1
|
Xiu Z, Zheng N, An Q, Chen C, Lin Q, Li X, Wang S, Peng L, Li Y, Zhu H, Sun S, Wang S. Tissue-specific distribution and fatty acid content of PFAS in the northern Bohai Sea fish: Risk-benefit assessment of legacy PFAS and emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136024. [PMID: 39396441 DOI: 10.1016/j.jhazmat.2024.136024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
This study aimed to examine the distribution of poly- and perfluoroalkyl substances (PFAS) in 15 marine fish species from the northern Bohai Sea, investigate their sources of contamination, and evaluate the benefits-risks associated with the concurrent consumption of fish fatty acids and PFAS. The ∑PFAS concentrations in fish ranged from 9.38 to 262.92 ng·g-1 (dry weight). The highest PFAS levels were found in the viscera and gills, while the lowest levels were found in the muscles. Industrial effluents and sewage treatment plant discharges were the primary sources of PFAS contamination. The individual PFAS concentrations in fish were insignificantly correlated with their trophic levels (p > 0.05). However, the concentrations of hexafluoropropylene oxide dimer acid (HFPO-DA) or long-chain PFAS (C > 8) significantly increased with fish size (e.g., total length, weight) and lipid content (p < 0.001). The benefit-risk analysis suggests that HPFO-DA poses a higher health risk than perfluorooctanoic acid (PFOA) in fish (p < 0.05). Long-term consumption of contaminated fish may significantly increase human serum PFOA concentration and kidney cancer risk (p < 0.05). Daily consumption of 5 g (wet weight) muscle from Ditrema temmincki and Konosirus punctatus is recommended to meet the requirements for fatty acid supplementation without posing health risks.
Collapse
Affiliation(s)
- Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Qiuyan Lin
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Yunyang Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Shuai Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| |
Collapse
|
2
|
Li X, Zhang B, Hou M, Qian C, Ji Z, Shi Y, Cai Y. Occurrence of per- and polyfluoroalkyl substances in wheat, maize, rice, and soybean from chinese major grain producing regions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136509. [PMID: 39549404 DOI: 10.1016/j.jhazmat.2024.136509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Dietary exposure to per- and polyfluoroalkyl substances (PFAS) has been a concern for many years. Previous studies demonstrated that foods such as meat, milk, fish, vegetables, and tuber crops could be potential sources of human exposure to PFAS. However, research on PFAS contamination in grains remains limited. Therefore, this study conducted a comprehensive investigation of PFAS contamination in raw grains from major grain-producing regions in China. Among all grain species, soybeans exhibited the highest Σ16PFAS level (1.01 ng/g dw), followed by rice (0.570 ng/g dw), wheat (0.542 ng/g dw), and maize (0.245 ng/g dw). Short-chain perfluoroalkyl carboxylates (PFCAs) displayed higher detection frequencies compared to their long-chain homologues and perfluoroalkyl sulfonates (PFSAs). Perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) were dominant in wheat, maize, and soybean samples, while sodium p-perfluorous nonenoxybenzenesulfonate (OBS) was predominant in rice. OBS contributed approximately 70 % to Σ16PFAS concentrations in rice. The concentration difference of OBS was not significant between indica rice and japonica rice, however, a disparity was observed between early indica rice and mid-late indica rice, suggesting that the growing period potentially affects OBS level in rice grains. Compared to other regions, east China displayed relatively higher PFAS concentrations in grain samples. This finding is consistent with previous studies and may be attributed to the intensive industrial and human activities. The estimated daily intake (EDI) of Σ16PFAS in grains from this study ranged from 0.0829 to 3.32 ng/kg bw/day. The dietary health risks associated with PFOA in wheat and OBS in rice warrant further attention.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bona Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjing Qian
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China.
| | - Zhengquan Ji
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou 310007, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhao X, Liu Y, Yang D, Dong S, Xu J, Li X, Li X, Ding G. Thyroid endocrine disruption effects of OBS in adult zebrafish and offspring after parental exposure at early life stage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107125. [PMID: 39426365 DOI: 10.1016/j.aquatox.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
As an alternative to perfluorooctane sulfonate, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has been widely used and caused ubiquitous water pollution. However, its toxicity to aquatic organisms is still not well known. Therefore, in this study, parental zebrafish were exposed to OBS at environmentally relevant concentrations from ∼ 2 h post-fertilization to 21 days post-fertilization (dpf) in order to investigate the thyroid disrupting effects in F0 adults and F1 offspring. Histopathological changes, such as hyperplasia of thyroid follicular epithelia and colloidal depletion, were observed in F0 adults at 180 dpf. In F0 females, thyroxine (T4) levels were significantly reduced in 30 and 300 μg/L exposure groups, while triiodothyronine (T3) levels were significantly increased in 3 μg/L exposure group. For F0 males, significant increases of T4 and T3 levels were observed, revealing the sex-specific differences after the OBS exposure. The transcription levels of some key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were significantly disrupted, which induced the thyroid endocrine disruption effects in adult zebrafish even after a prolonged recovery period. For F1 offspring, the thyroid hormone (TH) homeostasis was also altered as T4 and T3 levels in embryos/larvae exhibited similar changes as F0 females. The transcription levels of some key genes related to the HPT axis were also significantly dysregulated, suggesting the transgenerational thyroid disrupting effects of OBS in F1 offspring. In addition, the decreased swirl-escape rate was observed in F1 larvae, which could be caused by disrupting gene expressions related to the central nervous system development and be associated with the TH dyshomeostasis. Therefore, parental OBS exposure at early life stage resulted in thyroid endocrine disruption effects in both F0 adult zebrafish and F1 offspring, and caused the developmental neurotoxicity in F1 larvae.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Yaxuan Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaohui Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China.
| |
Collapse
|
4
|
Lu M, Liu Y, Zheng X, Liu W, Liu Y, Bao J, Feng A, Bao Y, Diao J, Liu H. Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. TOXICS 2024; 12:343. [PMID: 38787122 PMCID: PMC11125578 DOI: 10.3390/toxics12050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is one of the key alternatives to perfluoroalkyl substances (PFASs). Its widespread tendency has increased extensive contamination in the aquatic environment. However, the present treatment technology for OBS exhibited insignificant adsorption capacity and long adsorption time. In this study, three proportions (1:5, 3:5, and 10:1) of chitosan-modified amino-driven graphene oxide (CS-GO) were innovated to strengthen the OBS adsorption capacity, compared with graphene oxide (GO) and graphene (GH). Through the characterization of SEM, BET, and FTIR, it was discovered that CS was synthetized on GO surfaces successfully with a low specific surface area. Subsequently, batch single influence factor studies on OBS removal from simulated wastewater were investigated. The optimum removal efficiency of OBS could be achieved up to 95.4% within 2 h when the adsorbent was selected as CS-GO (10:1), the dosage was 2 mg, and the pH was 3. The addition of inorganic ions could promote the adsorption efficiency of OBS. In addition, CS-GO presented the maximum adsorption energy due to additional functional groups of -NH3, and electrostatic interaction was the foremost motive for improving the adsorption efficiency of OBS. Moreover, OBS exhibited the fastest diffusion coefficient in the CS-GO-OBS solution, which is consistent with the fitting results of adsorption kinetics.
Collapse
Affiliation(s)
- Mengyuan Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Xinning Zheng
- Shenyang Zhenxing Sewage Treatment Co., Ltd., Shenyang 110143, China;
| | - Wenjuan Liu
- Dalian Xigang District Center for Disease Control and Prevention, Dalian 116021, China;
| | - Yang Liu
- Shenyang Hoper Group Co., Ltd., Shenyang 110112, China;
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Ao Feng
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yueyao Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| |
Collapse
|
5
|
Xu T, Liu Y, You TQ, Bao J. Innovation of BiOBr/BiOI@Bi 5O 7I Ternary Heterojunction for Catalytic Degradation of Sodium P-Perfluorous Nonenoxybenzenesulfonate. TOXICS 2024; 12:298. [PMID: 38668521 PMCID: PMC11054398 DOI: 10.3390/toxics12040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
As an alternative for perfluorooctane sulfonic acid (PFOS), sodium p-perfluorononyloxybenzene sulfonate (OBS) has been widely used in petroleum, fire-fighting materials, and other industries. In order to efficiently and economically remove OBS contaminations from water bodies, in this study, a ternary heterojunction was constructed by coupling BiOBr and BiOI@Bi5O7I for improving the redox capacity and carrier separation ability of the material and investigating the effect of the doping ratios of BiOBr and BiOI@ Bi5O7I on the performance of the catalysts. Furthermore, the effects on the degradation of OBS were also explored by adjusting different catalyst doping ratios, OBS concentrations, catalyst amounts, and pH values. It was observed that when the concentration of OBS was 50 mg/L, the amount of catalyst used was 0.5 g/L, and the pH was not changed. The application of BiOBr/BiOI@ Bi5O7I consisting of 25% BiOBr and 75% BiOI@ Bi5O7I showed excellent stability and adsorption degradation performance for OBS, and almost all of the OBS in the aqueous solution could be removed. The removal rate of OBS by BiOBr/BiOI@ Bi5O7I was more than 20% higher than that of OBS by BiOI@Bi5O7I and BiOBr when the OBS concentration was 100 mg/L. In addition, the reaction rate constants of BiOBr/BiOI@ Bi5O7I were 2.4 and 10.8 times higher than those of BiOI@ Bi5O7I and BiOBr, respectively. Therefore, the BiOBr/BiOI@ Bi5O7I ternary heterojunction can be a novel type of heterojunction for the efficient degradation of OBS in water bodies.
Collapse
Affiliation(s)
| | | | | | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
6
|
Qin H, Lang Y, Wang Y, Cui W, Niu Y, Luan H, Li M, Zhang H, Li S, Wang C, Liu W. Adipogenic and osteogenic effects of OBS and synergistic action with PFOS via PPARγ-RXRα heterodimers. ENVIRONMENT INTERNATIONAL 2024; 183:108354. [PMID: 38043320 DOI: 10.1016/j.envint.2023.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel alternative to perfluorooctane sulfonate (PFOS), with environmental health risks largely unknown. The present study aims to unravel the adipogenesis effects and underlying molecular initiating events of OBS, which are crucial for understanding and predicting its adverse outcome. In undifferentiated human mesenchymal stem cells (hMSCs), exposure to 1-100 nM of OBS for 7 days stimulated reactive oxygen species production. In the subsequent multipotent differentiation, hMSCs favored adipogenesis and repressed osteogenesis. The point of departure (PoD) for cellular responses of OBS was 38.85 nM, higher than PFOS (0.39 nM). Notably, OBS/PFOS co-exposure inhibited osteogenesis and synergistically promoted adipogenesis. Consistently, the expression of adipogenic marker genes was up-regulated, while that of osteogenic marker genes was down-regulated. The decreased adiponectin and elevated tumor necrosis factor α (TNFα) secretion were observed in differentiated cells exposed to the mixture of OBS and PFOS. The co-treatment of a peroxisome proliferator-activated receptor γ (PPARγ) antagonist alleviated the adipogenic effects of PFOS and its combination with OBS. Moreover, OBS/PFOS co-exposure induced peroxisome PPARγ activation in reporter gene assays, and increased formation of PPARγ - retinoid X receptor α (RXRα) heterodimers measured by co-immunoprecipitation assays. Molecular docking showed interaction energy of OBS (-20.7 kcal/mol) with intact PPARγ-RXRα complex was lower than that of PFOS (-25.9 kcal/mol). Overall, single OBS exhibited lower potency in inducing adipogenesis but is comparable to PFOS in repressing osteogenesis, whereas OBS/PFOS co-exposure increases interaction with PPARγ-RXRα heterodimers, resulting in the synergistic activation of PPARγ, ultimately enhancing adipogenesis at the expense of osteogenic differentiation. The results indicate the potential health risks of increased obesity and decreased bone density caused by OBS and its co-exposure with PFOS, as well as other perfluorinated alkylated substances mixtures.
Collapse
Affiliation(s)
- Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueming Lang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiteng Wang
- Central Hospital of Dalian University of Technology, Sports Medicine Department, Dalian 116021, China
| | - Wei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Han Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Chenxi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Zhang M, Gu X, Wu L, Wan N, Liu Y, Xin Z, Chen T, Liu S, Li M, Deng M, Wang Q. A new mechanistic insight into the association between environmental perfluorooctane sulfonic acid (PFOS) exposure and attention deficit and hyperactivity disorder (ADHD)-like behavior. Neurotoxicology 2023; 99:254-263. [PMID: 37952603 DOI: 10.1016/j.neuro.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is one of the main residual environmental pollutants that threaten human health. PFOS exposure is positively correlated with the prevalence of attention deficit hyperactivity disorder (ADHD); however, the underlying mechanism is unknown. Given that dopamine (DA) is a crucial target for PFOS and that its dysfunction is a key role in ADHD development, it is speculated that PFOS exposure contributes to the occurrence of ADHD to some extent by disrupting DA homeostasis. To establish the relationship between PFOS exposure, DA dysfunction, and ADHD-like behavior, adult zebrafish were exposed to PFOS for 21 days using PFOS concentrations in the serum of patients with ADHD as the reference exposure dose. Results showed that PFOS caused ADHD-like behaviors, with the presence of the slightly elevated percentage of time spent in movement and prolonged time spent in reaching the target zone in the T-maze. Hyperactivity and cognitive ability impairment were more severe with increasing PFOS concentrations. Further investigation showed that PFOS exposure resulted in a decrease in the DA content, accompanied by a decrease in the number of dopaminergic neurons and a disturbance in the transcription profiles of genes associated with the dopaminergic system. Treatment with Ritalin effectively alleviated PFOS-induced ADHD-like behavior and restored DA levels, number of dopaminergic neurons, and expression of DA metabolism-related genes, suggesting that PFOS exposure induced ADHD-like behavior by triggering DA secretion disorder. This study enriches our understanding of the pathogenic mechanisms underlying ADHD development and emphasizes the importance of focusing on the health risks pertaining to environmental exposure.
Collapse
Affiliation(s)
- Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Zaijun Xin
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
8
|
Wang Q, Liu Y, Zhang M, Liu S, Wan N, Li M, Tu W. Novel PFOS alternative OBS inhibits body growth of developing zebrafish by triggering thyroid function disorder and osteoclast differentiation. CHEMOSPHERE 2023; 341:140068. [PMID: 37672812 DOI: 10.1016/j.chemosphere.2023.140068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/14/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The extensive use of the perfluorooctane sulfonate (PFOS) alternative sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has resulted in its widespread detection in the environment and enrichment in wildlife and humans. However, little is known about its potential toxicity, particularly in terms of body development. In this study, zebrafish embryos were acutely exposed to PFOS and OBS for a comparative developmental toxicity assessment. Both PFOS and OBS led to lower body weight and shorter body length, and the damaging effects of PFOS were more severe than those of OBS at the same exposure concentration. Biochemical assays of THs and transcription profiles correlated to the HPT axis demonstrated that OBS-induced body development inhibition resulted mainly from interference in THs synthesis, transfer, coupling with receptors, and conversion from T4 to T3, which was similar to the case of PFOS, except that the disruptive effects of OBS on thyroid function were more intense. Further transcriptome analysis showed that PFOS and OBS also promoted osteoclast differentiation, aggravating the inhibitory effects on body growth, and that PFOS had more obvious inhibitory effects than OBS. This study systematically explored the inhibitory effects of PFOS and OBS exposure on body development and tightly linked the toxic effects to thyroid function disorder and osteoclast differentiation. Our findings highlight that the health risks associated with OBS, an emerging substitute for PFOS, should not be ignored.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China.
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
9
|
Ulhaq ZS, Tse WKF. Perfluorohexanesulfonic acid (PFHxS) induces oxidative stress and causes developmental toxicities in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131722. [PMID: 37263022 DOI: 10.1016/j.jhazmat.2023.131722] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a short-chain perfluoroalkyl substance widely used to replace the banned perfluorooctanesulfonic acid (PFOS) in different industrial and household products. It has currently been identified in the environment and human bodies; nonetheless, the possible toxicities are not well-known. Zebrafish have been used as a toxicant screening model due to their fast and transparent developmental processes. In this study, zebrafish embryos were exposed to PFHxS for five days, and various experiments were performed to monitor the developmental and cellular processes. Liquid chromatography-mass spectrometry (LC/MS) analysis confirmed that PFHxS was absorbed and accumulated in the zebrafish embryos. We reported that 2.5 µM or higher PFHxS exposure induced phenotypic abnormalities, marked by developmental delay in the mid-hind brain boundary and yolk sac edema. Additionally, larvae exposed to PFHxS displayed facial malformation due to the reduction of neural crest cell expression. RNA sequencing analysis further identified 4643 differentiated expressed transcripts in 5 µM PFHxS-exposed 5-days post fertilization (5-dpf) larvae. Bioinformatics analysis revealed that glucose metabolism, lipid metabolism, as well as oxidative stress were enriched in the PFHxS-exposed larvae. To validate these findings, a series of biological experiments were conducted. PFHxS exposure led to a nearly 4-fold increase in reactive oxygen species, possibly due to hyperglycemia and impaired glutathione balance. The Oil Red O' staining and qPCR analysis strengthens the notions that lipid metabolism was disrupted, leading to lipid accumulation, lipid peroxidation, and malondialdehyde formation. All these alterations ultimately affected cell cycle events, resulting in S and G2/M cell cycle arrest. In conclusion, our study demonstrated that PFHxS could accumulate and induce various developmental toxicities in aquatic life, and such data might assist the government to accelerate the regulatory policy on PFHxS usage.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan.
| |
Collapse
|
10
|
Jiao Z, Yu N, Mao J, Yang Q, Jiao L, Wang X, Shi W, Yu H, Wei S. The occurrence, tissue distribution, and PBT potential of per- and polyfluoroalkyl substances in the freshwater organisms from the Yangtze river via nontarget analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131868. [PMID: 37343408 DOI: 10.1016/j.jhazmat.2023.131868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/01/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Numerous emerging per- and polyfluoroalkyl substances (PFASs) occur in the aquatic environment, posing a threat to aquatic ecosystems and human health. In this study, we conducted a nontarget analysis on 3 surface water samples and 92 tissue samples of 16 fish collected from the Yangtze River to investigate the patterns, tissue distribution, and environmental impacts of emerging PFASs. A total of 43 PFASs from 11 classes were identified, including 17 legacy PFASs and 26 emerging PFASs. Among the 43 PFASs, seven PFASs were reported in biota for the first time while five PFASs were reported in the environment for the first time. Chlorine substituted perfluoroalyl ether sulfonic acids were the major emerging PFASs detected in organisms. Our results showed that most emerging PFASs tended to accumulate in the liver whereas perfluorinated sulfonamides tended to accumulate in the blood, and all of the emerging PFASs accumulated less in the muscle. Methods for evaluating the persistence, bioaccumulation, and toxicity (PBT) of PFASs were developed by combining the in-silico methods and experimental methods. Long-chain PFASs were found to have extremely high PBT scores compared to short-chain PFASs. Additionally, most emerging PFASs exhibited comparable PBT characteristics with legacy PFASs, especially Cl-substituted PFASs.
Collapse
Affiliation(s)
- Zhaoyu Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Jiadi Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Qian Yang
- JiangYin QiuHao Testing Co.,Ltd, Nanjing, People's Republic of China
| | - Liping Jiao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Kalyn M, Lee H, Curry J, Tu W, Ekker M, Mennigen JA. Effects of PFOS, F-53B and OBS on locomotor behaviour, the dopaminergic system and mitochondrial function in developing zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121479. [PMID: 36958660 DOI: 10.1016/j.envpol.2023.121479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) has widely been reported to persist in the environment and to elicit neurotoxicological effects in wildlife and humans. Following the restriction of PFOS use, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) have emerged as novel PFOS alternatives and have been detected in the environment. However, knowledge on the toxicological effects of these alternatives remains scarce. Using developing transgenic Tg(dat:eGFP) zebrafish, we evaluated the consequences of exposure to 0, 0.1 and 1 mg/l PFOS, F-53B and OBS on the dopaminergic system, locomotor behaviour and mitochondrial function. All compounds generally reduced locomotor activity under light conditions irrespective of exposure concentration. Exposure to OBS (at all concentrations), as well as PFOS and F-53B (at 1 mg/l), significantly reduced subpallial dopaminergic neuron abundance. PFOS also significantly reduced dat and pink1 expression irrespective of exposure concentration, while F-53B and OBS tended to reduce mitochondrial pink1 and fis1 expression across concentrations without reaching statistical significance. Mitochondrial function, in the form of reduced oxygen consumption rate and marginally inhibited ATP-linked oxygen consumption rate, was affected only in response to 1 mg/l PFOS. Together, PFOS and the emerging contaminants F-53B and OBS inhibit locomotion at similar concentrations, a finding correlated with decreased dopaminergic neuron numbers in the subpallium and decreased expression of pink1. These findings are relevant to wildlife and human health, as they suggest that PFOS as well as replacement compounds affect locomotion likely in part by negatively impacting the dopamine system.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada.
| | - Jory Curry
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Marc Ekker
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, K1N6N5, Ottawa, ON, Canada
| |
Collapse
|
12
|
Cheng H, Jin H, Lu B, Lv C, Ji Y, Zhang H, Fan R, Zhao N. Emerging poly- and perfluoroalkyl substances in water and sediment from Qiantang River-Hangzhou Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162687. [PMID: 36906013 DOI: 10.1016/j.scitotenv.2023.162687] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Many emerging poly- and perfluoroalkyl substances (PFASs) are being used in China, due to the gradual phase out of legacy PFASs. Occurrence and environmental behaviors of emerging PFASs in Chinese fresh water environment are still not well known. In this study, 31 PFASs, including 14 emerging PFASs, were measured in 29 pairs of water and sediment samples from Qiantang River-Hangzhou Bay, an important drinking water resource for cities in Yangtze River basin. Perfluorooctanoate was consistently the predominant legacy PFAS in water (8.8-130 ng/L) and sediment (3.7-49 ng/g dw). Twelve emerging PFASs were detected in water, with the dominance of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES; mean 11 ng/L, 0.79-57 ng/L) and 6:2 fluorotelomer sulfonate (6:2 FTS; 5.6 ng/L, < LOD-29 ng/L). Eleven emerging PFASs were found in sediment, and were also dominated by 6:2 Cl-PFAES (mean 4.3 ng/g dw, 0.19-16 ng/g dw) and 6:2 FTS (2.6 ng/g dw, < LOD-9.4 ng/g dw). Spatially, sampling sites closed to the surrounding cities had comparatively higher water concentrations of PFASs. Among emerging PFASs, 8:2 Cl-PFAES (3.0 ± 0.34) had the highest mean field-based log-transformed organic‑carbon normalized sediment-water partition coefficient (log Koc), followed by 6:2 Cl-PFAES (2.9 ± 0.35) and hexafluoropropylene oxide trimer acid (2.8 ± 0.32). p-perfluorous nonenoxybenzene sulfonate (2.3 ± 0.60) and 6:2 FTS (1.9 ± 0.54) had relatively lower mean log Koc values. To our knowledge, this is the most comprehensive study investigating the occurrence and partitioning behaviors of emerging PFASs in Qiantang River.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China.
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Bin Lu
- Zhejiang Yilong Environmental Protection Technology Co., Taiyue Digital Port, Xiaoshan District, Hangzhou 311202, PR China
| | - Chenhan Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yinghui Ji
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hui Zhang
- Zhongyuan Energy Company Limited, Beijing 100084, PR China
| | - Rui Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| |
Collapse
|
13
|
Hu J, Lyu Y, Chen H, Cai L, Li J, Cao X, Sun W. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters. WATER RESEARCH 2023; 233:119735. [PMID: 36801580 DOI: 10.1016/j.watres.2023.119735] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Though thousands of per- and polyfluoroalkyl substances (PFAS) have been on the global market, most research focused on only a small fraction, potentially resulting in underestimated environmental risks. Here, we used complementary target, suspect, and nontarget screening for quantifying and identifying the target and nontarget PFAS, respectively, and developed a risk model considering their specific properties to prioritize the PFAS in surface waters. Thirty-three PFAS were identified in surface water in the Chaobai river, Beijing. The suspect and nontarget screening by Orbitrap displayed a sensitivity of > 77%, indicating its good performance in identifying the PFAS in samples. We used triple quadrupole (QqQ) under multiple-reaction monitoring for quantifying PFAS with authentic standards due to its potentially high sensitivity. To quantify the nontarget PFAS without authentic standards, we trained a random forest regression model which presented the differences up to only 2.7 times between measured and predicted response factors (RFs). The maximum/minimum RF in each PFAS class was as high as 1.2-10.0 in Orbitrap and 1.7-22.3 in QqQ. A risk-based prioritization approach was developed to rank the identified PFAS, and four PFAS (i.e., perfluorooctanoic acid, hydrogenated perfluorohexanoic acid, bistriflimide, 6:2 fluorotelomer carboxylic acid) were flagged with high priority (risk index > 0.1) for remediation and management. Our study highlighted the importance of a quantification strategy during environmental scrutiny of PFAS, especially for nontarget PFAS without standards.
Collapse
Affiliation(s)
- Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yitao Lyu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, SC 29634, USA.
| | - Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jie Li
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
14
|
Wang Q, Gu X, Liu Y, Liu S, Lu W, Wu Y, Lu H, Huang J, Tu W. Insights into the circadian rhythm alterations of the novel PFOS substitutes F-53B and OBS on adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130959. [PMID: 36860044 DOI: 10.1016/j.jhazmat.2023.130959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS), 6:2 Cl-PFESA (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are frequently detected in aquatic environments, but little is known about their neurotoxicity, especially in terms of circadian rhythms. In this study, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B and OBS for 21 days taking circadian rhythm-dopamine (DA) regulatory network as an entry point to comparatively investigate their neurotoxicity and underlying mechanisms. The results showed that PFOS may affect the response to heat rather than circadian rhythms by reducing DA secretion due to disruption of calcium signaling pathway transduction caused by midbrain swelling. In contrast, F-53B and OBS altered the circadian rhythms of adult zebrafish, but their mechanisms of action were different. Specifically, F-53B might alter circadian rhythms by interfering with amino acid neurotransmitter metabolism and disrupting blood-brain barrier (BBB) formation, whereas OBS mainly inhibited canonical Wnt signaling transduction by reducing cilia formation in ependymal cells and induced midbrain ventriculomegaly, finally triggering imbalance in DA secretion and circadian rhythm changes. Our study highlights the need to focus on the environmental exposure risks of PFOS alternatives and the sequential and interactive mechanisms of their multiple toxicities.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Huiqiang Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
15
|
Zhang M, Bi X, Liu S, Liu Y, Wang Q. The novel polyfluoroalkyl benzenesulfonate OBS exposure induces cell cycle arrest and senescence of rat pituitary cell GH3 via the p53/p21/RB pathway. Toxicology 2023; 490:153511. [PMID: 37059347 DOI: 10.1016/j.tox.2023.153511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS), an economical alternative to perfluorooctane sulfonate (PFOS) in multiple industrial fields, is widely detected in the environment. The toxicity of OBS has received increasing attention. Pituitary cells are components of the endocrine system and act as vital regulators of homeostatic endocrine balance. However, the effects of OBS on pituitary cells remain unknown. The present study explores the effects of OBS (0.5, 5, and 50μM) on GH3 rat pituitary cells after treatment for 24, 48, and 72h. We found that OBS significantly inhibited cell proliferation in GH3 cells with remarkable senescent phenotypes, including enhanced SA-β-gal activity and expression of senescence-associated secretory phenotype (SASP)-related genes, cell cycle arrest, and upregulation of the senescence-related proteins γ-H2A.X and Bcl-2. OBS caused significant cell cycle arrest of GH3 cells at the G1-phase and concomitantly downregulated the expression of some key proteins for the G1/S transition, including cyclin D1 and cyclin E1. Consistently, the phosphorylation of retinoblastoma (RB), which plays a central role in regulating the cell cycle, was prominently reduced after OBS exposure. Furthermore, OBS notably activated the p53-p21 signalling pathway in GH3 cells, as evidenced by increased p53 and p21 expressions, enhanced p53 phosphorylation, and augmented p53 nuclear import. To our knowledge, this study is the first to reveal that OBS triggers senescence in pituitary cells via the p53-p21-RB signalling pathway. Our study demonstrates a novel toxic effect of OBS in vitro, and provides new perspectives for understanding the potential toxicity of OBS.
Collapse
Affiliation(s)
- Miao Zhang
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China.
| | - Shuai Liu
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
16
|
Research Progress on Up-Conversion Fluorescence Probe for Detection of Perfluorooctanoic Acid in Water Treatment. Polymers (Basel) 2023; 15:polym15030605. [PMID: 36771906 PMCID: PMC9920290 DOI: 10.3390/polym15030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is a new type of organic pollutant in wastewater that is persistent, toxic, and accumulates in living organisms. The development of rapid and sensitive analytical methods to detect PFOA in environmental media is of great importance. Fluorescence detection has the advantages of high efficiency and low cost, in which fluorescent probes have excellent fluorescence properties, excellent bio-solubility, and remarkable photostability. It is necessary to review the fluorescence detection routes for PFOA. In addition, the up-conversion of fluorescent materials (UCNPs), as fluorescent materials to prepare fluorescent probes with, has significant advantages and also attracts the attention of researchers, however, reviews related to their application in detecting PFOA and comparing them with other routes are rare. Furthermore, there are many strategies to improve the performance of up-conversion fluorescent probes including SiO2 modification and amino modification. These strategies can enhance the detection effect of PFOA. Thus, this work reviews the types of fluorescence detection, the design, and synthesis of UCNPs, their recognition mechanism, properties, and their application progress. Moreover, the development trend and prospects of these detection probes are given.
Collapse
|
17
|
Cheng H, Lv C, Li J, Wu D, Zhan X, Song Y, Zhao N, Jin H. Bioaccumulation and biomagnification of emerging poly- and perfluoroalkyl substances in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158117. [PMID: 35985598 DOI: 10.1016/j.scitotenv.2022.158117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence has demonstrated the wide environmental presence of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES) and p-perfluorous nonenoxybenzene sulfonate (PFNOBS). However, data on the bioaccumulation and trophic magnification of these emerging poly- and perfluoroalkyl substances (PFASs) in subtropical marine environment is still limited. In this study, seawater (n = 17), sediment (n = 14), and marine organism (27 species; n = 177) samples were collected from East China Sea, and analyzed them for legacy and emerging PFASs. Besides perfluoroalkyl carboxylates and perfluorooctane sulfonate (PFOS), 6:2 Cl-PFAES was always among the predominant PFASs detected in seawater, sediment, and marine organism. For emerging PFASs, 6:2 Cl-PFAES (mean ± SD, 3.1 ± 0.17), 8:2 Cl-PFAES (3.3 ± 0.35), and PFNOBS (3.3 ± 0.19) had lower bioaccumulation factors (BAF) than PFOS (3.4 ± 0.22) in marine fish. In crab, PFNOBS (3.7 ± 0.33) had a lower biota-sediment accumulation factor (BSAF) than PFOS (3.9 ± 0.45). In snail, among all detected PFASs, PFNOBS (4.0 ± 0.42) had the highest mean log BSAF value. 8:2 Cl-PFAES consistently had a higher log BSAF value than 6:2 Cl-PFAES in snail and crab. Notably, these differences in BAF and BSAF are not significant. Among PFASs, 6:2 Cl-PFAES (2.3; 95 % confidence interval, CI: 1.9-2.6) displayed the highest trophic magnification factor (TMF). PFNOBS had the lowest TMF value (1.8, 95 % CI: 1.4-2.1), but which still indicates its weak biomagnification through the current marine food web. This is the first study reporting the bioaccumulation and biomagnification of PFNOBS in marine organisms, which deepens the understanding of its environmental behavior in the marine ecosystem.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Chenhan Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jianhui Li
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Dexin Wu
- Hangzhou Xinjing Environmental Protection Technology Co., Ltd., Hangzhou, Zhejiang 310012, PR China
| | - Xugang Zhan
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Ying Song
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
18
|
Dong L, Zhang L, Peng Z, Guo J, Zhang X, Zhou L, Zheng L, Liu J, Huang Y. Monitoring and ecological risk assessment of contaminants in freshwater bodies by bioindicators in China: a proposed framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82098-82109. [PMID: 35750902 DOI: 10.1007/s11356-022-21223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Bioindicators can provide pollution information with longer temporal duration and larger spatial scale. It is an ideal strategy for long-term monitoring of bioaccumulative contaminants. Bioindicator monitoring has been widely used; however, there were seldom detailed studies about bioindicator methodology in literature. The present study proposed a bioindicator framework suitable for the local conditions of China, including selection of bioindicator species, evaluation of impact factors, and derivation of threshold values using per- and polyfluoroalkyl substances (PFASs) as an example. The criteria that proper bioindicator species should meet and the procedure how the bioindicator species is selected were proposed, under which crucian carp (Carassius auratus) was selected as the local bioindicator for studied PFASs. Several factors which may affect accumulation of contaminants in bioindicators were suggested to produce reliable and comparable results. Derivation method of bioindicator thresholds for ecological risk assessment of aquatic ecosystems was firstly developed. The long-term and short-term ecological thresholds of perfluorooctanesulfonate using crucian carp as bioindicator are 3.329 and 1.402 μg/g wet weight respectively. Using the long-term thresholds derived from chronic toxicity data and the accumulative concentrations of contaminants obtained by bioindicator results, the bioindicator monitoring can be used for long-term ecological risk surveillance. The threshold derivation method can extend the application of bioindicator monitoring from the occurrence study to ecological risk surveillance, which is especially important for China who has made progresses on regular contaminant control and starts to be concerned about the ecological risks of the emerging contaminants. The framework can be used to create national and regional long-term freshwater bioindicator monitoring programs, with the purposes of ecological risk assessment, occurrence and temporal trend study, pollution source identification, international convention fulfillment, retrospective study, etc. The bioindicator framework will benefit the aquatic environmental safety and the hazardous chemical management in China.
Collapse
Affiliation(s)
- Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China
| | - Lifei Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China
| | - Zheng Peng
- Foreign Economic Cooperation Office, Ministry of Ecology and Environment, Beijing, 100035, People's Republic of China
| | - Jing Guo
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China
| | - Xiulan Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China
| | - Li Zhou
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China
| | - Lei Zheng
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China
| | - Jinlin Liu
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China.
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China.
| | - Yeru Huang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, People's Republic of China
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China
| |
Collapse
|
19
|
Huang J, Liu Y, Wang Q, Yi J, Lai H, Sun L, Mennigen JA, Tu W. Concentration-dependent toxicokinetics of novel PFOS alternatives and their chronic combined toxicity in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156388. [PMID: 35654180 DOI: 10.1016/j.scitotenv.2022.156388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The increasing use of perfluorooctanesulfonate (PFOS) alternatives has led to their release into the aquatic environment. This study sought to determine the effects of exposure concentration on the toxicokinetics of PFOS and its alternatives, including perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzenesulfonate (OBS) in adult zebrafish by exposure to mixtures of the five per- and polyfluoroalkyl substances (PFAS) at 1, 10, and 100 ng/mL for 28-day, followed by a 14-day depuration. PFAS predominantly accumulated in the blood and liver, and the bioconcentration factor (BCF) decreased in the order of F-53B > PFOS > OBS ≫ PFHxS > PFBS in whole-fish homogenates. The uptake rate constants and BCF of the short-chain PFAS (≤C6) positively correlated with increasing exposure concentration, while the long-chain PFAS (≥C8) exhibited a pattern of first increasing and then decreasing. A consistent increase in the elimination rate constants of short- and long-chain PFAS was observed with increasing exposure concentration. All PFAS form tight conformations with ZSA and ZL-FABP via hydrogen bonding as revealed by molecular docking analysis. Furthermore, chronic combined exposure to PFAS induced the occurrence of vacuolation and oxidative stress in the zebrafish liver. Our findings uniquely inform the concentration-dependent bioconcentration potential and health risks to aquatic organisms of these PFOS alternatives in the environment.
Collapse
Affiliation(s)
- Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jianfeng Yi
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | | | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
20
|
Zhang Y, Liu X, Yu L, Hua Z, Zhao L, Xue H, Tong X. Perfluoroalkyl acids in representative edible aquatic species from the lower Yangtze River: Occurrence, distribution, sources, and health risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115390. [PMID: 35661881 DOI: 10.1016/j.jenvman.2022.115390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl acid (PFAA) exposure poses a potential hazard to wildlife and humans. Food consumption is one of the main routes of PFAA exposure for the general population, with aquatic organisms being the major contributors. To evaluate the risk of coastal residents' intake of wild aquatic organisms, 14 PFAAs were detected in crucian carp and oriental river prawn from 18 sampling sites from the lower reaches of Yangtze River. The total PFAA (∑PFAA) concentrations ranged from 5.9 to 51.3 ng/g wet weight (ww) in the muscle of crucian carp and river prawn, suggesting the potential risk to human and wildlife. Perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and long-chain PFAAs (C ≥ 10) were the main pollutants in the tissues of crucian carp and river prawn, which are known for their higher bioaccumulation capacity. The ∑PFAA concentration in all the samples showed an increasing trend from upstream to downstream and was higher in the south bank, owing to population density, prevailing winds, background pollution and industrial emission. Principal component analysis-multiple linear regression and Pearson correlation analysis showed that WWTP effluent, industrial pollution and surface runoff ware the main sources of PFAAs in the aquatic organisms and industrial pollution highest contributor, suggesting better regulation is needed to manage them. The assessment of risk to human health and wild life suggested a low risk for most residents of cities along the Yangtze River except for resident of Nantong, where frequent consumption of wild aquatic organisms may cause potential risk to human health, especially for traditional eaters and middle-aged people.
Collapse
Affiliation(s)
- Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Li Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xuneng Tong
- Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
21
|
Wang Q, Huang J, Liu S, Wang C, Jin Y, Lai H, Tu W. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. ENVIRONMENT INTERNATIONAL 2022; 166:107351. [PMID: 35738203 DOI: 10.1016/j.envint.2022.107351] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been reported to induce hepatotoxicity in wildlife and humans. Novel PFOS alternatives have been widely used following restrictions on PFOS, but little is known about their potential toxicity. Here, the first comprehensive investigation on the chronic hepatotoxicity and underlying molecular mechanisms of PFOS, 6:2Cl-PFESA (F-53B), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) was carried out on adult zebrafish through a histopathological examination, biochemical measurement, and multi-omics analysis. PFOS and its alternatives caused changes in liver histopathology and liver function indices in the order of F-53B > PFOS > OBS, which was consistent with their concentration in the liver. In silico modeling and transcriptional profiles suggested that the aberrant hepatic lipid metabolism induced by F-53B and PFOS was initiated by the action on peroxisome proliferator-activated receptor γ (PPARγ), which triggered changes in downstream genes transcription and led to an imbalance between lipid synthesis and expenditure. Gut microbiome analysis provided another novel mechanistic perspective that changes in the abundance of Legionella, Ralstonia, Brevundimonas, Alphaproteobacteria, Plesiomonas, and Hyphomicrobium might link to alterations in the PPAR pathway based on their significant correlation. This study provides insight into the molecular mechanisms of hepatotoxicity induced by PFOS and its novel alternatives and highlights the need for concern about their environmental exposure risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
22
|
Zhou L, He S, Shi Y, Cai Y, Zhang C. Tissue distribution of sodium p-perfluorous nonenoxybenzene sulfonate (OBS) in mice via oral exposure. ENVIRONMENT INTERNATIONAL 2022; 165:107289. [PMID: 35588675 DOI: 10.1016/j.envint.2022.107289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Environmental risks caused by emerging per- and polyfluoroalkyl substances (PFASs) have attracted increasing attention. As an important substitute for perfluorooctane sulfonate (PFOS), sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is widely used as a firefighting foam additive and oil recovery agent in China. This study reported the tissue distribution of OBS in KM mice that were administered a dose of OBS at 10 µg/day via daily oral gavage for 7, 14, or 28 days. During exposure, gender-based differences were observed in body weight changes and tissue distribution of OBS. Liver exhibited the highest concentrations (males: 12.57 ± 1.80 µg/g; females: 11.80 ± 5.32 µg/g) and tissue/blood ratios and contributed more than 50% to the whole-body burden of OBS in both male and female mice, showing its ability to enrich PFASs. Furthermore, there were certain differences in the distribution characteristics of the three OBS isomers. Based on its bioaccumulation potential and widespread use, further studies are required on the human exposure risks of OBS.
Collapse
Affiliation(s)
- Longfei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sisi He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Li M, Lv M, Liu T, Du G, Wang Q. Lipid Metabolic Disorder Induced by Pyrethroids in Nonalcoholic Fatty Liver Disease of Xenopus laevis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8463-8474. [PMID: 35545903 DOI: 10.1021/acs.est.2c00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrethroids, an effective and widely used class of pesticides, have attracted considerable concerns considering their frequent detection in environmental matrices. However, their potential health risks to amphibians remain unclear. In our study, female Xenopus laevis were exposed to 0, 0.06, and 0.3 μg/L typical pyrethroid, cis-bifenthrin (cis-BF), for 3 months. Elevated activities of both aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were observed, indicating an ongoing liver injury. Furthermore, exposure to cis-BF led to hyperlipidemia and lipid accumulation in the liver of Xenopus. The targeted lipidomic analysis further revealed that treatment with cis-BF perturbed liver steroid homeostasis, as evidenced by the enriched lipids in the steroid biosynthesis pathway. Consistent with the targeted lipidomic result, treatment with cis-BF changed the liver transcriptome profile with induction of 808 and 1230 differentially expressed genes. Kyoto Encyclopedia of Genes and Genomes analysis underlined the adverse effects of cis-BF exposure on steroid biosynthesis, primary bile acid biosynthesis, and the PPAR signaling pathway in the Xenopus liver. Taken together, our study revealed that exposure to cis-BF at environmentally relevant concentrations resulted in lipid metabolic disorder associated with nonalcoholic fatty liver disease of X. laevis, and our results provided new insight into the potential long-term hazards of pyrethroids.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meile Lv
- Lishui Ecological and Environmental Monitoring Center, Lishui 323000, China
| | - Tingting Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Gaoyi Du
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Hou M, Jin Q, Na G, Cai Y, Shi Y. Emissions, Isomer-Specific Environmental Behavior, and Transformation of OBS from One Major Fluorochemical Manufacturing Facility in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8103-8113. [PMID: 35686732 DOI: 10.1021/acs.est.2c01287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS), a novel alternative to perfluorooctane sulfonic acid (PFOS), has been widely used in various fields in China and has certain toxic effects similar to PFOS. This study monitored OBS and 15 legacy PFASs in surface water, sediment, soil, and crucian carp near a fluorochemical manufacturing factory (FMF) in Suqian, China, focusing on the emission, isomer-specific environmental fate, and transformation of OBS. One to four orders of magnitude higher concentrations of OBS than other polyfluoroalkyl substances (PFASs) in all samples indicate that industrial emission is an important point source of OBS in the surrounding environment. The concentrations of OBS in surface water, sediment, and soil decreased exponentially as the distance from the FMF increases. The proportions of OBS-c, the dominant isomer, increased in the order: water (75.5 ± 6.4%), sediment (85.7 ± 10%), fish (muscle: 94.1 ± 0.99%; blood: 93.5 ± 1.4%), suggesting its preferential accumulation in sediment and fish than other isomers. Mono-hydroxylated transformation products of OBS were first identified in water, sediment, and fish, suggesting its hydroxylation may exist in the real environment. The transformation of OBS may explain its significantly lower bioaccumulation than PFOS in fish. However, considering the higher BAF of OBS than the regulatory bioaccumulation criterion and the possible stronger toxicity of its transformation products, further studies on its bioaccumulation and transformation are warranted.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangshui Na
- Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
25
|
Wu L, Dang Y, Liang LX, Gong YC, Zeeshan M, Qian Z, Geiger SD, Vaughn MG, Zhou Y, Li QQ, Chu C, Tan YW, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae. CHEMOSPHERE 2022; 297:134234. [PMID: 35259355 DOI: 10.1016/j.chemosphere.2022.134234] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
It has been reported that exposure to perfluorooctane sulfonates (PFOS) causes behavioral abnormalities in zebrafish larvae, but the possible mechanisms underlying these changes remain unexplored. In this study, zebrafish embryos (2 h postfertilization, 2-hpf) were exposed to PFOS at different concentrations (0, 0.032, 0.32 and 3.2 mg/L) for 120 h. Developmental endpoints and the locomotion behavior of larvae were evaluated. Reactive oxygen species (ROS) levels, dopamine contents, several genes and proteins related to neurodevelopment and dopamine signaling were examined. Our results indicate that increased ROS levels in the zebrafish larvae heads may be causally associated with neurodevelopment damage. Meanwhile, brain-derived neurotrophic factor (BDNF) and alpha1-Tubulin (α1-Tubulin) protein contents were significantly increased, which may be a compensatory mechanism for the impaired central nervous system. PFOS-induced locomotor hyperactivity was observed in the first light phase and dark phase at the 0.32 and 3.2 mg/L of PFOS. Upregulation of dopamine-related genes tyrosine hydroxylase (th) and dopamine transporter (dat) associated with increased dopamine contents in the 3.2 mg/L of PFOS. In addition, protein expression of TH and DAT were noted at the 0.32 and 3.2 mg/L of PFOS concentrations. Our results suggested that PFOS induces neurobehavioral changes in zebrafish larvae, possibly by perturbing a dopamine signaling pathway. In addition, PFOS induced development damage, such as increased malformation rate and shorter body length.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
26
|
Liu L, Deng S, Bao Y, Huang J, Yu G. Degradation of OBS (Sodium p-Perfluorous Nonenoxybenzenesulfonate) as a Novel Per- and Polyfluoroalkyl Substance by UV/Persulfate and UV/Sulfite: Fluorinated Intermediates and Treatability in Fluoroprotein Foam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6201-6211. [PMID: 35107260 DOI: 10.1021/acs.est.1c03210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel fluorosurfactant used as the alternative to perfluorooctanesulfonic acid (PFOS) in several applications such as fire-fighting foams and chemical enhanced oil recovery ("EOR") in China, with the annual production capacity of about 3,500 t. Here, for the first time, we investigated the degradability of OBS under the conditions of UV/persulfate (UV/PS) and UV/sulfite (UV/SF) as typical redox processes. A higher reaction rate (1.05 min-1) and total organic carbon (TOC) reduction (46.9%) but a low defluorination rate (27.6%) along with the formation of a series of fluorinated intermediates were found in UV/PS, while a high defluorination rate (87.7%) was realized in UV/SF. In particular, a nontargeted workflow using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) was established to detect fluorinated intermediates. Combined with the theoretical calculation, the distinctive degradation pathways in both oxidation and reduction processes were proposed. The degradation mechanism of OBS in UV/SF was proposed to be H/F exchange and subsequent HF elimination. Furthermore, the diluted OBS-based fluoroprotein (FP) foam was used to investigate the degradation of OBS, which confirms the treatability using the redox approach. This work provides insights into the degradability of OBS, fluorinated intermediate search, and proper treatment of related contamination.
Collapse
Affiliation(s)
- Liquan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Shanshan Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yixiang Bao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Tang A, Zhang X, Li R, Tu W, Guo H, Zhang Y, Li Z, Liu Y, Mai B. Spatiotemporal distribution, partitioning behavior and flux of per- and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China. CHEMOSPHERE 2022; 295:133855. [PMID: 35124087 DOI: 10.1016/j.chemosphere.2022.133855] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Thirty-five legacy and emerging per- and polyfluoroalkyl substances (PFAS) were analyzed in surface water and sediments collected from Poyang Lake, the largest freshwater lake in China. The ƩPFAS concentrations ranged from 23 to 1000 ng/L in water dissolved phase, 1.3-9.8 ng/L in suspended particulate matters, and 0.26-2.9 ng/g dry weight in sediments. Short-chain and emerging PFAS were predominant in surface water and sediments, rather than legacy perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Hexafluoropropylene oxide dimer/trimer acid (HFPO-DA/TA), 6:2 and 8:2 chlorinated polyfluorinated ether sulfonic acids (6:2 and 8:2 Cl-PFESAs), 6:2 fluorotelomer sulfonate (6:2 FTS), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) were detected in all samples, indicating that these emerging PFAS have been widely produced and used in this region. The high concentrations of HFPO-DA/TA, 6:2 FTS, 6:2, 8:2 Cl-PFESAs, and OBS in sediments and their higher water-sediment distribution coefficients than those of predecessors (PFOA or PFOS) suggest that lake sediments could be an important long-term sink for these emerging alternatives. The positive matrix factorization model demonstrated that food packaging and textile treatments (50%) and fluoropolymer manufacturing (26% for alternative sources and 8.2% for legacy sources) were the two major sources of PFAS in Poyang Lake. The influx and outflux of total PFAS in Poyang Lake were 9.0 and 12.8 ton/year, respectively, and the OBS flux was estimated for the first time. The results provide insights into the environmental behavior and fate of emerging PFAS in freshwater ecosystems.
Collapse
Affiliation(s)
- Aiping Tang
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xinghui Zhang
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Rongfu Li
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Wenqing Tu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Huiqin Guo
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yanping Zhang
- Jiangxi Provincial Fisheries Research Institute, Nanchang, 330096, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
28
|
Pulster EL, Wichterman AE, Snyder SM, Fogelson S, Da Silva BF, Costa KA, Aufmuth J, Deak KL, Murawski SA, Bowden JA. Detection of long chain per- and polyfluoroalkyl substances (PFAS) in the benthic Golden tilefish (Lopholatilus chamaeleonticeps) and their association with microscopic hepatic changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151143. [PMID: 34695459 DOI: 10.1016/j.scitotenv.2021.151143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Oceans are major sinks for anthropogenic pollutants, including per- and polyfluoroalkyl substances (PFAS). Although PFAS have been detected in surface waters globally, this is the first report of PFAS in a deep (170-400 m) demersal species in the Gulf of Mexico (GoM). Golden Tilefish (Lopholatilus chamaeleonticeps) plasma extracts (n = 185) were investigated for the presence of PFAS using ultra-high performance liquid chromatography-tandem mass spectrometry. A subset of liver tissues (n = 51) were also analyzed for microscopic hepatic changes (MHCs). Overall, nine of the 110 PFAS targeted were detected in Tilefish plasma at relatively high frequencies. Plasma concentrations of total PFAS (Σ9PFAS) ranged from below the detection limit to 27.9 ng g-1 w.w. Significant regional differences were observed with the highest concentrations of PFAS detected in the north central region of the GoM, where substantial industrialization and discharges from the Mississippi River occur. Compared to most wildlife and matrices analyzed globally, the PFAS profiles in Tilefish were unique as they are dominated by PFUnDA. Profile differences are hypothesized to be the result of Tilefish's distinctive lifestyle, habitat, diet, and partitioning characteristics of long-chain PFAS. Several MHCs were identified in this subset of Tilefish that could be detrimental to their health. Significant correlations between PFAS concentrations and biometric indices and MHCs were evident, however, additional research is needed to investigate the role PFAS and PFAS combined with chemical admixtures may play in inducing observed hepatic changes and other physiological effects in Tilefish. These findings give insight into the fate of PFAS at depth in aquatic ecosystems and are cause for concern regarding the health of other deep water benthic biota in GoM and other deepwater sinks for PFAS.
Collapse
Affiliation(s)
- Erin L Pulster
- College of Marine Science, University of South Florida, 140 7th Ave S, St. Petersburg 33701, FL, USA.
| | - Amanda E Wichterman
- School of Forest, Fisheries, & Geomatic Sciences, University of Florida, 136 Newins-Ziegler Hall, PO Box 110410, Gainesville, FL 32611, USA.
| | - Susan M Snyder
- College of Marine Science, University of South Florida, 140 7th Ave S, St. Petersburg 33701, FL, USA.
| | | | - Bianca F Da Silva
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| | - Kaylie A Costa
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| | - Joe Aufmuth
- George A. Smathers Libraries, University of Florida, 1545 W University Ave, Gainesville, FL 32603, USA.
| | - Kristina L Deak
- College of Marine Science, University of South Florida, 140 7th Ave S, St. Petersburg 33701, FL, USA.
| | - Steven A Murawski
- College of Marine Science, University of South Florida, 140 7th Ave S, St. Petersburg 33701, FL, USA.
| | - John A Bowden
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| |
Collapse
|
29
|
Cao H, Peng J, Zhou Z, Sun Y, Wang Y, Liang Y. Insight into the defluorination ability of per- and polyfluoroalkyl substances based on machine learning and quantum chemical computations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151018. [PMID: 34662613 DOI: 10.1016/j.scitotenv.2021.151018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
UV-generated hydrated electrons play a critical role in the defluorination reaction of poly- and perfluoroalkyl substances (PFAS). However, limited experimental data hinder insight into the effects of the structural characteristics of emerging PFAS on their defluorination abilities. Therefore, in this study, we adopted quantity structure-activity relationship models based on machine learning algorithms to develop the predictive models of the relative defluorination ability of PFAS. Five-fold cross-validations were used to perform the hyperparameter tuning of the models, which suggested that the gradient boosting algorithms with PaDEL descriptors as the best model possessed superior predictive performance (R2test = 0.944 and RMSEtest = 0.114). The importance of the descriptor indicated that the electrostatic properties and topological structure of the compounds significantly affected the defluorination ability of the PFAS. For the emerging PFAS the best model showed that most compounds, such as potential alternatives of perfluorooctane sulfonic acid, were recalcitrant to reductive defluorination, whereas perfluoroalkyl ether carboxylic acids had relatively stronger defluorination abilities than perfluorooctanoic acid. The theoretical calculations implied that additional electrons on PFAS could cause molecular deconstruction, such as changes in the dihedral angle involved in the carbon chain, as well as C-F bond and ether C-O bond cleavages. In general, the current computational models could be useful for screening emerging PFAS to assess their defluorination ability for the molecular design of fluorochemical structures.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianhua Peng
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
30
|
Liu H, Hu W, Li X, Hu F, Liu Y, Xie T, Liu B, Xi Y, Su Z, Zhang C. Effects of perfluoroalkyl substances on root and rhizosphere bacteria: Phytotoxicity, phyto-microbial remediation, risk assessment. CHEMOSPHERE 2022; 289:133137. [PMID: 34864015 DOI: 10.1016/j.chemosphere.2021.133137] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) is easily sink into soil, affecting plants growth and microenvironment. However, the impacts of PFAS-related risk assessment on root and rhizosphere microbiomes are still poorly understood. OBJECTIVE Researched on Arabidopsis thaliana and Nicotiana benthamiana growing in contaminated with perfluorooctanoic acid (PFOA), hexafluoropropylene oxide-dimer acid (HFPO-DA) and their mixtures. RESULTS (i) Bioaccumulation of PFAS in roots was positively correlated with carbon chain length, contamination levels and exposure time, the phytotoxicity was as follows: HFPO-DA < (PFOA + HFPO-DA) < PFOA; (ii) Both short-term and long-term accumulation of PFAS would affect the changes in root antioxidant system and physiological metabolism; (iii) Single or mixed contamination of PFAS had unique influences on rhizosphere microbial diversity, community composition and interspecies interaction, and mixture was more complex. More importantly, the performance of Sphingomonadaceae and Rhizobiaceae microbial communities could contribute to the practice of phyto-microbial soil remediation. FUTURE DIRECTION Pay more attention on novel pollution pathway in cultivation, exposure levels for different plants (especially crops), as well as more exact and scientific risk assessments. Establish a new PFAS grouping strategy and ecotoxicity life cycle assessment framework.
Collapse
Affiliation(s)
- Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenli Hu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Fangwen Hu
- Zhangjiajie College, Jishou University, Zhangjiajie, 427000, China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Bo Liu
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yanni Xi
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
31
|
Wang C, Lu Y, Sun B, Zhang M, Mao R, Li X, Song S, Zhao J, Yu M, Shi Y, Wang P. Biomanipulation impacts on per-and polyfluoroalkyl substances accumulation and trophic transfer in an eutrophic lake. ENVIRONMENT INTERNATIONAL 2022; 160:107057. [PMID: 34953284 DOI: 10.1016/j.envint.2021.107057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Manipulation of freshwater food web through species introduction has been used to control the increasing algae in the Wuliangsuhai Lake, which affects not only the pathways of carbon source and energy transfer, but also the transfer of contaminants through food web. Food web relationships between biomanipulation area (BMA) and non-biological manipulation area (NBMA) were investigated using stable carbon (δ13C) and nitrogen (δ15N) isotope analysis. In BMA, the δ13C values in fish species were enriched while δ15N depleted due to the increased inter-species competition. Among the same fish species between BMA and NBMA, lower trophic levels were observed in BMA. Concentrations of target PFASs (ΣPFAS) in fish from BMA were significantly (p < 0.05) lower than those from NBMA. Whilst elevated trophic magnification factors (TMFs) of PFASs, especially for perfluoroalkyl carboxylic acids (PFCAs) with long carbon chain length (C9-10), perfluorooctane sulfonate (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) were exhibited in BMA. We found that biomanipulation through species introduction played an important role in control over lake eutrophication and trophic transfer patterns of PFASs in biota from the altered aquatic ecosystem.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoyu Mao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jixin Zhao
- Bayannur Institute of Environmental Science, Bayannur 015000, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Zhang M, Wang P, Lu Y, Shi Y, Wang C, Sun B, Li X, Song S, Yu M, Zhao J, Du D, Qin W, Wang T, Han G, Liu Z, Baninla Y, Zhang A. Transport and environmental risks of perfluoroalkyl acids in a large irrigation and drainage system for agricultural production. ENVIRONMENT INTERNATIONAL 2021; 157:106856. [PMID: 34520981 DOI: 10.1016/j.envint.2021.106856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/08/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The quality of irrigation water and drainage water is essential for local ecosystem and human health in agricultural regions. In this study, the transport analysis, source identification, and environmental risk assessment of perfluoroalkyl acids (PFAAs) were conducted in the largest irrigation area in northern China. The concentrations of the total PFAAs (ΣPFAA) ranged from 41.5 to 263 ng/L in surface water, and the short-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluorooctanoic acid (PFOA), were dominant with a total contribution of 94%. Generally, the ΣPFAA levels increased from irrigation waters to drainage and receiving lake waters. PFOA showed the highest increase, with potential emission sources located in the catchment of the sub main drainage ditch D5. More PFOA (36.8 kg/y) was outflowed from Ulansuhai Lake to the Yellow River than that inflowed from the Yellow River to the irrigation district (6.15 kg/y). The results of a risk assessment indicated that avian wildlife living in Ulansuhai Lake were threatened by the PFOA and perfluorobutane sulfonate (PFBS) pollution. The estimated daily intakes (EDIs) of the sum of the PFOA, perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) through aquatic food consumption for people with the different aquatic food preferences accounted for 6-42% (urban) and 4-27% (rural) of the strictest tolerant daily intake (TDI) value. The results of this study highlight the impact of local emissions of PFAS on massive irrigation and drainage systems, and ultimately, the ecosystem and human health.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China.
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jixin Zhao
- Bayannur Institute of Environmental Science, Bayannur 015000, China
| | - Di Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyou Qin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoxiang Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yvette Baninla
- Department of Geology, Mining and Environmental Science, University of Bamenda, P. O Box 39, Bambili, Cameroon
| | - Anqi Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Hu H, Zhang Y, Zhao N, Xie J, Zhou Y, Zhao M, Jin H. Legacy and emerging poly- and perfluorochemicals in seawater and sediment from East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149052. [PMID: 34311366 DOI: 10.1016/j.scitotenv.2021.149052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Following the global phase out of perfluorooctane sulfate (PFOS), chlorinated polyfluoroalkyl ether sulfonates (Cl-PFAESs) and p-perfluorous nonenoxybenzenesulfonate (PFNOBS) have emerged as novel PFOS substitutes. However, until now, limited data is available on their occurrence and environmental behaviors in the marine environment. Here, seawater and sediment samples were collected from East China Sea and analyzed for Cl-PFAESs, PFNOBS, and perfluoroalkyl acids (PFAAs; including their branched isomers) to investigate their concentrations, potential sources, and sediment-seawater partitioning behaviors. Perfluorooctanoate (PFOA) and PFOS were consistently the predominant PFAAs in seawaters and sediments. Branched PFOA and PFOS isomers were consistently much less frequently detected in sediments than that in seawaters. Linear PFOA contributed 92-95% of total PFOA in seawaters, suggesting the great contribution of telomerization PFOA. 6:2 Cl-PFAES was detected in all seawaters (concentration, 0.58-47 pg/L) and in the majority of sediments (<LOD-28 pg/g). PFNOBS was observed in 46% of seawater samples (concentration, <LOD-5.2 pg/L) and 66% of sediment samples (<LOD-1.7 pg/g). Spatial distribution trend suggested the riverine input as an important source of PFAAs and 6:2 Cl-PFAES in this sampling area. 6:2 Cl-PFAES (log Koc, 2.6 ± 0.36) and PFNOBS (2.7 ± 0.33) had comparable mean log-transformed sediment-seawater partitioning coefficients (log Koc) to PFOA (2.5 ± 0.32) or PFOS (2.8 ± 0.49), indicating their long-range transport potential in global oceans with ocean currents. Overall, this study provides the first data on occurrence and partitioning behaviors of 6:2 Cl-PFAES and PFNOBS in the marine environment.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316021, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiahui Xie
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yanqiu Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
34
|
Lv G, Sun X. The molecular-level understanding of the uptake of PFOS and its alternatives (6:2 Cl-PFESA and OBS) into phospholipid bilayers. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125991. [PMID: 33975169 DOI: 10.1016/j.jhazmat.2021.125991] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Bioaccumulation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) is an important indicator of their hazard. Partitioning to membrane phospholipids is one of the pathways for their bioaccumulation. However, the molecular mechanism on PFASs uptake into membrane phospholipids is not yet to be fully understood. In this work, we used molecular dynamics (MD) simulations to study the uptake processes of PFOS and its alternatives (6:2 Cl-PFESA and OBS) into DPPC bilayers, and to evaluate their interaction with DPPC bilayers and their effect on properties of DPPC bilayers. The result of free energy changes shows that a barrier of 2-3 kcal mol-1 exists when these adsorbed PFASs on the surface are absorbed into DPPC bilayers. After incorporating into DPPC bilayers, three DPPC molecules interact with and thus stabilize a PFOS (or 6:2 Cl-PFESA or OBS) molecule. And another role of the three DPPC molecules is to shield these PFASs from exposure to water environment. These PFASs have the similar condensing effect on the model membrane. The molecular-level study is beneficial for understanding the bioaccumulation and toxicity of PFOS and its alternatives.
Collapse
Affiliation(s)
- Guochun Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
35
|
A novel analytical strategy for the determination of perfluoroalkyl acids in various food matrices using a home-made functionalized fluorine interaction SPME in combination with LC-MS/MS. Food Chem 2021; 366:130572. [PMID: 34284190 DOI: 10.1016/j.foodchem.2021.130572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
In this study, a fluorine-fluorine interaction approach through fluoridating boron nitride nanosheets (BNNs) for sensing perfluoroalkyl acids (PFAAs) in multiple food matrices was developed. Through a facile hydrothermal fluorination modification, the BNNs were transferred into homogeneous fluorinated boron nitride nanoparticles (F-BNNs) with robust networks and specific surface area. After morphological modification, the particles displayed strong adsorption and sensing capabilities on PFAAs in both solid and liquid food matrix. Under the evaluation of mass spectrometry, F-BNNs based microextraction approach exhibited low method detection limits (MDLs) in the ranges of 0.9-3.9 pg mL-1 and 3.6-15.8 pg g-1 for milk and meat matrices, respectively, with satisfactory repeatability (RSD% <13.5%) and recoveries (77.7-110.5%). This work not only depicted a facile approach for preparing F-BNNs based SPME fiber, but also provided a routine analysis protocol for monitoring PFAAs in food systems.
Collapse
|
36
|
Tian L, Guo H, Li J, Yan L, Zhu E, Liu X, Li K. Fabrication of a near-infrared excitation surface molecular imprinting ratiometric fluorescent probe for sensitive and rapid detecting perfluorooctane sulfonate in complex matrix. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125353. [PMID: 33609881 DOI: 10.1016/j.jhazmat.2021.125353] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 05/29/2023]
Abstract
Construction of fluorescent probe for highly sensitive and selective detection of perfluorooctane sulfonate (PFOS) in water and biological samples is a very important strategy in related pollutant monitoring and environmental health risk appraisal. To overcome the drawback of low sensitivity caused by high-back ground signal of the conventional sensor, a molecularly imprinted near-infrared excitation ratiometric fluorescent probe was constructed and employed to determine PFOS. The sensing process was achieved through the selectively recognition of specific cavities in the probe surface with analyte, accompanied by fluorescence quenching due to the photoinduced electron transfer effect between upconversion materials and PFOS. Under optimized experimental conditions, the fluorescence quenching efficiency of the probe has good linearity against the concentrations of PFOS response divided into two segments within linear ranges of 0.001-0.1 nmol/L and 0.1-1 nmol/L, respectively, with low detection limit of 1 pmol/L. Selective experiment results indicate that the C-F chain length plays a dominant role in molecular recognition and high sensitively detection. The fabricated probe shows well detection performance in a wide pH range. Furthermore, real samples analyses indicate that such an efficient fluorescent probe has potentials in PFOS determination in surface water, human serum and egg extract sample analyses.
Collapse
Affiliation(s)
- Lingxi Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China.
| | - Jing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Liushui Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China.
| | - Enze Zhu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Xiaoming Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| | - Kexin Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang HangKong University, Nanchang 330063, China
| |
Collapse
|
37
|
Meng Y, Yao Y, Chen H, Li Q, Sun H. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Dagang Oilfield: Multimedia distribution and contributions of unknown precursors. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125177. [PMID: 33951857 DOI: 10.1016/j.jhazmat.2021.125177] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
A systematic survey was conducted on twenty-six per- and polyfluoroalkyl substances (PFASs) in fifty-one paired samples of surface water, sediment, and soil from Dagang Oilfield, Tianjin, China. Perfluorooctanoic acid, perfluorooctane sulfonic acid, p-perfluorous nonenoxybenzenesulfonate (OBS), and 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) were ubiquitous in the oilfield with field log Kd of 1.3-2.2, indicating a high partition potential from surface water to sediment. Total petroleum hydrocarbons (TPH) are a predictor for PFAS contamination at oilfield. The concentrations of OBS and 6:2 FTAB were higher in surface water and sediment with elevated TPH level. With total oxidizable precursor assay, unknown precursors for C2-C3 perfluoroalkyl carboxylic acids (PFCAs) (57-99 mol%) contributed more than those for C4-C12 PFCAs in the three mediums. The unknown C4-, C6-, and C8-based precursors tended to be precursors for perfluoroalkyl sulfonates at the oilfield, and C8 fluorotelomer-based precursors particularly occurred in the surface water. The concentrations of C4- and C8-based precursors were found positively correlated with TPH levels (r = 0.67-0.72, p < 0.05), while C6 precursors may also come from other sources. Further studies are necessary to clarify the mass balance and risk assessment for unknown PFASs.
Collapse
Affiliation(s)
- Yue Meng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
38
|
Savoca D, Pace A. Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms. Int J Mol Sci 2021; 22:6276. [PMID: 34207956 PMCID: PMC8230574 DOI: 10.3390/ijms22126276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023] Open
Abstract
This review is a survey of recent advances in studies concerning the impact of poly- and perfluorinated organic compounds in aquatic organisms. After a brief introduction on poly- and perfluorinated compounds (PFCs) features, an overview of recent monitoring studies is reported illustrating ranges of recorded concentrations in water, sediments, and species. Besides presenting general concepts defining bioaccumulative potential and its indicators, the biodistribution of PFCs is described taking in consideration different tissues/organs of the investigated species as well as differences between studies in the wild or under controlled laboratory conditions. The potential use of species as bioindicators for biomonitoring studies are discussed and data are summarized in a table reporting the number of monitored PFCs and their total concentration as a function of investigated species. Moreover, biomolecular effects on taxonomically different species are illustrated. In the final paragraph, main findings have been summarized and possible solutions to environmental threats posed by PFCs in the aquatic environment are discussed.
Collapse
Affiliation(s)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, 90100 Palermo, Italy;
| |
Collapse
|
39
|
Sun X, Wang R, Li L, Wang X, Ji W. Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chem 2021; 362:130214. [PMID: 34082293 DOI: 10.1016/j.foodchem.2021.130214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023]
Abstract
The ionic covalent organic framework (TPB-BFBIm-iCOF) was facilely synthetized by the size-controllable confinement method and chosen as the online solid phase extraction (SPE) adsorbent. This adsorbent showed fast adsorption equilibrium (5 min) and high adsorption capacity (87.7-140.8 mg g-1) for the per- and polyfluorinated alkyl substances (PFASs). The TPB-BFBIm-iCOF microsphere revealed the satisfactory enrichment performance for PFASs by means of the electrostatic interaction, hydrophobic effect and ordered channel structure. After extraction, the loaded TPB-BFBIm-iCOF-online SPE column was eluted and applied to the ultrahigh performance liquid chromatography tandem mass spectrometry analysis. Under the optimum conditions, the method displayed satisfactory linearity (R2 ≥ 0.9910) and low limits of detection (≤0.0017 ng g-1) for five seafoods. The relative recoveries of PFASs were 85.3%-109.4% with the relative standard deviation ≤ 9.9%. The method exhibited potential value in monitoring the toxicokinetics and environmental behaviors of PFASs.
Collapse
Affiliation(s)
- Xiaowei Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
40
|
Huang J, Sun L, Mennigen JA, Liu Y, Liu S, Zhang M, Wang Q, Tu W. Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124491. [PMID: 33223314 DOI: 10.1016/j.jhazmat.2020.124491] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In recent years, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has emerged as a substitute for PFOS with large demand and application in the Chinese market. However, little is known about potential developmental effects of OBS. In this study, zebrafish embryos were acutely exposed to different concentrations of OBS and the positive control PFOS for a comparative developmental toxicity assessment. OBS caused hatching delays, body axis curvature, neurobehavioral inhibition and abnormal cardiovascular development. These organismal effects were accompanied by change of development related genes expression profile, in which some cases were similar to PFOS. Overall, the toxic effects induced by OBS were generally milder than that of PFOS. Further investigation suggested that both OBS and PFOS disrupted ciliogenesis, evidenced by the ciliary immunostaining, changes in gene expression of kinesin family, dynein arm family and tubulin family members, as well as downregulation of the abundance of motor proteins including KIF3C, DYNC1H1 and DYNC1LI1. The influence of PFOS was stronger than that of OBS on ciliary genes and proteins. Molecular docking analysis revealed that both OBS and PFOS fitted into the motor proteins tightly, but binding affinity between OBS and motor proteins was lower than PFOS. Collectively, OBS and PFOS may act on ciliary motor proteins to interfere with ciliogenesis, leading to ciliary dysfunction and providing a novel probable action mode linked to developmental toxicity. This raises concerns regarding the health risks of the novel PFOS alternative OBS.
Collapse
Affiliation(s)
- Jing Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
41
|
Zou Y, Wu Y, Wang Q, Wan J, Deng M, Tu W. Comparison of toxicokinetics and toxic effects of PFOS and its novel alternative OBS in zebrafish larvae. CHEMOSPHERE 2021; 265:129116. [PMID: 33279233 DOI: 10.1016/j.chemosphere.2020.129116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS), a novel alternative to perfluorooctanesulfonate (PFOS), is widely used in industry as a surfactant, firefighting foam and photographic material. The occurrence of OBS in the aquatic environment has been recently reported, but little information is available on its accumulation and toxic effects in aquatic organisms. In this study, zebrafish larvae (3 d post-fertilization) were subjected to OBS (10, 100 μg/L) and PFOS (10 μg/L) for a period of 48 h, followed by a 24 h of depuration period. The bioconcentration and depuration kinetics, oxidative stress and possible molecular mechanisms of OBS and PFOS were investigated in zebrafish larvae. Our results showed that the uptake and depuration of both OBS and PFOS fitted well with a first-order kinetic model. The uptake rate constant of OBS was similar to that of PFOS, but the depuration rate constant was much higher than PFOS with a half-life of 69.7-85 h for OBS and 222.2 h for PFOS. The calculated BCFs of OBS and PFOS were 238.0-242.5 and 644.2, respectively. In our acute toxicity assay, the enhanced expression of Nrf2 protein accompanied by the upregulation of CAT and SOD protein expressions indicated OBS and PFOS induced oxidative stress in zebrafish larvae, and the Nrf2-ARE signaling pathway was involved in this process. Collectively, OBS has a lower bioconcentration potential than PFOS, but its toxic effect on oxidative stress was comparable to PFOS in zebrafish larvae.
Collapse
Affiliation(s)
- Yilong Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Ministry of Education), School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Jiangxi Water Resources Institute, Nanchang, 330013, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Jinbao Wan
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Ministry of Education), School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China.
| |
Collapse
|
42
|
Wang Q, Ruan Y, Jin L, Zhang X, Li J, He Y, Wei S, Lam JCW, Lam PKS. Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1045-1056. [PMID: 33395277 DOI: 10.1021/acs.est.0c06685] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been manufactured and widely used for over 60 years. Currently, there are thousands of marketed PFASs, but only dozens of them are routinely monitored. This work involved target, nontarget, and suspect screening of PFASs in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) and finless porpoise (Neophocaena phocaenoides), two resident marine mammals in the South China Sea, stranded between 2012 and 2018. Among the 21 target PFASs, perfluorooctane sulfonate and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) predominated in the samples, accounting for 46 and 30% of the total PFASs, respectively. Significantly higher total target PFAS concentrations (p < 0.05) were found in dolphin liver samples [3.23 × 103 ± 2.63 × 103 ng/g dry weight (dw)] than in porpoise liver samples (2.63 × 103 ± 1.10 × 103 ng/g dw). Significant increasing temporal trends (p < 0.05) were found in the concentrations of two emerging PFASs, perfluoroethylcyclohexane sulfonate and 2,3,3,3-tetrafluoro-2-propanoate in porpoises, indicating increasing pollution by these emerging PFASs. Forty-four PFASs from 9 classes were additionally identified by nontarget and suspect screening, among which 15 compounds were reported for the first time in marine mammals. A primary risk assessment showed that the emerging PFAS 6:2 Cl-PFESA could have possible adverse effects in terms of reproductive injury potential on most of the investigated cetaceans.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Jing Li
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Paul K S Lam
- Department of Chemistry; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Kowloon, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|