1
|
Huang H, Lv Y, Chen Q, Huang X, Qin J, Liu Y, Liao Q, Xing X, Chen L, Liu Q, Li S, Long Z, Wang Q, Chen W, Wei Q, Hou M, Hu Q, Xiao Y. Empirical analysis of lead neurotoxicity mode of action and its application in health risk assessment. ENVIRONMENTAL RESEARCH 2024; 251:118708. [PMID: 38493858 DOI: 10.1016/j.envres.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 μM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 μg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen, 518126, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Dong J, Li X, Kelly FJ, Mudway I. Lead exposure in Chinese children: Urbanization lowers children's blood lead levels (BLLs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:170910. [PMID: 38354817 DOI: 10.1016/j.scitotenv.2024.170910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Lead is a toxic metal that can pose a huge threat to children's health. China has experienced rapid urbanization since the reform in 1978; however, there has been no examination of the potential influence of this urbanization on children's blood lead levels (BLLs). This study is the initial investigation to explore the correlation between urbanization and BLLs in Chinese children. Five windows of time are considered: pre-2000, 2001-2005, 2006-2010, 2011-2015 and 2016-2021. The results show that urbanization affected lead distribution in urban soil and agricultural soil during the above periods, especially in northern China. The higher non-carcinogenic risk of lead for children is consistent with the lead pollution in soil (3 < Igeo ≤ 4). Urban children's BLLs are slightly higher than those of rural children in 2001-2010, but rural children's BLLs in 2011-2021 are higher than those of urban children during China's urbanization. The areas of rural decline and the areas of urban growth increased across all the window periods. However, the BLLs decrease in all rural and urban areas during all window periods, especially in urban areas. Children's BLLs have a significantly negative correlation with urban areas (p < 0.01). Therefore, China's urbanization has a significant effect on the decrease in children's BLLs. The significance of this study is to provide a fresh perspective and innovative strategy for policymaking in order to reduce children's BLLs and prevent lead exposure. This can be achieved by transforming their external living environment from a rural lifestyle to an urban one, while also ensuring access to well education and maintaining a balanced nutrient intake.
Collapse
Affiliation(s)
- Jie Dong
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| |
Collapse
|
3
|
Wang H, Miao D, Yu Y, Zhang Z, Zhu Y, Wang Q. PVA/PAA/DMTD electrospun nanofibrous membrane for the selective adsorption of Pb(II) ions in liquid foods. iScience 2024; 27:108737. [PMID: 38269099 PMCID: PMC10805650 DOI: 10.1016/j.isci.2023.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Lead (Pb(II)) contamination is common in liquid foods and can result from Pb(II) being present in the raw materials or during handling processes. However, due to the complexity of food matrices, there is limited data available concerning Pb(II) ion removal from food sources. This study focused on fabricating a PVA/PAA/DMTD electrospun nanofibrous membrane (ENFM) to efficiently and selectively remove Pb(II) ions from liquid foods. The PVA/PAA/DMTD ENFM had a maximum adsorption capacity of 138.3 mg/g for Pb(II) ions and demonstrated high selectivity toward the removal of Pb(II) ions. Negative values of the Gibbs free energy (ΔG°) showed that the spontaneous nature of the adsorption process was feasible at different temperatures. Moreover, it successfully removed Pb(II) ions from selected samples of commercially available drinks. Therefore, this adsorbent exhibits significant potential for removing Pb(II) ions from liquid food products, thereby reducing daily dietary exposure to Pb(II).
Collapse
Affiliation(s)
- Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dongtian Miao
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihan Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Youlong Zhu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Han C, Li J, Shen J. Study on the physical and chemical properties of lead passivating agent in soil. Sci Rep 2023; 13:18213. [PMID: 37880293 PMCID: PMC10600227 DOI: 10.1038/s41598-023-45567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
With the rapid development of industry, heavy metal pollution has seriously damaged the health of soil, and heavy metals spread through the food chain, posing a threat to human health. The firm existence of heavy metals in soil under earthy conditions is a center trouble faced by soil dense metal pollution solidification and correction technology. However, the existing investigation results are mostly controlled to soil passivation experiments using various materials. Macroscopically, heavy metal passivation materials have been selected, but the intrinsic mechanisms of different compound functional groups in soil passivation have been ignored. With the common heavy metal ion Pb2+ as an example, the stability of the combination of heavy metal ions and common ion groups in soil was analyzed in this study by using quantum chemical calculation as the theoretical guidance. The results show that SO42- and PO43-, as functional groups of passivating agents, are used to control lead pollution and have been verified to have good effects. When the pollution is particularly serious and not easy to passivation and precipitation, Fe3+ can be considered to enhance the passivation effect.
Collapse
Affiliation(s)
- Chengyu Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juan Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jianglong Shen
- Shaanxi Engineering Research Center of Land Consolidation, Xi'an, 710075, China
| |
Collapse
|
5
|
Dong J, Li X. Lead pollution-related health of children in China: Disparity, challenge, and policy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163383. [PMID: 37068684 DOI: 10.1016/j.scitotenv.2023.163383] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Lead (Pb) is a neurotoxic metal, and no level of lead exposure is safe for children. China has still experienced problems on child lead poisoning even though the Chinese government has phased out leaded gasoline since 2000. The underlying problem affecting the lead pollution-related health of children in China remains to be comprehensively investigated. It is found that although the significant decline of BLLs, as the Geometric Mean (GM), from 91.40 μg/LGM in 2001 to 37.52 μg/LGM in 2018 is observed, the average BLLs of children are still above 50 μg/L or more [average 59.70 (60.50-65.02, 95 % CI) μg/LGM] after phasing out leaded gasoline since 2000 in China. Lead exposure causes 29.67 MID per 1000 children with a loss of 98.23 (59.40-146.21, 95 % CI) DALYs per 1000 in China, which is greater than the levels reported from the Western Pacific Region and other low- and middle-income countries. A significant correlation is observed between the number of child crimes (NoCCs) and the outcomes of long-term lead exposure for children in China. Although the disparities in BLLs in China are strongly influenced by unequal distributions of potential multi-lead related sources (soil lead, PM2.5 lead, dust lead), unbalance development of local industrialization and economies, as well as incorrect health care for younger children, the notable emissions from coal combustion (CC) and non-ferrous metals (NMS) exploitation dominate the crucial sources of low-level lead exposure to children after phasing out leaded gasoline in China currently. Faced with the unequal and disparate distribution of BLLs in China, the big bottleneck is to decrease the BLLs exertions of 36-45 μg/L in the next few decades. The Chinese government needs to make more efforts on developing more strict guidelines, implementing more policy strategies on prevention and management of blood Pb poisoning, and monitoring the nationwide changes in children's BLLs continuously.
Collapse
Affiliation(s)
- Jie Dong
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
6
|
Kordas K, Cantoral A, Desai G, Halabicky O, Signes-Pastor AJ, Tellez-Rojo MM, Peterson KE, Karagas MR. Dietary Exposure to Toxic Elements and the Health of Young Children: Methodological Considerations and Data Needs. J Nutr 2022; 152:2572-2581. [PMID: 36774123 PMCID: PMC10157815 DOI: 10.1093/jn/nxac185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Concerns have been raised regarding toxic-element (arsenic, cadmium, lead, and mercury) contamination of commercially available infant foods around the world. Young children are vulnerable to the effects of toxic elements, based on higher absorption levels and potentially poorer detoxification capacities. Toxic-element exposures in early life exact high societal costs, but it is unclear how much dietary exposure to these elements contributes to adverse health outcomes. Well-designed epidemiological studies conducted in different geographical and socioeconomic contexts need to estimate dietary toxicant exposure in young children and to determine whether causal links exist between toxicants in children's diets and health outcomes. This commentary outlines the methodological considerations and data needs to advance such research.
Collapse
Affiliation(s)
- Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo NY, USA.
| | | | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo NY, USA
| | - Olivia Halabicky
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Antonio J Signes-Pastor
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
7
|
Liu Y, Xu C, Liu F, Shen F, Zhang B, Zhang J, Xiao G, Wang N, Lin N, Zhou S, Wang H, Du Q. Spatiotemporal variation in the blood lead levels of Chinese children with the environmental Kuznets curve trend. Heliyon 2022; 8:e11609. [DOI: 10.1016/j.heliyon.2022.e11609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
|
8
|
Ventre S, Desai G, Roberson R, Kordas K. Toxic metal exposures from infant diets: Risk prevention strategies for caregivers and health care professionals. Curr Probl Pediatr Adolesc Health Care 2022; 52:101276. [PMID: 36266220 DOI: 10.1016/j.cppeds.2022.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concerns are growing regarding the presence of toxic elements such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in the ingredients and prepared foods for infants and young children. There are few clear, evidence-based, guidelines on the maximum tolerable limits of toxicants in foods and little understanding of toxicant exposure or adverse health effects attributable to dietary exposure. Caregivers are faced with the burden of making decisions about which foods to select, how often to feed them to their children, and what foods to limit. This article reviews the current literature and existing recommendations on dietary exposure to toxic elements in children under 2 years of age, and their health effects in early childhood-focusing on growth, neurodevelopment, and immune function. The article also outlines best practices for healthcare providers to address the concerns of toxic element exposure through the diet in young children. Several foods consistently appear in the literature as potential sources of toxic element exposure. Contaminated drinking and cooking water, including water used to prepare infant formula, could also be a major exposure source. In the absence of stronger evidence on effects of dietary modification, exclusive breastfeeding until six months of age, followed by a diverse diet are some strategies to reduce dietary toxic element exposure while ensuring an adequate and balanced nutrient intake. Healthcare providers can support families by sharing information and encouraging blood Pb testing, the only element for which such testing is currently recommended.
Collapse
Affiliation(s)
- Sarah Ventre
- Department of Pediatrics, University at Buffalo, USA; New York State Children's Environmental Health Center, USA.
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | | | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| |
Collapse
|
9
|
Yin N, Han Z, Jia W, Fu Y, Ma J, Liu X, Cai X, Li Y, Chen X, Cui Y. Effect of vitamin C supplement on lead bioaccessibility in contaminated soils using multiple in vitro gastrointestinal assays: Mechanisms and health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113968. [PMID: 35981483 DOI: 10.1016/j.ecoenv.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Effects of vitamin C supplementation on the oral bioaccessibility of lead (Pb) present in contaminated soils were examined using a number of in vitro assays (PBET, SBRC, UBM and IVG). In the presence of vitamin C, an increase in Pb bioaccessibility was observed in the gastric phase by 1.3-fold (30.5%-85.5%) and in the intestinal phase by 3.1-fold (0.9%-58.9%). Lead mobilization was regulated by reductive dissolution of Fe(III) and sequestration of Pb on secondary Fe minerals. Sequential extraction by the Bureau Community of Reference (BCR) provided more evidence that reducible fraction and residual fraction were major contributor of gastric Pb bioaccessibility, as well as reduced fractions in intestinal Pb bioaccessibility. In addition, higher non-carcinogenic risks may occur based on target hazard quotient (THQ ≥ 1). For people exposed to Pb present in soil, the management of vitamin C supplements is of serious concern.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zeliang Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenbin Jia
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China.
| | - Yaqi Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingnan Ma
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Li
- Department of Agricultural, Forest and Food Sciences, University of Turin, Torino 10095, Italy
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Yan YZ, Hu YH, Guo H, Lin KQ. Burden of cardiovascular disease attributable to dietary lead exposure in adolescents and adults in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156315. [PMID: 35636555 DOI: 10.1016/j.scitotenv.2022.156315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Lead is a naturally occurring metal with a range of industrial applications; however, it can cause adverse health effects upon human exposure. Even if blood lead levels (BLLs) in the human body are in the acceptable range, it is independently associated with cardiovascular disease (CVD), which is the leading cause of death in China. However, the role of lead exposure in CVD outcomes has not been quantified well. A top-down approach was adopted in this study to calculate the population attribution fraction (PAF) by combining pooled BLLs in the Chinese population reported between 2001 and 2022 with the relative risk (RR) of lead-induced CVD. Subsequently, the disease burden (DB) of lead-induced CVD was estimated and expressed in disability-adjusted life years (DALYs), and the attribution analysis about various sources of lead exposure was performed. Among Chinese adolescents and adults, BLLs of 5.50 ± 2.45 μg/dL resulted in an estimated total DB (×106 DALYs) of 2.21 (2.07-2.32) for CVD, including 1.18 (1.12-1.25), 0.71 (0.69-0.74), 0.23 (0.15-0.26), and 0.02 (0.02-0.02) for stroke, and ischemic, hypertensive, and rheumatic heart diseases, respectively. Dietary lead intake was a major contributor to the DB (68.1%), and lead ingested through food was responsible for 15.1 × 105 DALYs of the CVD burden. Guangxi, Hunan, and Yunnan regions in China reported higher BLLs in adolescents and adults, and the DB of lead-induced CVD was higher in Hunan, Henan, and Sichuan. Lead is a risk factor for CVD that can cause significant DB. Further practical and cost-effective efforts to reduce lead exposure are urgently needed.
Collapse
Affiliation(s)
- Yi-Zhong Yan
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China.
| | - Yun-Hua Hu
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China
| | - Hong Guo
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China
| | - Kang-Qian Lin
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China
| |
Collapse
|
11
|
Naddafi K, Mesdaghinia A, Abtahi M, Hassanvand MS, Beiki A, Shaghaghi G, Shamsipour M, Mohammadi F, Saeedi R. Assessment of burden of disease induced by exposure to heavy metals through drinking water at national and subnational levels in Iran, 2019. ENVIRONMENTAL RESEARCH 2022; 204:112057. [PMID: 34529973 DOI: 10.1016/j.envres.2021.112057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The burden of disease attributable to exposure to heavy metals via drinking water in Iran (2019) was assessed at the national and regional levels. The non-carcinogenic risk, carcinogenic risk, and attributable burden of disease of heavy metals in drinking water were estimated in terms of hazard quotient (HQ), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The average drinking water concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and nickel (Ni) in Iran were determined to be 2.3, 0.4, 12.1, 2.5, 0.7, and 19.7 μg/L, respectively, which were much lower than the standard values. The total average HQs of heavy metals in drinking water in the entire country, rural, and urban communities were 0.48, 0.65 and 0.45, respectively. At the national level, the average ILCRs of heavy metal in the entire country were in the following order: 1.06 × 10-4 for As, 5.89 × 10-5 for Cd, 2.05 × 10-5 for Cr, and 3.76 × 10-7 for Pb. The cancer cases, deaths, death rate (per 100,000 people), DALYs, and DALY rate (per 100,000 people) attributed to exposure to heavy metals in drinking water at the national level were estimated to be 213 (95% uncertainty interval: 180 to 254), 87 (73-104), 0.11 (0.09-0.13), 4642 (3793-5489), and 5.81 (4.75-6.87), respectively. The contributions of exposure to As, Cd, Cr, and Pb in the attributable burden of disease were 14.7%, 65.7%, 19.3%, and 0.2%, respectively. The regional distribution of the total attributable DALY rate for all heavy metals was as follows: Region 5> Region 4> Region 1> Region 3> Region 2. The investigation and improvement of relatively high exceedance of As levels in drinking water from the standard value, especially in Regions 5 and 3 as well as biomonitoring of heavy metals throughout the country were recommended.
Collapse
Affiliation(s)
- Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayoub Beiki
- Center of Environmental and Occupational Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Gholamreza Shaghaghi
- Center of Environmental and Occupational Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Leonard H, Montgomery A, Wolff B, Strumpher E, Masi A, Woolfenden S, Williams K, Eapen V, Finlay-Jones A, Whitehouse A, Symons M, Licari M, Varcin K, Alvares G, Evans K, Downs J, Glasson E. A systematic review of the biological, social, and environmental determinants of intellectual disability in children and adolescents. Front Psychiatry 2022; 13:926681. [PMID: 36090348 PMCID: PMC9453821 DOI: 10.3389/fpsyt.2022.926681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
AIM This systematic review aimed to identify the most important social, environmental, biological, and/or genetic risk factors for intellectual disability (ID). METHODS Eligible were published prospective or retrospective comparative studies investigating risk factors for ID in children 4-18 years. Exclusions were single group studies with no comparator without ID and a sample size <100. Electronic databases (Medline, Cochrane Library, EMBASE, PsycInfo, Campbell Collaboration, and CINAHL) were searched for eligible publications from 1980 to 2020. Joanna Briggs Institute critical appraisal instruments, appropriate for study type, were used to assess study quality and risk of bias. Descriptive characteristics and individual study results were presented followed by the synthesis for individual risk factors, also assessed using GRADE. RESULTS Fifty-eight individual eligible studies were grouped into six exposure topics: sociodemographic; antenatal and perinatal; maternal physical health; maternal mental health; environmental; genetic or biological studies. There were few eligible genetic studies. For half the topics, the certainty of evidence (GRADE) was moderate or high. CONCLUSION Multiple studies have examined individual potential determinants of ID, but few have investigated holistically to identify those populations most at risk. Our review would indicate that there are vulnerable groups where risk factors we identified, such as low socioeconomic status, minority ethnicity, teenage motherhood, maternal mental illness, and alcohol abuse, may cluster, highlighting a target for preventive strategies. At-risk populations need to be identified and monitored so that interventions can be implemented when appropriate, at preconception, during pregnancy, or after birth. This could reduce the likelihood of ID and provide optimal opportunities for vulnerable infants. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=120032], identifier [CRD42019120032].
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Alicia Montgomery
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Brittany Wolff
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Elissa Strumpher
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Anne Masi
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Susan Woolfenden
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Valsamma Eapen
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Amy Finlay-Jones
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Andrew Whitehouse
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Martyn Symons
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Melissa Licari
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Kandice Varcin
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Gail Alvares
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Kiah Evans
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Jenny Downs
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| | - Emma Glasson
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Lin JY, Cao XY, Xiao Y, Wang JX, Luo SH, Yang LT, Fang YG, Wang ZY. Controllable preparation and performance of bio-based poly(lactic acid-iminodiacetic acid) as sustained-release Pb 2+ chelating agent. iScience 2021; 24:102518. [PMID: 34142032 PMCID: PMC8188493 DOI: 10.1016/j.isci.2021.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
The bio-based lactic acid (LA) and the common metal ion chelating agent iminodiacetic acid (IDA) are used to design and prepare a polymeric sustained-release Pb2+ chelating agent by a brief one-step reaction. After the analysis on theoretical calculation for this reaction, poly(lactic acid-iminodiacetic acid) [P(LA-co-IDA)] with different monomer molar feed ratios is synthesized via direct melt polycondensation. P(LA-co-IDA) mainly has star-shaped structure, and some of them have two-core or three-core structure. Thus, a possible mechanism of the polymerization is proposed. The degradation rate of P(LA-co-IDA)s can reach 70% in 4 weeks. The change of IDA release rate is consistent with the trend of the degradation rate, and the good Pb2+ chelating performance is confirmed. P(LA-co-IDA) is expected to be developed as a lead poisoning treatment drug or Pb2+ adsorbent in the environment with long-lasting effect, and this research provides a new strategy for the development of such drugs.
Collapse
Affiliation(s)
- Jian-Yun Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Jin-Xin Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Li-Ting Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Gan Fang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
14
|
Ericson B, Hu H, Nash E, Ferraro G, Sinitsky J, Taylor MP. Blood lead levels in low-income and middle-income countries: a systematic review. Lancet Planet Health 2021; 5:e145-e153. [PMID: 33713615 DOI: 10.1016/s2542-5196(20)30278-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Since the global phase-out of leaded petrol, reports have suggested that lead exposure remains substantial or is increasing in some low-income and middle-income countries (LMICs). However, few studies have attempted to systematically assess blood lead levels over the full range of LMICs. We aimed to describe values for blood lead level in LMICs. METHODS In this systematic review, we searched PubMed for studies published between Jan 1, 2010, and Oct 31, 2019, that reported blood lead levels in the 137 countries in World Bank LMIC groupings. Studies were reviewed for inclusion if they contained blood lead level data from human populations residing in any given country; comprised at least 30 participants; presented blood lead level data derived from venous, capillary, or umbilical cord samples of whole blood; had data that were collected after Dec 31, 2004; and were published in English. Data on blood lead level were extracted and pooled, as appropriate, to make country-specific estimates of the distribution of background blood lead levels among children and adults, along with information on specific sources of exposure where available. This study is registered with PROSPERO, number CRD42018108706. FINDINGS Our search yielded 12 695 studies, of which 520 were eligible for inclusion (1100 sampled populations from 49 countries comprising 1 003 455 individuals). Pooled mean blood lead concentrations in children ranged from 1·66 μg/dL (SD 3·31) in Ethiopia to 9·30 μg/dL (11·73) in Palestine, and in adults from 0·39 μg/dL (1·25) in Sudan to 11·36 μg/dL (5·20) in Pakistan. Background values for blood lead level in children could be pooled in 34 countries and were used to estimate background distributions for 1·30 billion of them. 632 million children (95% CI 394 million-780 million; 48·5%) were estimated to have a blood lead level exceeding the US Centers for Disease Control's reference value of 5 μg/dL. Major sources of lead exposure were informal lead acid battery recycling and manufacture, metal mining and processing, electronic waste, and the use of lead as a food adulterant, primarily in spices. INTERPRETATION Many children have a blood lead level exceeding 5 μg/dL in LMICs, despite leaded petrol phase-outs. Given the toxicity of lead, even at low amounts of exposure, urgent attention is required to control exposures and to expand population-based sampling in countries with no or scant data. FUNDING This work was supported by the United States Agency for International Development (Cooperative Agreement number AID-OAA-A-16-00019).
Collapse
Affiliation(s)
- Bret Ericson
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Howard Hu
- University of Washington School of Public Health, Seattle, WA, USA; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Mark Patrick Taylor
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
15
|
Yin N, Han Z, Du H, Wang P, Li Y, Chen X, Sun G, Cui Y, Hu Z. Effect of dietary vitamins in oral bioaccessibility of lead in contaminated soils based on the physiologically based extraction test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141299. [PMID: 32791414 DOI: 10.1016/j.scitotenv.2020.141299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
To determine the effect of vitamin supplements on the oral bioaccessibility of Pb in soils, Pb bioaccessibility was measured in the presence of 9 vitamins by a physiologically based extraction test. Gastric Pb bioaccessibility (G-BA, 2.6-83.3%) was found to be mostly reduced (1.1-3.1 fold) in the presence of B vitamins, specifically vitamins B1, B6, and B9. In contrast, a significant increase in Pb G-BA was observed with vitamin C and E involved. In the small intestinal phases, Pb bioaccessibility (I-BA) ranged from 0.1% to 16.0%, being 5-50 fold lower than the corresponding G-BA values. Vitamin C supplementation showed a 7-fold increase in Pb I-BA, with a similar increase presented in approximately 30% of samples treated to vitamin B involvement. Lead liberation in gastrointestinal digests was associated with the dissolution of Fe and Mn regulated by vitamins. In conclusion, the addition of B vitamins resulted in the reduction of gastric Pb bioaccessibility, but the bioaccessibility value increased in participation of vitamin C and E. Elevated intestinal bioaccessibility was found especially for vitamin C. This should contribute to more accurate assessment of health risks from contaminated soils. Nutritional management aimed at preventing Pb-induced toxicity can benefit from knowledge of vitamin influence on soil Pb bioaccessibility.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zeliang Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; College of Environment and Resources, Fuzhou University, Fujian, Fuzhou 350116, PR China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaochen Chen
- College of Environment and Resources, Fuzhou University, Fujian, Fuzhou 350116, PR China
| | - Guoxin Sun
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
16
|
Environmental Pollution Effect Analysis of Lead Compounds in China Based on Life Cycle. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072184. [PMID: 32218260 PMCID: PMC7177610 DOI: 10.3390/ijerph17072184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 01/29/2023]
Abstract
Environmental pollution caused by lead toxicity causes harm to human health. Lead pollution in the environment mainly comes from the processes of mining, processing, production, use, and recovery of lead. China is the world’s largest producer and consumer of refined lead. In this paper, the material flow analysis method is used to analyze the flow and direction of lead loss in four stages of lead production, manufacturing, use, and waste management in China from 1949 to 2017. The proportion coefficient of lead compounds in each stage of lead loss was determined. The categories and quantities of lead compounds discharged in each stage were calculated. The results show that in 2017, China emitted 2.1519 million tons of lead compounds. In the four stages of production, manufacturing, use, and waste management, 137.9 kilo tons, 209 kilo tons, 275 kilo tons, and 1.53 million tons were respectively discharged. The emissions in the production stage are PbS, PbO, PbSO4, PbO2, Pb2O3, and more. The emissions during the manufacturing phase are Pb, PbO, PbSO4, Pb2O3, Pb3O4, and more. The main emissions are Pb, PbO, Pb2O3, Pb3O4, and more. The main emissions in the waste management stage are PbS, Pb, PbO, PbSO4, PbO2, PbCO3, Pb2O3, Pb3O4, and more. Among them, the emissions of PbSO4, PbO, Pb, and PbO2 account for about 90%, which are the main environmental pollution emissions. The waste management stage is an important control source of lead compound emission and pollution. In view of these characteristics of the environmental pollution risk of lead compounds in China, the government should issue more targeted policies to control lead pollution.
Collapse
|