1
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
2
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:628-653. [PMID: 37005774 PMCID: PMC10948111 DOI: 10.1002/mrc.5350 10.1002/mrc.5350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/23/2024]
Abstract
Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.
Collapse
Affiliation(s)
- Micah J. Jeppesen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
4
|
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:628-653. [PMID: 37005774 PMCID: PMC10948111 DOI: 10.1002/mrc.5350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.
Collapse
Affiliation(s)
- Micah J. Jeppesen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
5
|
Examination of human osteoarchaeological remains as a feasible source of polar and apolar metabolites to study past conditions. Sci Rep 2023; 13:696. [PMID: 36639564 PMCID: PMC9839756 DOI: 10.1038/s41598-023-27401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Metabolomics is a modern tool that aids in our understanding of the molecular changes in organisms. Archaeological science is a branch of archaeology that explores different archaeological materials using modern analytical tools. Human osteoarchaeological material are a frequent finding in archaeological contexts and have the potential to offer information about previous human populations, which can be illuminating about our current condition. Using a set of samples comprising different skeletal elements and bone structures, here we explore for the first time the possibility of extracting metabolites from osteoarchaeological material. Here, a protocol for extraction and measurement of extracted polar and less-polar/apolar metabolites by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry is presented to measure the molecules separated after a reversed phase and hydrophilic interaction liquid chromatography column. Molecular information was obtained, showing that osteoarchaeological material is a viable source of molecular information for metabolomic studies.
Collapse
|
6
|
Northrup TF, Stotts AL, Suchting R, Khan AM, Klawans MR, Green C, Hoh E, Hovell MF, Matt GE, Quintana PJE. Handwashing Results in Incomplete Nicotine Removal from Fingers of Individuals who Smoke: A Randomized Controlled Experiment. Am J Perinatol 2022; 39:1634-1642. [PMID: 34634832 DOI: 10.1055/s-0041-1736287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Tobacco residue, also known as third-hand smoke (THS), contains toxicants and lingers in dust and on surfaces and clothes. THS also remains on hands of individuals who smoke, with potential transfer to infants during visitation while infants are hospitalized in neonatal intensive care units (NICUs), raising concerns (e.g., hindered respiratory development) for vulnerable infants. Previously unexplored, this study tested handwashing (HW) and sanitization efficacy for finger-nicotine removal in a sample of adults who smoked and were visiting infants in an NICU. STUDY DESIGN A cross-sectional sample was recruited to complete an interview, carbon monoxide breath samples, and three nicotine wipes of separate fingers (thumb, index, and middle). Eligible participants (n = 14) reported current smoking (verified with breath samples) and were randomly assigned to 30 seconds of HW (n = 7) or alcohol-based sanitization (n = 7), with the order of finger wipes both counterbalanced and randomly assigned. After randomization, the first finger was wiped for nicotine. Participants then washed or sanitized their hands and finger two was wiped 5 minutes later. An interview assessing tobacco/nicotine use and exposure was then administered, followed by a second breath sample and the final finger wipe (40-60 minutes after washing/sanitizing). RESULTS Generalized linear mixed models found that HW was more effective than sanitizer for nicotine removal but failed to completely remove nicotine. CONCLUSIONS Without proper protections (e.g., wearing gloves and gowns), NICU visitors who smoke may inadvertently expose infants to THS. Research on cleaning protocols are needed to protect vulnerable medical populations from THS and associated risks. KEY POINTS · NICU infants may be exposed to THS via visitors.. · THS is not eliminated by HW or sanitizing.. · THS removal protections for NICU infants are needed..
Collapse
Affiliation(s)
- Thomas F Northrup
- Department of Family and Community Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Angela L Stotts
- Department of Family and Community Medicine, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Robert Suchting
- Department of Psychiatry and Behavioral Sciences, UTHealth, McGovern Medical School, Houston, Texas
| | - Amir M Khan
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Michelle R Klawans
- Department of Family and Community Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Charles Green
- Department of Pediatrics, Center for Clinical Research and Evidence-Based Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, Texas
| | - Eunha Hoh
- Division of Environmental Health, School of Public Health, San Diego State University, San Diego, California
| | - Melbourne F Hovell
- Center for Behavioral Epidemiology and Community Health, Graduate School of Public Health, Division of Health Promotion and Behavioral Science, San Diego State University, San Diego, California
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego, California
| | - Penelope J E Quintana
- Division of Environmental Health, School of Public Health, San Diego State University, San Diego, California
| |
Collapse
|
7
|
Sakamaki-Ching S, Schick S, Grigorean G, Li J, Talbot P. Dermal thirdhand smoke exposure induces oxidative damage, initiates skin inflammatory markers, and adversely alters the human plasma proteome. EBioMedicine 2022; 84:104256. [PMID: 36137411 PMCID: PMC9494172 DOI: 10.1016/j.ebiom.2022.104256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Thirdhand smoke (THS) exposure correlated with significant metabolism of carcinogenic chemicals and the potential to cause detrimental health effects. Human harm research of THS exposure is limited to one other study and overall, there is a general lack of knowledge of the human health responses to THS exposure. METHODS This was a clinical investigation to evaluate the health effects of 3-h dermal THS exposure from urine and plasma. 10 healthy, non-smoking subjects were recruited for dermal exposure for 3 h exposed to clothing impregnated with filtered clean air or THS. Exposures to clean air or THS occurred 20-30 days apart. FINDINGS In THS-exposed group, there was a significant elevation of urinary 8-OHdG, 8-isoprostane, protein carbonyls. The THS 3-h exposure identified proteomics pathways of inflammatory response (p=2.18 × 10-8), adhesion of blood cells (p=2.23 × 10-8), atherosclerosis (p=2.78 × 10-9), and lichen planus (p=1.77 × 10-8). Nine canonical pathways were significantly activated including leukocyte extravasation signaling (z-score=3.0), and production of nitric oxide and reactive oxygen in macrophages (z-score=2.1). The THS 22-h proteomics pathways revealed inflammation of organ (p=3.09 × 10-8), keratinization of the epidermis (p=4.0 × 10-7), plaque psoriasis (p=5.31 × 10-7), and dermatitis (p=6.0 × 10-7). Two activated canonical pathways were production of nitric oxide and reactive oxygen in macrophages (z-score=2.646), and IL-8 signaling (z-score=2.0). INTERPRETATION This is a clinical study demonstrating that acute dermal exposure to THS mimics the harmful effects of cigarette smoking, alters the human plasma proteome, initiates mechanisms of skin inflammatory disease, and elevates urinary biomarkers of oxidative harm. FUNDING Funding was provided by the Tobacco Related Disease Research Program (TRDRP) 24RT-0037 TRDRP, 24RT-0039 TRDRP, and 28PT-0081 TRDRP.
Collapse
Affiliation(s)
- Shane Sakamaki-Ching
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, United States
| | - Suzaynn Schick
- Center for Tobacco Control Research and Education, University of California, San Francisco, United States
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, United States
| | - Jun Li
- Department of Statistics, University of California, Riverside, United States
| | - Prue Talbot
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, United States.
| |
Collapse
|
8
|
Merino C, Casado M, Piña B, Vinaixa M, Ramírez N. Toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in early development: A wide-scope metabolomics assay in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:127746. [PMID: 35086039 DOI: 10.1016/j.jhazmat.2021.127746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The tobacco-specific nitrosamine 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic and ubiquitous environmental pollutant for which toxic activity has been thoroughly investigated in murine models and human tissues. However, its potential deleterious effects on vertebrate early development are yet poorly understood. In this work, we characterized the impact of NNK exposure during early developmental stages of zebrafish embryos, a known alternative model for mammalian toxicity studies. Embryos exposed to different NNK concentrations were monitored for lethality and for the appearance of malformations during the first five days after fertilization. LC-MS based untargeted metabolomics was subsequently performed for a wide-scope assay of NNK-related metabolic alterations. Our results revealed the presence of not only the parental compound, but also of two known NNK metabolites, 4-Hydroxy-4-(3-pyridyl)-butyric acid (HPBA) and 4-(Methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanol (NNAL-N-oxide) in exposed embryos likely resulting from active CYP450-mediated α-hydroxylation and NNK detoxification pathways, respectively. This was paralleled by a disruption in purine and pyrimidine metabolisms and the activation of the base excision repair pathway. Our results confirm NNK as a harmful embryonic agent and demonstrate zebrafish embryos to be a suitable early development model to monitor NNK toxicity.
Collapse
Affiliation(s)
- Carla Merino
- Universitat Rovira i Virgili, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Tarragona, Spain; Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Casado
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Benjamí Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Maria Vinaixa
- Universitat Rovira i Virgili, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Tarragona, Spain; Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Noelia Ramírez
- Universitat Rovira i Virgili, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Tarragona, Spain; Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Hu X, Fan Y, Li H, Zhou R, Zhao X, Sun Y, Zhang S. Impacts of Cigarette Smoking Status on Metabolomic and Gut Microbiota Profile in Male Patients With Coronary Artery Disease: A Multi-Omics Study. Front Cardiovasc Med 2021; 8:766739. [PMID: 34778417 PMCID: PMC8581230 DOI: 10.3389/fcvm.2021.766739] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Cigarette smoking has been considered a modifiable risk factor for coronary artery disease (CAD). Changes in gut microbiota and microbe-derived metabolites have been shown to influence atherosclerotic pathogenesis. However, the effect of cigarette smoking on the gut microbiome and serum metabolites in CAD remains unclear. Method: We profiled the gut microbiota and serum metabolites of 113 male participants with diagnosed CAD including 46 current smokers, 34 former smokers, and 33 never smokers by 16S ribosomal RNA (rRNA) gene sequencing and untargeted metabolomics study. A follow-up study was conducted. PICRUSt2 was used for metagenomic functional prediction of important bacterial taxa. Results: In the analysis of the microbial composition, the current smokers were characterized with depleted Bifidobacterium catenulatum, Akkermansia muciniphila, and enriched Enterococcus faecium, Haemophilus parainfluenzae compared with the former and never smokers. In the untargeted serum metabolomic study, we observed and annotated 304 discriminant metabolites, uniquely including ceramides, acyl carnitines, and glycerophospholipids. Pathway analysis revealed a significantly changed sphingolipids metabolism related to cigarette smoking. However, the change of the majority of the discriminant metabolites is possibly reversible after smoking cessation. While performing PICRUSt2 metagenomic prediction, several key enzymes (wbpA, nadM) were identified to possibly explain the cross talk between gut microbiota and metabolomic changes associated with smoking. Moreover, the multi-omics analysis revealed that specific changes in bacterial taxa were associated with disease severity or outcomes by mediating metabolites such as glycerophospholipids. Conclusions: Our results indicated that both the gut microbiota composition and metabolomic profile of current smokers are different from that of never smokers. The present study may provide new insights into understanding the heterogenic influences of cigarette smoking on atherosclerotic pathogenesis by modulating gut microbiota as well as circulating metabolites.
Collapse
Affiliation(s)
- Xiaomin Hu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.,Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hanyu Li
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ruilin Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xinyue Zhao
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yueshen Sun
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|