1
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
2
|
Ma C, Xu Y, Chen H, Huang Y, Wang S, Zhang P, Li G, Xu Z, Xu X, Ding Z, Xiang H, Cao Y. Bisphenol Z exposure inhibits oocyte meiotic maturation by rupturing mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116312. [PMID: 38608383 DOI: 10.1016/j.ecoenv.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 μM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yue Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Shanshan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Pin Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Guojing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
3
|
González N, Souza MCO, Cezarette GN, Rocha BA, Devoz PP, Dos Santos LC, Barcelos GRM, Nadal M, Domingo JL, Barbosa F. Evaluation of exposure to multiple organic pollutants in riparian communities of the Brazilian Amazon: Screening levels and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168294. [PMID: 37924872 DOI: 10.1016/j.scitotenv.2023.168294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Organic pollutants are widely distributed in the environment. Due to their physical and chemical characteristics, they tend to be biomagnified in food chains, mainly in aquatic organisms. Therefore, food consumption is a significant route of lifelong exposure. Although the Amazon River basin contains the highest freshwater biodiversity on Earth, there is scarce literature focusing on the levels of organic pollutants in the local population. The present study was aimed at assessing the levels of several environmental pollutants (polycyclic aromatic hydrocarbons, bisphenols, parabens, and benzophenones) in urine samples from riverside communities along the Tapajós and Amazon Rivers in the Brazilian Amazon region. The results show a 100 % detection of naphthalene metabolites (namely, 1-hydroxy-naphthalene (1OH-NAP), 2-hydroxy-naphthalene (2OH-NAP)), with the highest levels belonging to benzylparaben (BzP) (17.3 ng/mL). Gender-specific analysis revealed that women had significantly higher levels of certain PAH metabolites (i.e., 1OH-NAP and 2-hydroxy-fluorene (2OH-FLU)) than men. In turn, most of the evaluated compounds were higher in urine samples from people living near the Amazon River, which presents increased traffic of boats and ships than the Tapajós River. On the other hand, the human health risk assessment suggested that all communities are at risk of suffering non-carcinogenic effects from exposure to PAHs. At the same time, they are also at risk of carcinogenic effects from exposure to benzo[a]pyrene metabolites. Thus, further studies are needed in order to evaluate the potential health effects of exposure to a mixture of these organic pollutants and other contaminants present in the area, such as mercury.
Collapse
Affiliation(s)
- Neus González
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| | - Gabriel Neves Cezarette
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Paula Pícoli Devoz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Cassulatti Dos Santos
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | | | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Dueñas-Moreno J, Mora A, Kumar M, Meng XZ, Mahlknecht J. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines. ENVIRONMENT INTERNATIONAL 2023; 181:108294. [PMID: 37935082 DOI: 10.1016/j.envint.2023.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Phthalates and bisphenol A (BPA) are compounds widely used as raw materials in the production of plastics, making them ubiquitous in our daily lives. This results in widespread human exposure and human health hazards. Although efforts have been conducted to evaluate the risk of these compounds in diverse regions around the world, data scattering may mask important trends that could be useful for updating current guidelines and regulations. This study offers a comprehensive global assessment of human exposure levels to these chemicals, considering dietary and nondietary ingestion, and evaluates the associated risk. Overall, the exposure daily intake (EDI) values of phthalates and BPA reported worldwide ranged from 1.11 × 10-7 to 3 700 µg kg bw-1 d-1 and from 3.00 × 10-5 to 6.56 µg kg bw-1 d-1, respectively. Nevertheless, the dose-additive effect of phthalates has been shown to increase the EDI up to 5 100 µg kg bw-1 d-1, representing a high risk in terms of noncarcinogenic (HQ) and carcinogenic (CR) effects. The worldwide HQ values of phthalates and BPA ranged from 2.25 × 10-7 to 3.66 and from 2.74 × 10-7 to 9.72 × 10-2, respectively. Meanwhile, a significant number of studies exhibit high CR values for benzyl butyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP). Moreover, DEHP has shown the highest maximum mean CR values for humans in numerous studies, up to 179-fold higher than BBP. Despite mounting evidence of the harmful effects of these chemicals at low-dose exposure on animals and humans, most regulations have not been updated. Thus, this article emphasizes the need for updating guidelines and public policies considering compelling evidence for the adverse effects of low-dose exposure, and it cautions against the use of alternative plasticizers as substitutes for phthalates and BPA because of the significant gaps in their safety.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico.
| |
Collapse
|
5
|
Herrero M, Souza MCO, González N, Marquès M, Barbosa F, Domingo JL, Nadal M, Rovira J. Dermal exposure to bisphenols in pregnant women's and baby clothes: Risk characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163122. [PMID: 37001656 DOI: 10.1016/j.scitotenv.2023.163122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Textile manufacturing consists of a multiple-step process in which a wide range of chemicals is used, some of them remaining in the final product. Bisphenols (BPs) are non-intentionally added compounds in textiles, whose prolonged skin contact may mean a significant source of daily human exposure, especially in vulnerable groups of the population. The present study aimed to determine the levels of bisphenol A (BPA) and some BP analogs (BPB, BPF, and BPS) in 120 new clothes commercialized in Spain for pregnant women, newborns, and toddlers. In addition, exposure assessment and risk characterization were also carried out. Traces of BPA were found in all the samples, with a median concentration of 7.43 ng/g. The highest values were detected in textile samples made of polyester. Regarding natural fibers, higher concentrations of BPs were observed in garments made of conventional cotton than in those made of organic cotton, with a significant difference for BPS (1.24 vs. 0.76 ng/g, p < 0.05). Although toddlers have a larger skin-area-to-body-weight ratio, pregnant women showed higher exposure to BPs than children. Anyhow, the non-carcinogenic risks associated with BPA exposure were below the unity, even under the upper-bound scenario. However, risks could be underestimated because other exposure routes were not considered in this study. The use of BPA has been restricted in some food-related products; therefore, BPA should also be regulated in the textile industry.
Collapse
Affiliation(s)
- Marta Herrero
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Marília Cristina Oliveira Souza
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain; University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, ASTox - Analytical and System Toxicology Laboratory, Av. do Café s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| | - Neus González
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Montse Marquès
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, ASTox - Analytical and System Toxicology Laboratory, Av. do Café s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Joaquim Rovira
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
6
|
Agarwal R, Joshi SS. Toxicity of Bisphenol in Pregnant Females: First Review of Literature in Humans. Cureus 2023; 15:e39168. [PMID: 37332408 PMCID: PMC10276200 DOI: 10.7759/cureus.39168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Bisphenol analogues are widely used in consumer products such as disposable dinnerware, canned food, personal care products, bottled beverages, and more, and dietary exposure is the main pathway. Bisphenol A is used to manufacture synthetic resins and commercial plastics in large quantities. According to epidemiological and animal studies, bisphenols disrupt the reproductive, immunological, and metabolic systems. These analogues are estrogenic like Bisphenol A, although human studies are limited. We did a thorough search of the literature on the toxicity of bisphenol on reproductive and endocrine systems in pregnancy, focusing particularly on human studies. Hence, we present a comprehensive literature review on this topic. During our literature search, three epidemiological studies and one human observational study demonstrated a substantial link between bisphenol toxicity and recurrent miscarriages. The aforementioned research shows that bisphenol may harm pregnancy and cause miscarriages. We believe this is the first literature review on the topic.
Collapse
Affiliation(s)
- Radhika Agarwal
- Physiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, IND
| | - Shrirang S Joshi
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
7
|
Gély CA, Picard-Hagen N, Chassan M, Garrigues JC, Gayrard V, Lacroix MZ. Contribution of Reliable Chromatographic Data in QSAR for Modelling Bisphenol Transport across the Human Placenta Barrier. Molecules 2023; 28:500. [PMID: 36677565 PMCID: PMC9863378 DOI: 10.3390/molecules28020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by structural analogues, such as BPAF, BPAP, BPB, BPF, BPP, BPS, and BPZ. However, these alternatives are under surveillance for potential endocrine disruption, particularly during the critical period of fetal development. Despite their structural analogies, these BPs differ greatly in their placental transport efficiency. For predicting the fetal exposure of this important class of emerging contaminants, quantitative structure-activity relationship (QSAR) studies were developed to model and predict the placental clearance indices (CI). The most usual input parameters were molecular descriptors obtained by modelling, but for bisphenols (BPs) with structural similarities or heteroatoms such as sulfur, these descriptors do not contrast greatly. This study evaluated and compared the capacity of QSAR models based either on molecular or chromatographic descriptors or a combination of both to predict the placental passage of BPs. These chromatographic descriptors include both the retention mechanism and the peak shape on columns that reflect specific molecular interactions between solute and stationary and mobile phases and are characteristic of the molecular structure of BPs. The chromatographic peak shape such as the asymmetry and tailing factors had more influence on predicting the placental passage than the usual retention parameters. Furthermore, the QSAR model, having the best prediction capacity, was obtained with the chromatographic descriptors alone and met the criteria of internal and cross validation. These QSAR models are crucial for predicting the fetal exposure of this important class of emerging contaminants.
Collapse
Affiliation(s)
- Clémence A. Gély
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Malika Chassan
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Jean-Christophe Garrigues
- Molecular Interactions and Chemical and Photochemical Reactivity Laboratory (IMRCP), University of Toulouse, 31062 Toulouse, France
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Marlène Z. Lacroix
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| |
Collapse
|
8
|
Rovira J, Martínez MÁ, Mari M, Cunha SC, Fernandes JO, Marmelo I, Marques A, Haug LS, Thomsen C, Nadal M, Domingo JL, Schuhmacher M. Mixture of environmental pollutants in breast milk from a Spanish cohort of nursing mothers. ENVIRONMENT INTERNATIONAL 2022; 166:107375. [PMID: 35777115 DOI: 10.1016/j.envint.2022.107375] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Breastfeeding is one of the most effective ways to ensure child health and survival, with several benefits for both the infants and their mothers. However, breast milk can contain environmental pollutants with endocrine disruption capacity, neurotoxicity and/or potential to alter microbiota. Monitoring breast milk provides information on the current chemical exposure of breastfed infants and, in addition, on the current and historical exposure of nursing mothers. In this study, the levels of a wide range of pollutants were measured in breast milk of Spanish nursing mothers. Target chemicals were dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), oxy-chlordane, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), per- and poly-fluoroalkyl substances (PFASs) (including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)), chlorpyrifos, bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and a number of toxic and essential elements. Traces of most chemicals were found. A correlation between the levels of some persistent organic pollutants (POPs) and maternal characteristics (age and body mass index) was observed, while smoking was associated to higher concentrations of some toxic elements. Higher levels of PCBs were detected in samples from Spanish primiparous mothers compared to non-Spanish multiparous women. Breast milk from low-income mothers showed higher content of DDT and DDE than high-income mothers. Although breastfeeding is clearly beneficial for babies, the exposure to this mixture of hazardous substances, as well as their interaction and combined effects must not be disregarded.
Collapse
Affiliation(s)
- Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - María Ángeles Martínez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| | - Montse Mari
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Sara Cristina Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Jose Oliveira Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Isa Marmelo
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal; UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - António Marques
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
9
|
Souza JMO, Souza MCO, Rocha BA, Nadal M, Domingo JL, Barbosa F. Levels of phthalates and bisphenol in toys from Brazilian markets: Migration rate into children's saliva and daily exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154486. [PMID: 35278545 DOI: 10.1016/j.scitotenv.2022.154486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Bisphenols (BPs) and phthalate esters (PAEs) are extensively used in toys and childcare products. Therefore, children may be exposed to these compounds, causing potential adverse effects. Despite the strict control of the levels of these contaminants in toys by some nations, routine testing in Brazil is very scarce. The present study was aimed at determining the concentrations of PAEs and BPs in toys commercialized in Brazil, employing GC-MS and LC-MS/MS, respectively. Furthermore, the migration capacity of PAEs into saliva and the daily intake (EDI) were also estimated. Di-2-ethylhexyl phthalate (DEHP) was the PAE with the highest detection rate (93%) and migration rate (0.26 μg/min). Moreover, the levels of DEHP in some samples were above the threshold values set by the European Commission and the Brazilian Institute of Metrology, Standardization, and Industrial Quality. Among the BPs analogs, BPA and BPS presented the highest positive detection rates (72% and 30%, respectively). However, their levels were below the permitted values in all analyzed samples. A daily intake of DEHP was estimated at 29.8 μg/kg bw/day, being this exposure similar to those found in other countries and below the EFSA acceptable intake limit (50 μg/kg bw/day). However, our data are referred to exposure through oral contact with the analyzed toys, while the contribution of other potential sources, such as food consumption, were not here considered. To the best of our knowledge, this is the first study estimating the exposure of Brazilian children to PAEs and BPs, considering toys as the exposure source. These preliminary data may become a valuable guide for the control of EDC levels in toys commercialized in Brazil, as well as for future studies regarding estimation of exposure to EDCs by children taking into account multiple potential sources.
Collapse
Affiliation(s)
- Juliana Maria Oliveira Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory
| | - Marília Cristina Oliveira Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory
| | - Bruno Alves Rocha
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Jose Luis Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil, ASTox - Analytical and System Toxicology Laboratory.
| |
Collapse
|
10
|
Rytel L, Könyves L, Gonkowski S. Endocrine Disruptor Bisphenol a Affects the Neurochemical Profile of Nerve Fibers in the Aortic Arch Wall in the Domestic Pig. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105964. [PMID: 35627499 PMCID: PMC9140835 DOI: 10.3390/ijerph19105964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
Bisphenol A (BPA) is a synthetic compound utilized in industry for the production of various plastics. BPA penetrates into the environment and adversely affects living organisms. Therefore, the influence of various BPA dosages on the neurochemical characteristics of nerve fibers located in the aortic branch wall was investigated in this study utilizing a double immunofluorescence method. It was found that BPA in concentration of 0.5 mg/kg body weight/day causes a clear increase in the density of nerves within aortic branch walls immunoreactive to cocaine- and amphetamine-regulated transcript (CART), calcitonin gene-related peptide (CGRP), neuronal isoform of nitric oxide synthase (nNOS), pituitary adenylate cyclase-activating peptide (PACAP), and vasoactive intestinal polypeptide (VIP). Nerves containing galanin (GAL) and/or somatostatin (SOM) did not change when BPA was introduced into the system. Changes noted after administration of BPA at a dose of 0.05 mg/kg body weight/day were less visible and concerned fibers immunoreactive to CART, CGRP, and/or PACAP. The obtained results show that BPA affects the neurochemical coding of nerves in the aortic branch wall. These fluctuations may be the first signs of the influence of this substance on blood vessels and may also be at the root of the disturbances in the cardiovascular system.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
- Correspondence:
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| |
Collapse
|
11
|
Ao J, Huo X, Zhang J, Mao Y, Li G, Ye J, Shi Y, Jin F, Bao S, Zhang J. Environmental exposure to bisphenol analogues and unexplained recurrent miscarriage: A case-control study. ENVIRONMENTAL RESEARCH 2022; 204:112293. [PMID: 34728239 DOI: 10.1016/j.envres.2021.112293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The use of bisphenol A (BPA) has been substantially limited since 2010 due to its toxicity to human health. A group of bisphenol analogues that are structurally similar to BPA have been developed as the alternatives and used widely. The reproductive toxicity of these emerging chemicals has caused substantial concerns in recent years. Whether bisphenol analogues affect miscarriage, especially unexplained recurrent miscarriage (URM), remains to be explored. We conducted a hospital-based, case-control study with 1180 URM cases and 571 controls in China from 2014 to 2016. Concentrations of six bisphenol analogues (BPA, BPAF, BPAP, BPB, BPP and BPS) were measured in the urine samples collected at median intervals of 7.6 months after last miscarriage (interquartile ranges: 4.8, 14.7 months). Multiple logistic regression, Bayesian kernel machine regression (BKMR) and quantile g-computation (q-gcomp) were used to assess the relationship of bisphenol analogues with URM risk. We observed significantly higher levels of all urinary bisphenols in the cases than the controls. After controlling for potential confounders, bisphenol analogues were significantly associated with increased odds of URM in varying degrees. A dose-response pattern was observed for the associations of BPAF, BPAP and BPB quartiles with URM. The mixed exposure of six bisphenol analogues was positively associated with the risk of URM (adjusted odds ratio (aOR) = 1.25; 1.11-1.42), which was mainly driven by BPAP (60.1%), BPAF (25.1%) and BPA (14.8%). After age stratification, the risks tended to be higher in women aged 30 years or older, compared to women <30 years. Our large case-control study indicates that environmental exposure to bisphenol analogues is associated with an increased risk of URM. Older women may be more vulnerable to the insult.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaona Huo
- Obstetrics Department, International Peace Maternity and Child Health Hospital of China, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
| | - Yuchan Mao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Jiangfeng Ye
- Department of Clinical Epidemiology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
| | - Fan Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
12
|
Varghese B, Jala A, Das P, Borkar RM, Adela R. Estimation of parabens and bisphenols in maternal products and urinary concentrations in Indian pregnant women: daily intake and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21642-21655. [PMID: 34767169 DOI: 10.1007/s11356-021-17298-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The presence of parabens and bisphenols in maternal products and usage during pregnancy have raised serious concern about their possible harm to pregnant women. The concentrations of six parabens and eight bisphenols were quantified by high-performance liquid chromatography-tandem mass spectrometry in the samples of commercially available herbal-based ayurvedic maternal products and urine of healthy pregnant women from Assam, India. Methyl paraben (MP) and bisphenol AF (BPAF) were found to be more dominant in the maternal products, whereas MP, bisphenol A (BPA), and BPAF were dominant in urine samples of healthy pregnant women. The sum of the mean concentrations of all forms of parabens and bisphenols in maternal products were 48,308.50 ng/g and 542.42 ng/g, respectively, and urine 101.33 ng/mL and 23.42 ng/mL, respectively. The estimated daily intake (EDI) of total parabens and bisphenols in maternal products were 7378.02 and 19.78 ng/kg body weight/day, respectively. EDI of total parabens and bisphenols from urinary concentrations were 690.12 and 111.33 μg/kg body weight/day, respectively. The concentrations of butyl (BP) and heptyl (HP) parabens have a significant positive correlation with birth weight. The hazard quotient (HQ) value of MP, EP, and BPA was less than 1, and margin of exposure (MOE) identified potential risk associated with propyl paraben. Results from Monte-Carlo risk assessment analysis did not exceed the acceptable daily intake (ADI). Our results showed that higher concentrations of parabens and bisphenols are present in maternal products and the urine of healthy pregnant women. Hence maternal products containing bisphenols and parabens should be used cautiously during pregnancy to avoid maternal and fetal complications.
Collapse
Affiliation(s)
- Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101
| | - Panchanan Das
- Department of Obstetrics and Gynecology, Gauhati Medical College, Guwahati, India, 781032
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101.
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101.
| |
Collapse
|
13
|
Fenclová T, Řimnáčová H, Chemek M, Havránková J, Klein P, Králíčková M, Nevoral J. Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility. Front Physiol 2022; 13:725442. [PMID: 35283775 PMCID: PMC8908107 DOI: 10.3389/fphys.2022.725442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
Collapse
Affiliation(s)
- Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Tereza Fenclová,
| | - Hedvika Řimnáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Marouane Chemek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
14
|
Mustieles V, Rodríguez-Carrillo A, Vela-Soria F, D'Cruz SC, David A, Smagulova F, Mundo-López A, Olivas-Martínez A, Reina-Pérez I, Olea N, Freire C, Arrebola JP, Fernández MF. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150014. [PMID: 34788942 DOI: 10.1016/j.scitotenv.2021.150014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to altered behavior in children. Within the European Human Biomonitoring Initiative (HBM4EU), an adverse outcome pathway (AOP) network was constructed supporting the mechanistic link between BPA exposure and brain-derived neurotrophic factor (BDNF). OBJECTIVE To test this toxicologically-based hypothesis in the prospective INMA-Granada birth cohort (Spain). METHODS BPA concentrations were quantified by LC-MS/MS in spot urine samples from boys aged 9-11 years, normalized by creatinine and log-2 transformed. At adolescence (15-17 years), blood and urine specimens were collected, and serum and urinary BDNF protein levels were measured using immunoassays. DNA methylation levels at 6 CpGs in Exon IV of the BDNF gene were also assessed in peripheral blood using bisulfite-pyrosequencing. Adolescent's behavior was parent-rated using the Child Behavior Checklist (CBCL/6-18) in 148 boys. Adjusted linear regression and mediation models were fit. RESULTS Childhood urinary BPA concentrations were longitudinally and positively associated with thought problems (β = 0.76; 95% CI: 0.02, 1.49) and somatic complaints (β = 0.80; 95% CI: -0.16, 1.75) at adolescence. BPA concentrations were positively associated with BDNF DNA methylation at CpG6 (β = 0.21; 95% CI: 0.06, 0.36) and mean CpG methylation (β = 0.10; 95% CI: 0.01, 0.18), but not with total serum or urinary BDNF protein levels. When independent variables were categorized in tertiles, positive dose-response associations were observed between BPA-thought problems (p-trend = 0.08), BPA-CpG6 (p-trend ≤ 0.01), and CpG6-thought problems (p-trend ≤ 0.01). A significant mediated effect by CpG6 DNA methylation was observed (β = 0.23; 95% CI: 0.01, 0.57), accounting for up to 34% of the BPA-thought problems association. CONCLUSIONS In line with toxicological studies, BPA exposure was longitudinally associated with increased BDNF DNA methylation, supporting the biological plausibility of BPA-behavior relationships previously described in the epidemiological literature. Given its novelty and preliminary nature, this effect biomarker approach should be replicated in larger birth cohorts.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | | | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | | | | | | | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
15
|
Xiao Z, Wang S, Suo D, Wang R, Huang Y, Su X. Enzymatic probe sonication for quick extraction of total bisphenols from animal-derived foods: Applicability to occurrence and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118457. [PMID: 34742818 DOI: 10.1016/j.envpol.2021.118457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
A high demand exists in bisphenols (BPs) screening studies for quick, reliable and straightforward analytical methods that generate data faster and simultaneously. Herein, we describe a combination of enzymatic probe sonication (EPS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for quick extraction and simultaneous quantification of eight important BPs in animal-derived foods. Results obtained demonstrated that the ultrasonic probe power could not only enhance the enzymatic hydrolysis efficiency, but also accelerate the liquid-liquid extraction procedure. Under optimized EPS parameters, one sample could be exhaustively extracted within 120 s, as compared with 12 h needed for the conventional enzymatic extraction which is more suitable for high-throughput analysis. The method was successfully applied to analyze residual BPs in animal-derived foods collected from Beijing, China. Widespread occurrence of BPA, BPS, BPF, BPAF, BPP, and BPB were found, with detection frequencies of 65.2%, 42.4%, 33.7%, 29.4%, 28.3%, and 27.2%, respectively. The highest total concentration levels of BPs (sum of the eight BPs analyzed, ΣBPs) were found in chicken liver (mean 12.2 μg/kg), followed by swine liver (6.37 μg/kg), bovine muscle (3.24 μg/kg), egg (2.03 μg/kg), sheep muscle (2.03 μg/kg), chicken muscle (1.45 μg/kg), swine muscle (1.42 μg/kg), and milk (1.17 μg/kg). The estimated daily intake (EDI) of BPs, based on the mean and 95th percentile concentrations and daily food consumptions, was estimated to be 5.687 ng/kg bw/d and 22.71 ng/kg bw/d, respectively. The human health risk assessment in this work suggests that currently BPs do not pose significant risks to the consumers because the hazard index (HI) was <1.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Huang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Shamhari A‘A, Abd Hamid Z, Budin SB, Shamsudin NJ, Taib IS. Bisphenol A and Its Analogues Deteriorate the Hormones Physiological Function of the Male Reproductive System: A Mini-Review. Biomedicines 2021; 9:1744. [PMID: 34829973 PMCID: PMC8615890 DOI: 10.3390/biomedicines9111744] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
BPA is identified as an endocrine-disrupting chemical that deteriorates the physiological function of the hormones of the male reproductive system. Bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) are actively explored as substitutes for BPA and are known as BPA analogues in most manufacturing industries. These analogues may demonstrate the same adverse effects as BPA on the male reproductive system; however, toxicological data explaining the male reproductive hormones' physiological functions are still limited. Hence, this mini-review discusses the effects of BPA and its analogues on the physiological functions of hormones in the male reproductive system, focusing on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, and spermatogenesis outcomes. The BPA analogues mainly show a similar negative effect on the hormones' physiological functions, proven by alterations in the HPG axis and steroidogenesis via activation of the aromatase activity and reduction of spermatogenesis outcomes when compared to BPA in in vitro and in vivo studies. Human biomonitoring studies also provide significant adverse effects on the physiological functions of hormones in the male reproductive system. In conclusion, BPA and its analogues deteriorate the physiological functions of hormones in the male reproductive system as per in vitro, in vivo, and human biomonitoring studies.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Nurul Jehan Shamsudin
- Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| |
Collapse
|
17
|
Vandenberg LN, Pelch KE. Systematic Review Methodologies and Endocrine Disrupting Chemicals: Improving Evaluations of the Plastic Monomer Bisphenol A. Endocr Metab Immune Disord Drug Targets 2021; 22:748-764. [PMID: 34610783 DOI: 10.2174/1871530321666211005163614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are found in plastics, personal care products, household items, and other consumer goods. Risk assessments are intended to characterize a chemical's hazards, identify the doses at which adverse outcomes are observed, quantify exposure levels, and then compare these doses to determine the likelihood of risk in a given population. There are many problems with risk assessments for EDCs, allowing people to be exposed to levels that are later associated with serious health outcomes in epidemiology studies. OBJECTIVE In this review, we examine issues that affect the evaluation of EDCs in risk assessments (e.g., use of insensitive rodent strains and absence of disease-oriented outcomes in hazard assessments; inadequate exposure assessments). We then review one well-studied chemical, Bisphenol A (BPA; CAS #80-05-7) an EDC found in plastics, food packaging, and other consumer products. More than one hundred epidemiology studies suggest associations between BPA exposures and adverse health outcomes in environmentally exposed human populations. FINDINGS We present support for the use of systematic review methodologies in the evaluation of BPA and other EDCs. Systematic reviews would allow studies to be evaluated for their reliability and risk of bias. They would also allow all data to be used in risk assessments, which is a requirement for some regulatory agencies. CONCLUSION Systematic review methodologies can be used to improve evaluations of BPA and other EDCs. Their use could help to restore faith in risk assessments and ensure that all data are utilized in decision-making. Regulatory agencies are urged to conduct transparent, well-documented and proper systematic reviews for BPA and other EDCs.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | | |
Collapse
|
18
|
Sex-Specific Effects of Plastic Caging in Murine Viral Myocarditis. Int J Mol Sci 2021; 22:ijms22168834. [PMID: 34445539 PMCID: PMC8396197 DOI: 10.3390/ijms22168834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Myocarditis is an inflammatory heart disease caused by viral infections that can lead to heart failure, and occurs more often in men than women. Since animal studies have shown that myocarditis is influenced by sex hormones, we hypothesized that endocrine disruptors, which interfere with natural hormones, may play a role in the progression of the disease. The human population is exposed to the endocrine disruptor bisphenol A (BPA) from plastics, such as water bottles and plastic food containers. Methods: Male and female adult BALB/c mice were housed in plastic versus glass caging, or exposed to BPA in drinking water versus control water. Myocarditis was induced with coxsackievirus B3 on day 0, and the endpoints were assessed on day 10 post infection. Results: We found that male BALB/c mice that were exposed to plastic caging had increased myocarditis due to complement activation and elevated numbers of macrophages and neutrophils, whereas females had elevated mast cell activation and fibrosis. Conclusions: These findings show that housing mice in traditional plastic caging increases viral myocarditis in males and females, but using sex-specific immune mechanisms.
Collapse
|
19
|
Guo C, Zhao X, Jin J, Wang L, Tan D, Chen J, Ni Y. The dose effect of dansyl chloride on the derivative products of bisphenols and its application for the determination of bisphenols in human serum by high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2021; 44:3052-3060. [PMID: 34101988 DOI: 10.1002/jssc.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 11/10/2022]
Abstract
Human exposure to bisphenols has rarely been reported. The most important challenges in this regard are the sensitivity and accuracy of the analytical methods employed. Dansyl chloride derivatization prior to high-performance liquid chromatography-tandem mass spectrometry has been prevalently employed to improve sensitivity. However, the dose effect of the derivatization reagent on the reaction products is not well understood, especially for reactants with two or more active groups. This study investigated the mass ratio of dansyl chloride to bisphenols and found the mass ratio played a vital role in changing the composition of derivatives; further, the optimal ratio for obtaining di-substituted derivatives was confirmed. Under optimal conditions, solid-phase extraction followed by dansyl chloride derivatization coupled with high-performance liquid chromatography-tandem mass spectrometry was used to detect eight bisphenols in human serum samples. The method detection limits of the eight bisphenols were 0.025-0.28 ng/mL, and the recoveries were 72.9-121.7% by spiking bisphenols (2, 5, and 20 ng/mL) into bovine serum. The detection frequencies of bisphenol A and bisphenol F in 73 serum samples obtained from children from Guangzhou were 41.1% and 71.2%, respectively, while the detection frequencies of other bisphenols were below 20%. The concentrations of bisphenol A and bisphenol F were < 0.28-8.0 ng/mL and < 0.028-7.6 ng/mL, respectively.
Collapse
Affiliation(s)
- Cuicui Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xueqin Zhao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Jing Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| | - Longxing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| | - Dongqin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| | - Yuwen Ni
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| |
Collapse
|
20
|
Martínez MÁ, González N, Martí A, Marquès M, Rovira J, Kumar V, Nadal M. Human biomonitoring of bisphenol A along pregnancy: An exposure reconstruction of the EXHES-Spain cohort. ENVIRONMENTAL RESEARCH 2021; 196:110941. [PMID: 33647302 DOI: 10.1016/j.envres.2021.110941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed at reconstructing the exposure to bisphenol (BPA) of 60 pregnant women from the EXHES-Spain cohort. A biomonitoring study was conducted by determining BPA levels in urine samples over the three trimesters of pregnancy. Moreover, the correlations between BPA levels and the role of different potential exposure sources, with special emphasis on the dietary intake, were also studied. Urine samples were subjected to dispersive liquid-liquid microextraction and the subsequent analysis via gas chromatography-mass spectrometry. BPA was detected in 76% of the urine samples. A significant decrease of urinary BPA levels was observed along pregnancy, as mean concentrations of creatinine-adjusted BPA were 4.64, 4.84 and 2.51 μg/g in the first, second and third trimester, respectively. This decrease was essentially associated with changes in the dietary habits of the pregnant women, including a lower intake of canned food and drinks. However, the potential role of other pregnancy-related biochemical or physiological factors should not be disregarded. Very interestingly, significant differences in urine BPA levels were found according to the fruit consumption pattern, as women who ate more citrus fruits showed lower BPA concentrations in urine. The reconstructed exposure to BPA was estimated in 0.072, 0.069 and 0.038 μg BPA/kg of body weight/day in the first, second and third trimesters, respectively. These values are far below the temporary tolerable daily intake (t-TDI) established by the EFSA.
Collapse
Affiliation(s)
- María Ángeles Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Sant Joan de Reus, Reus, Spain. Institut d'Investigació Pere Virgili (IISPV). Reus, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Anna Martí
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
21
|
Gys C, Bastiaensen M, Bruckers L, Colles A, Govarts E, Martin LR, Verheyen V, Koppen G, Morrens B, Den Hond E, De Decker A, Schoeters G, Covaci A. Determinants of exposure levels of bisphenols in flemish adolescents. ENVIRONMENTAL RESEARCH 2021; 193:110567. [PMID: 33275923 DOI: 10.1016/j.envres.2020.110567] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The broadly used industrial chemical bisphenol A (BPA), applied in numerous consumer products, has been under scrutiny in the past 20 years due to its widespread detection in humans and the environment and potential detrimental effects on human health. Following implemented restrictions and phase-out initiatives, BPA is replaced by alternative bisphenols, which have not received the same amount of research attention. As a part of the fourth cycle of the Flemish Environment and Health Study (FLEHS IV, 2016-2020), we monitored the internal exposure to six bisphenols in urine samples of 423 adolescents (14-15 years old) from Flanders, Belgium. All measured bisphenols were detected in the study population, with BPA and its alternatives bisphenol F (BPF) and bisphenol S (BPS) showing detection frequencies > 50%. The reference values show that exposure to these compounds is extensive. However, the urinary BPA level decreased significantly in Flemish adolescents compared to a previous cycle of the FLEHS (2008-2009). This suggests that the replacement of BPA with its analogues is ongoing. Concentrations of bisphenols measured in the Flemish adolescents were generally in the same order of magnitude compared to recent studies worldwide. Multiple regression models were used to identify determinants of exposure based on information on demographic and lifestyle characteristics of participants, acquired through questionnaires. Some significant determinants could be identified: sex, season, smoking behavior, educational level of the parents, recent consumption of certain foods and use of certain products were found to be significantly associated with levels of bisphenols. Preliminary risk assessment showed that none of the estimated daily intakes (EDIs) of BPA exceeded the tolerable daily intake, even in a high exposure scenario. For alternative bisphenols, no health-based guidance values are available, but in line with the measured urinary levels, their EDIs were lower than that of BPA. This study is, to the best of our knowledge, the first to determine internal exposure levels of other bisphenols than BPA in a European adolescent population.
Collapse
Affiliation(s)
- Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Bert Morrens
- Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
22
|
Gys C, Ait Bamai Y, Araki A, Bastiaensen M, Caballero-Casero N, Kishi R, Covaci A. Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. ENVIRONMENTAL RESEARCH 2020; 191:110172. [PMID: 32919958 DOI: 10.1016/j.envres.2020.110172] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The widely used chemical bisphenol A (BPA), applied in various consumer products, has been under scrutiny in the past 20 years due to its widespread detection in humans and potential detrimental effects on human health. Following the implementation of restrictions and phase-out initiatives, BPA has been replaced by other structurally similar bisphenols, which have not yet received the same level of research attention. In this study, we aimed to 1) investigated the internal exposure to seven bisphenols in morning void urine samples (n = 396) from 7-year-old children from Hokkaido, Japan and 2) assess possible time trends in the concentrations of bisphenols between 2012 and 2017. Information on demographic, indoor environment and dietary characteristics of participants were acquired through a self-administered questionnaire. All bisphenols were detected in the study population, with BPA, BPF and BPS showing detection frequencies >50%. Concentrations of bisphenols measured in the Japanese children in our study were generally lower compared to studies worldwide. We found that BPA concentrations decreased significantly over the study time period (average 6.5% per year), whereas BPS rose with 2.8% per year. Levels of BPA and BPF were higher in autumn compared to winter. Higher urinary BPF levels were significantly associated with higher concentrations of the oxidative stress biomarker, 8-hydroxy-2'-deoxyguanosine (8-OHdG). BPA and BPF levels were higher in children from families with lower household income. Bisphenol concentrations were significantly influenced by some other personal (e.g. household income), food intake (e.g. vegetables and cow milk) and indoor housing characteristics (e.g. flooring). This is the first study to report longitudinal time trends of bisphenols in Japan. The presented findings imply that further research on bisphenols is warranted in the future to monitor whether these time trends continue.
Collapse
Affiliation(s)
- Celine Gys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Japan
| | - Michiel Bastiaensen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | | | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Japan
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
23
|
Rytel L, Gonkowski S. The Influence of Bisphenol a on the Nitrergic Nervous Structures in the Domestic Porcine Uterus. Int J Mol Sci 2020; 21:E4543. [PMID: 32604714 PMCID: PMC7353066 DOI: 10.3390/ijms21124543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common environmental pollutants among endocrine disruptors. Due to its similarity to estrogen, BPA may affect estrogen receptors and show adverse effects on many internal organs. The reproductive system is particularly vulnerable to the impact of BPA, but knowledge about BPA-induced changes in the innervation of the uterus is relatively scarce. Therefore, this study aimed to investigate the influence of various doses of BPA on nitrergic nerves supplying the uterus with the double immunofluorescence method. It has been shown that even low doses of BPA caused an increase in the number of nitrergic nerves in the uterine wall and changed their neurochemical characterization. During the present study, changes in the number of nitrergic nerves simultaneously immunoreactive to substance P, vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating peptide, and/or cocaine- and amphetamine-regulated transcript were found under the influence of BPA. The obtained results strongly suggest that nitrergic nerves in the uterine wall participate in adaptive and/or protective processes aimed at homeostasis maintenance in the uterine activity under the impact of BPA.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland;
| |
Collapse
|