1
|
Quishpe-Vásquez C, Oliva P, López-Barrera EA, Casallas A. Wildfires impact on PM 2.5 concentration in galicia Spain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122093. [PMID: 39106804 DOI: 10.1016/j.jenvman.2024.122093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Wildfire intensity and severity have been increasing in the Iberian Peninsula in recent years, particularly in the Galicia region, due to rising temperatures and accumulating drier combustible vegetation in unmanaged lands. This leads to substantial emissions of air pollutants, notably fine particles (PM2.5), posing a risk to public health. This study aims to assess the impact of local and regional wildfires on PM2.5 levels in Galicia's main cities and their implications for air quality and public health. Over a decade (2013-2022), PM2.5 data during wildfire seasons were analyzed using statistical methods and Lagrangian tracking to monitor smoke plume evolution. The results reveal a notable increase in PM2.5 concentration during the wildfire season (June-November) in Galicia, surpassing health guidelines during extreme events and posing a significant health risk to the population. Regional wildfire analyses indicate that smoke plumes from Northern Portugal contribute to pollution in Galician cities, influencing the seasonality of heightened PM2.5 levels. During extensive wildfires, elevated PM2.5 concentration values persisted for several days, potentially exacerbating health concerns in Galicia. These findings underscore the urgency of implementing air pollution prevention and management measures in the region, including developing effective alerts for large-scale events and improved wildfire management strategies to mitigate their impact on air quality in Galician cities.
Collapse
Affiliation(s)
- César Quishpe-Vásquez
- Departamento de Geología, Geografía y Medio Ambiente, Universidad de Alcalá, Alcalá, Spain.
| | - Patricia Oliva
- Departamento de Geología, Geografía y Medio Ambiente, Universidad de Alcalá, Alcalá, Spain
| | | | - Alejandro Casallas
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria; Earth System Physics, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| |
Collapse
|
2
|
Elmarakby E, Elkadi H. Comprehending particulate matter dynamics in transit-oriented developments: Traffic as a generator and design as a captivator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172528. [PMID: 38663620 DOI: 10.1016/j.scitotenv.2024.172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
In Transit-Oriented Development (TOD), the close integration of residential structures with community activities and traffic heightens residents' exposure to traffic-related pollutants. Despite traffic being a primary source of particulate matter (PM), the compact design of TODs, together with the impact of urban heat island (UHI), increases the likelihood of trapping emitted PM from traffic, leading to heightened exposure of TOD residents to PM. Although PM originates from two distinct sources in road traffic, exhaust and non-exhaust emissions (NEE), current legislation addressing traffic-related PM from non-exhaust emissions sources remains limited. This paper focuses on two TOD typologies in Manchester City-Manchester Piccadilly and East Didsbury-to understand the roles of TOD traffic as a PM generator and TOD place design as a PM container and trapper. The investigation aims to establish correlations between street design canyon ratios, vehicular Speed, and PM10/PM2.5, providing design guidance and effective traffic management strategies to control PM emissions within TODs. Through mapping the canyon ratio and utilising the Breezometer API for PM monitoring, the paper revealed elevated PM levels in both TOD areas, exceeding World Health Organization (WHO) recommendations, particularly for PM2.5. Correlation analysis between canyon configuration and PM2.5/PM10 highlighted the importance of considering building heights and avoiding the creation of deep canyons in TOD design to minimise the limited dispersion of PM. Leveraging UK road statistics and the PTV Group API for vehicle speed calculations, the paper studied the average speeds on the TOD roads concerning PM. Contrary to conventional assumption, the correlation analyses have revealed a noteworthy association shift between vehicular speed and PM concentrations. A positive correlation existed between speed increase and PM increases on arterial roads. However, a negative correlation emerged on main, collector, and local streets, indicating that PM levels rise for both PM10 and PM2.5 as Speed decreases. These findings challenge the traditional assumption that higher Speed leads to increased emissions, highlighting the potential impact of NEE on PM concentrations. This paper calls for thorough design considerations and traffic management strategies in TOD, especially in dense areas, considering building height, optimising traffic flow, and enhancing compromised air quality associated with vehicular emissions.
Collapse
Affiliation(s)
- Esraa Elmarakby
- The University of Salford, School of Science, Engineering, and Environment, United Kingdom of Great Britain and Northern Ireland; Ain Shams University, Faculty of Engineering, Egypt.
| | - Hisham Elkadi
- The University of Salford, School of Science, Engineering, and Environment, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
3
|
Somboonsin P, Vardoulakis S, Canudas-Romo V. A comparative study of life-years lost attributable to air particulate matter in Asia-Pacific and European countries. CHEMOSPHERE 2023; 338:139420. [PMID: 37419148 DOI: 10.1016/j.chemosphere.2023.139420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Air particulate matter (PM) and its harmful effects on human health are of great concern globally due to all-cause and cause-specific mortality impacts across different population groups. While Europe has made significant progress in reducing particulate air pollution-related mortality through innovative technologies and policies, many countries in Asia-Pacific region still rely on high-polluting technologies and have yet to implement effective policies to address this issue, resulting in higher levels of mortality due to air pollution in the region. This study has three aims related to quantifying life-years lost (LYL) attributable to PM, and further separated into ambient PM and household air pollution (HAP): (1) to investigate LYL by causes of death; (2) to compare LYL between Asia-Pacific (APAC) and Europe; and (3) to assess LYL across different socio-demographic index (SDI) countries. The data used come from the Institute for Health Metrics and Evaluation (IHME) and Health Effects Institute (HEI). Our results show that average LYL due to PM in APAC was greater than in Europe, with some Pacific island countries particularly affected by the exposure to HAP. Three quarters of LYL came from premature deaths by ischemic heart disease and stroke, in both continents. There were significant differences between SDI groups for causes of death due to ambient PM and HAP. Our findings call for urgent improvement of clean air to reduce indoor and outdoor air pollution-related mortality in the APAC region.
Collapse
Affiliation(s)
- Pattheera Somboonsin
- School of Demography, The Australian National University, Canberra, 2601, Australia.
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, 2601, Australia
| | | |
Collapse
|
4
|
Jeong YJ, Kim CU, Lee KS, Kim JH, Park SY, Jeong AY, Lee JB, Kim DJ, Park YJ, Lee MS. Pseudomonas stutzeri PM101005 inhaled with atmospheric particulate matter induces lung damage through inflammatory responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120741. [PMID: 36435285 DOI: 10.1016/j.envpol.2022.120741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric particulate matter (PM) contains a mixture of chemical and biological elements that pose threat to human health by increasing susceptibility to respiratory diseases. Although the identification of the microorganisms composing the PM has been assessed, their immunological impacts are still questionable. Here, we examined the mechanisms responsible for the pathogenicity of Pseudomonas stutzeri PM101005 (PMPS), a bacterium isolated from fine dust, in lung epithelial cells, alveolar cells, and macrophages. Relative to its comparative strain Pseudomonas stutzeri (PS), infections with PMPS induced higher production of inflammatory cytokines and chemokines, mediated by the activation of NF-κB and MAPK signaling pathways. Additionally, with three-dimensional (3D) airway spheroids which mimic the human bronchial epithelium, we confirmed that PMPS infections lead to relatively higher induction of pro-inflammatory cytokines than PM infections. Consistent results were observed in murine models as the infections with PMPS provoked greater inflammatory responses than the infections with PS. These PMPS-induced responses were mediated by the signaling pathways of the Toll-like receptors (TLRs), which regulated PMPS infection and played an important role in the expression of the antibiotic peptide β-defensin 3 (BD3) that suppressed PMPS proliferation. Moreover, PM pretreatment enhanced inflammatory responses and tissue damage of PMPS, while reducing BD3 expression. Overall, these results indicate that PM-isolated PMPS induce TLR-mediated inflammatory responses in lung tissues, and contributes to the understanding of the etiology of PM-induced respiratory damage.
Collapse
Affiliation(s)
- Yu-Jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Seo Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Ahn Young Jeong
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Doo-Jin Kim
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Young-Jun Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Zhang Z, Wu L, Cui T, Ahmed RZ, Yu H, Zhang R, Wei Y, Li D, Zheng Y, Chen W, Jin X. Oxygen sensors mediated HIF-1α accumulation and translocation: A pivotal mechanism of fine particles-exacerbated myocardial hypoxia injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118937. [PMID: 35114305 DOI: 10.1016/j.envpol.2022.118937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Epidemiological studies have demonstrated a strong association of ambient fine particulate matter (PM2.5) exposure with the increasing mortality by ischemic heart disease (IHD), but the involved mechanisms remain poorly understood. Herein, we found that the chronic exposure of real ambient PM2.5 led to the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the myocardium of mice, accompanied by obvious myocardial injury and hypertrophy. Further data from the hypoxia-ischemia cellular model indicated that PM2.5-induced HIF-1α accumulation was responsible for the promotion of myocardial hypoxia injury. Moreover, the declined ATP level due to the HIF-1α-mediated energy metabolism remodeling from β-oxidation to glycolysis had a critical role in the PM2.5-increased myocardial hypoxia injury. The in-depth analysis delineated that PM2.5 exposure decreased the binding of prolyl hydroxylase domain 2 (PHD2) and HIF-1α and subsequent ubiquitin protease levels, thereby leading to the accumulation of HIF-1α. Meanwhile, factor-inhibiting HIF1 (FIH1) expression was down-regulated by PM2.5, resulting in the enhanced translocation of HIF-1α to the nucleus. Overall, our study provides valuable insight into the regulatory role of oxygen sensor-mediated HIF-1α stabilization and translocation in PM-exacerbated myocardial hypoxia injury, we suggest this adds significantly to understanding the mechanisms of haze particles-caused burden of cardiovascular disease.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Liu Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Tenglong Cui
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | | | - Haiyi Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanhong Wei
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
What Are the Sectors Contributing to the Exceedance of European Air Quality Standards over the Iberian Peninsula? A Source Contribution Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14052759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Iberian Peninsula, located in southwestern Europe, is exposed to frequent exceedances of different threshold and limit values of air pollution, mainly related to particulate matter, ozone, and nitrous oxide. Source apportionment modeling represents a useful modeling tool for evaluating the contribution of different emission sources or sectors and for designing useful mitigation strategies. In this sense, this work assesses the impact of various emission sectors on air pollution levels over the Iberian Peninsula using a source contribution analysis (zero-out method). The methodology includes the use of the regional WRF + CHIMERE modeling system (coupled to EMEP emissions). In order to represent the sensitivity of the chemistry and transport of gas-phase pollutants and aerosols, several emission sectors have been zeroed-out to quantify the influence of different sources in the area, such as on-road traffic or other mobile sources, combustion in energy generation, industrial emissions or agriculture, among others. The sensitivity analysis indicates that large reductions of precursor emissions (coming mainly from energy generation, road traffic, and maritime-harbor emissions) are needed for improving air quality and attaining the thresholds set in the European Directive 2008/50/EC over the Iberian Peninsula.
Collapse
|
8
|
Optimalization of ceramic-based noble metal-free catalysts for CO oxidation reactions. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02166-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Di Ciaula A, Krawczyk M, Filipiak KJ, Geier A, Bonfrate L, Portincasa P. Noncommunicable diseases, climate change and iniquities: What COVID-19 has taught us about syndemic. Eur J Clin Invest 2021; 51:e13682. [PMID: 34551123 PMCID: PMC8646618 DOI: 10.1111/eci.13682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND COVID-19 is generating clinical challenges, lifestyle changes, economic consequences. The pandemic imposes to familiarize with concepts as prevention, vulnerability and resilience. METHODS We analysed and reviewed the most relevant papers in the MEDLINE database on syndemic, noncommunicable diseases, pandemic, climate changes, pollution, resilience, vulnerability, health costs, COVID-19. RESULTS We discuss that comprehensive strategies must face multifactorial consequences since the pandemic becomes syndemic due to interactions with noncommunicable diseases, climate changes and iniquities. The lockdown experience, on the other hand, demonstrates that it is rapidly possible to reverse epidemiologic trends and to reduce pollution. The worst outcome is evident in eight highly industrialized nations, where 12% of the world population experienced about one-third of all COVID-19-deaths worldwide. Thus, a great economic power has not been fully protective, and a change of policy is obviously needed to avoid irreversible consequences. CONCLUSIONS We are accumulating unhealthy populations living in unhealthy environments and generating unhealthy offspring. The winning policy should tackle structural inequities through a syndemic approach, to protect vulnerable populations from present and future harms.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences and Human OncologyClinica Medica ‘A. Murri’University of Bari ‘Aldo Moro’ Medical SchoolBariItaly
| | - Marcin Krawczyk
- Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
- Laboratory of Metabolic Liver DiseasesDepartment of General, Transplant and Liver SurgeryCentre for Preclinical ResearchMedical University of WarsawWarsawPoland
| | | | - Andreas Geier
- Division of HepatologyDepartment of Internal Medicine IIUniversity Hospital WürzburgWürzburgGermany
| | - Leonilde Bonfrate
- Department of Biomedical Sciences and Human OncologyClinica Medica ‘A. Murri’University of Bari ‘Aldo Moro’ Medical SchoolBariItaly
| | - Piero Portincasa
- Department of Biomedical Sciences and Human OncologyClinica Medica ‘A. Murri’University of Bari ‘Aldo Moro’ Medical SchoolBariItaly
| |
Collapse
|
10
|
Monitoring Rainwater Properties and Outdoor Particulate Matter in a Former Steel Manufacturing City in Romania. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wet deposition is influencing air quality because air pollutants are washed away from the surrounding air. Consequently, particulate matter and associated compounds are transported in the rainwater and enter into soil, surface waters, and groundwater. Nonpoint sources of heavy metals from stormwater runoff have increased in urban areas due to industrialization and the increasing impervious surfaces. In this work, we present an assessment of the rainwater composition regarding the nutrients and other physicochemical characteristics measured in three locations selected in Targoviste city, Romania, a city that had a specialized steel factory and important metallurgical facilities. The rainwater was collected using three PALMEX rain samplers and then was transferred to high-density polyethylene bottles and analyzed using ICP-MS. PM2.5 concentrations were also monitored continuously using optical monitors calibrated using a gravimetric sampler. A detailed analysis of the heavy metals content in rainwater and PM was presented for the pollution episodes occurring in October and November 2019. Backward trajectories were computed using the HYSPLIT model for these periods. The results showed that the PM2.5 ranged from 11.1 to 24.1 μg/m3 in 2019, while the heavy metals in collected rainwater were (µg L−1): 0.25 (Cd) − CV = 26.5%, 0.10 (Co) − CV = 58.1%, 1.77 (Cr) − CV = 24.3%, 377.37 (Ni) − CV = 27.9%, 0.67 (Pb) − CV = 74.3%, and 846.5 (Zn) − CV = 20.6%. Overall, Ni, Pb, Cr, and V had significant correlations between the concentrations from rainwater and PM. Negative associations were found between precipitation events and heavy metals both from rainwater and PM, but only a few showed statistical significance. However, this could explain the “washing” effect of the rain on the heavy metals from PM2.5. The potential sources of nitrogen in the rainwater collected in Targoviste could be from burning fossil fuels and the soils, including both biological processes and fertilization resulting from the intensive agriculture in the piedmont plain in which the city is located. Based on the results, rainwater monitoring can constitute a reliable method for air quality characterization. Additional research is required to better understand seasonality and sources of heterogeneity regarding the associations between PM and rainwater composition.
Collapse
|
11
|
Rodriguez-Alvarez A. Air pollution and life expectancy in Europe: Does investment in renewable energy matter? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148480. [PMID: 34153769 DOI: 10.1016/j.scitotenv.2021.148480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
This study examines the relationship between health and air pollution using a novel approach that allows differentiation between potential and observed health. It also permits an analysis of those factors that may contribute towards reducing any differences between the latter concepts. To this end, a panel data from 29 European countries for the periods 2005 and 2018 is used. Results indicate that the main pollutants affecting European countries, namely NOx, PM10 and PM2.5 have a negative impact on life expectancy at birth, while investment in renewable energies has a positive effect. Several conclusions can be drawn from these results. Firstly, if the aim is to minimize the detrimental effects of the global production of goods and services on air quality, a greater investment in renewable energies as compared to other more polluting ones, is called for. In turn, this would contribute to an improvement in the general health of citizens and the planet thereby increasing overall potential life expectancy. Secondly, NOx gases seem to be the ones that most affect the population's mean potential life expectancy. Results indicate that with regard to particulate matters, those with a diameter of less than 2.5 μm, are the ones that have the greatest impact on the health of European citizens, more so than larger particles (with a diameter between 10 and 2.5 μm).
Collapse
Affiliation(s)
- Ana Rodriguez-Alvarez
- University of Oviedo, Department of Economics, Campus del Cristo s/n, 33006 Oviedo, Spain.
| |
Collapse
|
12
|
Performance Evaluation of Particulate Matter and Indoor Microclimate Monitors in University Classrooms under COVID-19 Restrictions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147363. [PMID: 34299813 PMCID: PMC8305222 DOI: 10.3390/ijerph18147363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 μg m−3 and PM10 ranged between 30 and 42 μg m−3. It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.
Collapse
|