisms of various organic and inorganic gaseous contaminants by biochars are discussed. Evidence shows that biochars effectively remove metal vapours, particularly elemental mercury (Hg0), acidic gases (H2S, SO2, CO2), ozone, nitrogen oxides (NOx), and organic contaminants including aromatic compounds, volatile organic compounds, and odorous substances. The mechanisms for the removal of gaseous contaminants, including; adsorption, precipitation, and size exclusion were presented. Potential industrial application domains include remediation of gaseous emissions from incinerators, waste-to-energy systems, kilns, biomass and coal-fired boilers/cookers, cremation, smelters, wastewater treatment, and agricultural production systems including livestock husbandry. These industrial applications, coupled with the renewable, low-cost and sustainable nature of biochars, point to opportunities to further develop and scale up the biochar technology in the air pollution control industry. However, the biochar-based air filter technology still faces several challenges, largely stemming from constraints and several knowledge gaps, which were highlighted. Hence, further research is required to address these constraints and knowledge gaps before the benefits of the biochar-based air filters are realized.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, South Africa
| | - Terrence Wenga
- Waste Treatment and Utilization Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Munyaradzi Mtisi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| |
Collapse
|
41
|
Zoroufchi Benis K, Motalebi Damuchali A, Soltan J, McPhedran KN. Treatment of aqueous arsenic - A review of biochar modification methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139750. [PMID: 32540652 DOI: 10.1016/j.scitotenv.2020.139750] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 05/12/2023]
Abstract
Arsenic (As) is an ever-present worldwide environmental contamination issue. The process of As sorption for treatment of contaminated waters is regarded as a promising treatment technology approach due to its simplicity and potential for high efficiency. Biochars are carbon-rich porous solids produced by heating of biomasses under low oxygen conditions. Biochars are considered to be environmentally friendly sorbents that can be used to treat various As-containing waters. However, unmodified biochar is generally a poor sorbent for As species due to static repulsion between the As oxyanions and the negatively charged biochar surface. The As sorption capacity of biochars can be substantially improved by treatments using various physical and chemical activation and modification methods. Thus, this review includes 63 research studies using physical and chemical approaches to enhance biochar physicochemical structures and As sorption efficiencies. The effectiveness of each method for altering the characteristics and sorption capacity of biochars is described. This review can help to focus the scope of future As biochar sorption studies and aid researchers in optimization of biochar-based sorbents for As treatment.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ali Motalebi Damuchali
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jafar Soltan
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry Neil McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
42
|
Mai NT, Nguyen AM, Pham NTT, Nguyen ATQ, Nguyen TT, Do CL, Nguyen NH, Dultz S, Nguyen MN. Colloidal interactions of micro-sized biochar and a kaolinitic soil clay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139844. [PMID: 32526417 DOI: 10.1016/j.scitotenv.2020.139844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Fine-sized biochars and clay minerals co-present in various circumstances, e.g., agricultural land and water treatment. Because both of these materials are scavengers for nutrients, agrochemicals and other toxicants, their dispersibility and transportability have received much attention. However, little is documented about their colloidal interactions and to what extent biochar particles can stimulate the dispersion of clay minerals. Here, the effect of engineered micro-sized biochar amendment on the surface charge (SC) and colloidal dynamics of the clay fraction of a kaolinite-rich soil was determined. The engineered biochars showed distinctive SC and colloidal properties depending on their pyrolysis conditions (e.g., oxygen level and temperature) and solution chemistry (i.e., pH and cation type). Two types of biochars prepared under non-biochar-oriented pyrolysis (open heating, 'O-biochar') and biochar-oriented pyrolysis (N2-supported heating, 'N2-biochar') showed contrasting effects on the colloidal dynamics of clay. The O-biochars provoked aggregation due to their higher content of soluble salts, which increased ionic strength and provided multivalent cations, inducing bridging between negatively charged colloids. In contrast, the N2 biochars low in soluble salts and rich in negatively charged burned organic matter compounds favoured the dispersion of clay. The adjustment of biochar production methods can therefore be highlighted as the way to customize biochar for specific uses or to reduce the risk of clay loss from soils in the short term. In the long term, when soluble salts are removed by leaching, it is likely that dispersion is facilitated and the risk for erosion increases.
Collapse
Affiliation(s)
- Nga T Mai
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.; Faculty of Environment and Natural Resources, Ha Tay Community College, Thuy Xuan Tien, Chuong My, Hanoi, Viet Nam
| | - Anh M Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Nga T T Pham
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.; Institute for Agricultural Environment, Vietnam Academy of Agricultural Sciences, Phu Do, Nam Tu Liem, Hanoi, Viet Nam
| | - Anh T Q Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.; Faculty of Biology, Thai Nguyen University of Education, Thai Nguyen University (TNU), 20 Luong Ngoc Quyen, Thai Nguyen, Viet Nam
| | - Thom T Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Chi L Do
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Nam H Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Stefan Dultz
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Minh N Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam..
| |
Collapse
|
43
|
Adsorption of As(V) by the Novel and Efficient Adsorbent Cerium-Manganese Modified Biochar. WATER 2020. [DOI: 10.3390/w12102720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arsenic has become a global concern in water environment, and it is essential to develop efficient remediation methods. In this study, a novel adsorbent by loading cerium and manganese oxide onto wheat straw-modified biochar (MBC) was manufactured successfully aiming to remove arsenic from polluted water. Through scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FT-IR), and other techniques, it was found the loading of cerium and manganese oxide on MBC played a significant role in As(V) adsorption. The results of the batch test showed that the adsorption of MBC followed the pseudo-second order kinetics and Langmuir equation. The adsorption capacity of MBC was 108.88 mg As(V)/g at pH = 5.0 (C0 = 100 mg/L, dosage = 0.5 g/L, T = 298 K) with considerable improvement compared to the original biochar. Moreover, MBC exhibited excellent performance over a wide pH range (2.0~11.0). Thermodynamics of the sorption reaction showed that the entropy (ΔS), changes of enthalpy (ΔH) and Gibbs free energy (ΔG), respectively, were 85.88 J/(moL·K), 22.54 kJ/mol and −1.33 to −5.20 kJ/mol at T = 278~323 K. During the adsorption, the formation of multiple complexes under the influence of its abundant surface M-OH (M represents the Ce/Mn) groups involving multiple mechanisms that included electrostatic interaction forces, surface adsorption, redox reaction, and surface complexation. This study indicated that MBC is a promising adsorbent to remove As(V) from polluted water and has great potential in remediating of arsenic contaminated environment.
Collapse
|
44
|
Alkurdi SSA, Al-Juboori RA, Bundschuh J, Bowtell L, McKnight S. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114221. [PMID: 32120255 DOI: 10.1016/j.envpol.2020.114221] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/02/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
This study examined arsenite [As(III)], arsenate [As(V)] and fluoride (F-) removal potential of bone char produced from sheep (Ovis aries) bone waste. Pyrolysis conditions tested were in the 500 °C-900 °C range, for a holding time of 1 or 2 h, with or without N2 gas purging. Previous bone char studies mainly focused on either low or high temperature range with limited information provided on As(III) removal. This study aims to address these gaps and provide insights into the effect of pyrolysis conditions on bone char sorption capacity. A range of advanced chemical analyses were employed to track the change in bone char properties. As pyrolysis temperature and holding time increased, the resulting pH, surface charge, surface roughness, crystallinity, pore size and CEC all increased, accompanied by a decrease in the acidic functional groups and surface area. Pyrolysis temperature was a key parameter, showing improvement in the removal of both As(III) and As(V) as pyrolysis temperature was increased, while As(V) removal was higher than As(III) removal overall. F- removal displayed an inverse relationship with increasing pyrolysis temperature. Bone char prepared at 500 °C released significantly more dissolved organic carbon (DOC) then those prepared at a higher temperature. The bone protein is believed to be a major factor. The predominant removal mechanisms for As were surface complexation, precipitation and interaction with nitrogenous functional groups. Whereas F- removal was mainly influenced by interaction with oxygen functional groups and electrostatic interaction. This study recommends that the bone char pyrolysis temperature used for As and F- removal are 900 °C and 650 °C, respectively.
Collapse
Affiliation(s)
- Susan S A Alkurdi
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; Northern Technical University, Engineering Technical College/Kirkuk, Iraq.
| | - Raed A Al-Juboori
- Water Engineering Research Group, Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| | - Les Bowtell
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia.
| | - Stafford McKnight
- School of Science, Engineering and Information Technology, Federation University Australia, University Drive, Mt Helen, 3350, Victoria, Australia.
| |
Collapse
|
45
|
Zhang W, Tan X, Gu Y, Liu S, Liu Y, Hu X, Li J, Zhou Y, Liu S, He Y. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. CHEMOSPHERE 2020; 250:126268. [PMID: 32234619 DOI: 10.1016/j.chemosphere.2020.126268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
The effectiveness of rice waste biochars on heavy metal and metalloid abatement and detoxification was investigated using comprehensive studies based on As and Cd immobilization, bioaccumulation in tubifex, and microbial community changes in contaminated sediment. The remediation effects of biochars produced at different pyrolytic temperatures (400-700 °C) were evaluated. Bioaccumulation of heavy metal and metalloid in the tubifex tissue and change of indigenous microbial community under treatment of different biochars were assessed. Biochars produced at 700 °C exhibited greater effect on decreasing the concentrations of As and Cd in aqueous phase, and TCLP extractable and bioavailable metal(loid) in solid phase of sediment. The concentration of As and Cd in water phase decreased by 26%-89% and 22%-71% under the treatment of straw biochar, and decreased by 13%-92% and 5%-64% under the treatment of rice husk biochar, respectively. As and Cd contents in the tubifex tissue were positively correlated with their concentrations in aqueous phase. High-temperature biochars significantly reduced metal(loid) bioaccumulation in tubifex. The richness and biodiversity of microbial community were both greater in all biochars remediated sediment compared to non-treated sediment. These results indicated that rice waste biochars could effectively inhibit the bio-availability and toxicity of heavy metal and metalloid in sediment, and the higher-temperature biochar exhibited better performance.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha, 410083, PR China.
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiang Li
- College of Architecture and Art, Central South University, Changsha, 410083, PR China
| | - Yahui Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Sijia Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuan He
- Center of Changsha Public Engineering Construction, Changsha, 410013, China
| |
Collapse
|
46
|
Alchouron J, Navarathna C, Chludil HD, Dewage NB, Perez F, Hassan EB, Pittman CU, Vega AS, Mlsna TE. Assessing South American Guadua chacoensis bamboo biochar and Fe 3O 4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135943. [PMID: 31862592 DOI: 10.1016/j.scitotenv.2019.135943] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Discarded bamboo culms of Guadua chacoensis were used for biochar remediation of aqueous As(V). Raw biochar (BC), activated biochar (BCA), raw Fe3O4 nanoparticle-covered biochar (BC-Fe), and activated biochar covered with Fe3O4 nanoparticles (BCA-Fe) were prepared, characterized and tested for As(V) aqueous adsorption. The goal is to develop an economic, viable, and sustainable adsorbent to provide safe arsenic-free water. Adsorbents were characterized using scanning electron microscopy (SEM) and energy dispersive analysis by X-ray (SEM-EDX), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (TEM-EDS), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller surface area measurements (SBET), point of zero charge determinations (PZC), and elemental analysis. Activation with KOH increased the O/C ratio and the surface area of BC from 6.7 m2/g to 1239.7 m2/g (BCA). As(V) sorption equilibrium was achieved within <2 h for all four adsorbents and kinetics followed the pseudo-second-order model. At a 10 mg/L initial As(V) concentration, BC-Fe achieved a 100% removal (5 mg/g) over a pH 5 to 9 window. Sorption was endothermic on all four adsorbents and the capacities rose with the increasing temperature. Langmuir capacities at 40 °C for BC, BCA, BC-Fe, and BCA-Fe were 256, 217, 457, and 868 mg/g, respectively, and capacities were compared with other sorbents. Breakthrough fixed-bed column sorption was carried out for BC and BC-Fe producing 6.6 mg/g and 13.9 mg/g bed capacities, respectively. Potassium phosphate was a better As stripping agent than sodium bicarbonate. Performance of the adsorbents in an As(V)-spiked natural water and a naturally As(V)-contaminated domestic water were assessed. Robust arsenate sequestration occurred generating As-safe water (As <0.01 mg/L), despite the presence of competing ions. Stoichiometric precipitation of iron-arsenate complexes triggered by iron dissolution was also established.
Collapse
Affiliation(s)
- Jacinta Alchouron
- Universidad de Buenos Aires, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Hugo D Chludil
- Universidad de Buenos Aires, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Narada B Dewage
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Felio Perez
- Material Science Lab, Integrated Microscopy Center, University of Memphis, Memphis, TN 38152, USA
| | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS 39762, USA
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Andrea S Vega
- Universidad de Buenos Aires, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Todd E Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA.
| |
Collapse
|
47
|
Abdin Y, Usman A, Ok YS, Tsang YF, Al-Wabel M. Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: Contrasting effects of mesquite and fishbone biochars. ENVIRONMENTAL RESEARCH 2020; 181:108846. [PMID: 31740040 DOI: 10.1016/j.envres.2019.108846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Mesquite and fishbone were pyrolyzed to produce biochar (MBC and FBC, respectively) at different temperatures. The effects of the MBC and FBC on the removal of single and competitive metals (Cd, Pb, Zn, and Cu) from aqueous solutions were evaluated. A greenhouse pot experiment was also conducted using wheat plants with the mining-contaminated soils. In the presence of MBC or FBC (dosages of 15 and 30 g kg-1), the bioavailability of co-existing Cd, Pb, Zn, Cu, Mn, and Fe were assessed. The results clearly indicated competitive adsorption among metals with the highest adsorption preference toward Pb. The removal efficiency and partition coefficient (PC) values of heavy metals for FBCs were higher than those for MBCs. These two values increased with MBC pyrolysis temperature under both single- and multi-metals adsorption conditions. Applying FBC to mining soil resulted in the highest reduction in most NH4NO3-extractable heavy metals, reducing their availability to wheat plants. At the highest application dosage of 30 g kg-1, the highest metal immobilization, which accounted for 40.0% and 43.0% for Pb, 61.7% and 66.2% for Cu, 48.3% and 55.6% for Zn, and 32.7% and 33.8% for Cd, was achieved following the application of FBC400 and FBC600, respectively. However, applying MBC lead to a significant reduction in the availability of Cu and Pb but not that of Zn and Cd. FBC is thus more effective in removing heavy metal from aqueous solutions, as well as in immobilizing co-existing heavy metals in contaminated mining soil. It could, therefore, be an effective sorbent and immobilizing agent.
Collapse
Affiliation(s)
- Yassir Abdin
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - Mohammad Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China.
| |
Collapse
|
48
|
Kumar R, Patel M, Singh P, Bundschuh J, Pittman CU, Trakal L, Mohan D. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133427. [PMID: 31756815 DOI: 10.1016/j.scitotenv.2019.07.233] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
Providing drinking water with safe arsenic levels in Latin American (LA) countries (a total of 22 countries) is a major current challenge. Arsenic's presence in water has been neglected for many decades since it was first reported ~100 years ago in Argentina. The major arsenic source in this region is geogenic. So far, arsenic has been reported in 15 LA countries. Arsenic concentrations in drinking water have been reported up to >200 fold (2000 μg/L) the WHO limit of 10 μg/L. About 14 million people in the arsenic affected LA countries depend on contaminated water characterized by >10 μg/L of arsenic. Low-cost, easy to use, efficient, and sustainable solutions are needed to supply arsenic safe water to the rural and peri-urban population in the affected areas. In the present study, >250 research articles published on various emerging technologies used for arsenic remediation in rural and peri-urban areas of LA countries are critically reviewed. Special attention has been given to arsenic adsorption methods. The manuscript focuses on providing insights into low cost emergent adsorbents with an implementation potential in Latin America. Natural, modified and synthetic adsorbents used for arsenic decontamination were reviewed and compared. Advantages and disadvantages of treatment methods are summarized. Adsorbent selection criteria are developed. Recommendations concerning emerging adsorbents for aqueous arsenic removal in LA countries have also been made.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prachi Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, 165 00 Suchdol , Czech Republic
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|