1
|
Xiu Z, Zheng N, An Q, Chen C, Lin Q, Li X, Wang S, Peng L, Li Y, Zhu H, Sun S, Wang S. Tissue-specific distribution and fatty acid content of PFAS in the northern Bohai Sea fish: Risk-benefit assessment of legacy PFAS and emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136024. [PMID: 39396441 DOI: 10.1016/j.jhazmat.2024.136024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
This study aimed to examine the distribution of poly- and perfluoroalkyl substances (PFAS) in 15 marine fish species from the northern Bohai Sea, investigate their sources of contamination, and evaluate the benefits-risks associated with the concurrent consumption of fish fatty acids and PFAS. The ∑PFAS concentrations in fish ranged from 9.38 to 262.92 ng·g-1 (dry weight). The highest PFAS levels were found in the viscera and gills, while the lowest levels were found in the muscles. Industrial effluents and sewage treatment plant discharges were the primary sources of PFAS contamination. The individual PFAS concentrations in fish were insignificantly correlated with their trophic levels (p > 0.05). However, the concentrations of hexafluoropropylene oxide dimer acid (HFPO-DA) or long-chain PFAS (C > 8) significantly increased with fish size (e.g., total length, weight) and lipid content (p < 0.001). The benefit-risk analysis suggests that HPFO-DA poses a higher health risk than perfluorooctanoic acid (PFOA) in fish (p < 0.05). Long-term consumption of contaminated fish may significantly increase human serum PFOA concentration and kidney cancer risk (p < 0.05). Daily consumption of 5 g (wet weight) muscle from Ditrema temmincki and Konosirus punctatus is recommended to meet the requirements for fatty acid supplementation without posing health risks.
Collapse
Affiliation(s)
- Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Qiuyan Lin
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Yunyang Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Shuai Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| |
Collapse
|
2
|
Mao P, Zhang X, Qian M, Wang Q, Yang Y, Gao Y, Liu H, Wang L. Transcriptomics-based analysis reveals hexafluoropropylene oxide trimer acid (HFPO-TA) induced kidney damage and lipid metabolism disorders in SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116951. [PMID: 39213752 DOI: 10.1016/j.ecoenv.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) is an emerging environmental pollutant that can accumulate in air and surface water. Currently, it has been widely used in fluoropolymer industry, which could cause serious environmental pollution. Due to the high bioaccumulation, the accumulation of pollutants may have an adverse effect on the normal physiological function of the kidneys. However, the toxic effects of HFPO-TA on the kidney are unknown. In this study, we investigated the toxic effects of HFPO-TA exposure on the rat kidney and its mechanism of action. Male SD rats were divided into 4 groups: control group (Ctrl group), L group (0.125 mg/kg/d), M group (0.5 mg/kg/d) and H group (2 mg/kg/d). After 14 consecutive days of gavage, periodic acid‑silver methenamine (PASM) and hematoxylin-eosin (HE) staining were used to examine the structure of the kidneys. We also used transcriptome sequencing (RNA-seq) to identify differentially expressed genes (DEGs) in the testes of rats in both the control and high dose groups. Besides, expression of key proteins was analyzed by immunohistochemistry. The results indicated that HFPO-TA can lead to injured renal capsule, change glomerular shape and have a significant impact on the protein expression levels of AQP2, p-AQP2 and PPARα. Additionally, the level of total cholesterol (TC) was obviously decreased after HFPO-TA exposure. RNA-seq analysis showed that HFPO-TA primarily affected peroxisome proliferator-activated receptor (PPAR) signaling pathway that is associated with lipid metabolism and cyclic adenosine monophosphate (cAMP) signaling pathway. In summary, exposure to HFPO-TA can lead to kidney damage and lipid metabolism disorders.
Collapse
Affiliation(s)
- Penghui Mao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, PR China
| | - Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Qi Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, PR China
| | - Ying Yang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, PR China
| | - Yangli Gao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
3
|
Jung W, Park H, Lee BS, Chang YS, Kim JB, Yang MJ, Lim J, Choi H, Park EJ. General toxicity and screening of reproductive and developmental toxicity following bioaccumulation of oral-dosed perfluorooctanoic acid: Loss of the Golgi apparatus. Food Chem Toxicol 2024; 191:114867. [PMID: 39002792 DOI: 10.1016/j.fct.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Despite its widespread use as a stabilizer across various industries over the past several decades, the health effects of chronic exposure to PFOA are still unclear. We administered PFOA by oral gavage (0, 12.5, 50, and 200 μg/day/mouse, eight groups) to male and female mice for six months. Body weight gain decreased with dose accompanied by increased liver weight, and PFOA altered liver damage-related-blood biochemical indicators and induced pathological lesions, including hepatocellular hypertrophy, cholangiofibrosis, and centrilobular hepatocellular vacuolation. Loss of the Golgi apparatus, formation of lamellar body-like structures, and lipid accumulation were observed in the liver of PFOA-treated mice. We also cohabited five pairs of male and female mice for the last ten days of administration, dosed PFOA to dam up to 28 days after birth, and investigated effects on reproduction and development. The survival rate of pups and the sex ratio of surviving mice decreased significantly at the highest dose. PFOA tissue concentration increased with the dose in the parent mice's liver and the pups' blood and brain. Taken together, we suggest that PFOA primarily affects the liver and reproduction system and that disturbance in lipid metabolism and Golgi's structural stability may be involved in PFOA-induced toxicity.
Collapse
Affiliation(s)
- Wonkyun Jung
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, South Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Yoon-Seok Chang
- Department of Civil, Urban, Earth and Environmental Engineering, UNIST, 44919, South Korea
| | - Jin-Bae Kim
- Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, South Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, 56212, South Korea
| | - Jiyun Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, South Korea
| | - Hyosun Choi
- National Instrumentation Center for Environmental Management, Seoul National University, South Korea
| | - Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, South Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, South Korea.
| |
Collapse
|
4
|
Park RM. Risk assessment for perfluorooctanoic acid (PFOA) in air, blood serum and water: mortality from liver and kidney disease. Occup Environ Med 2024; 81:373-380. [PMID: 39025495 DOI: 10.1136/oemed-2023-109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cancer and non-cancer associations have been observed with PFAS (perfluoroalkyl and polyfluoroalkyl) substances in the general population, in populations from locally contaminated environments and in exposed workers. METHODS A quantitative risk assessment on the PFAS substance perfluorooctanoic acid (PFOA) was conducted for six outcomes using two occupational mortality studies that reported sufficient data to estimate exposure-relationships in relation to serum PFOA levels. Excess lifetime mortality risks were calculated using a life table procedure that applies an exposure response to time-dependent PFOA serum levels for a surviving hypothetical population from ages 20 to 85. Both occupational and general population exposures were described as serum levels, and as air and drinking water concentrations. RESULTS The estimated occupational inhalation concentrations conferring the benchmark one-per-thousand lifetime risk were 0.21 µg/m3 for chronic kidney disease, 1.0 µg/m3 for kidney cancer and (from the two studies) 0.67 and 1.97 µg/m3 for chronic liver disease. Specific excess lifetime risks estimated in the general population at current PFOA serum levels (~ 1 ng/mL) range 1.5-32 per 100 000 which corresponds to drinking water concentrations of less than 10 ppt. CONCLUSION Over eight outcome risk estimates, the serum PFOA concentrations conferring 1/1000 occupational lifetime risk ranged 44 to 416 ng/mL corresponding to air concentrations ranging 0.21 to 1.99 µg/m3. The analyses provide a preliminary PFOA quantitative risk assessment for liver and kidney disease mortality which, together with reported assessments for several other end-points, would inform policy on PFAS.
Collapse
Affiliation(s)
- Robert M Park
- Retired from National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Céline C, Catherine B, Romane C, Laurence C. Per- and polyfluoroalkyls used as cosmetic ingredients - Qualitative study of 765 cosmetic products. Food Chem Toxicol 2024; 187:114625. [PMID: 38582342 DOI: 10.1016/j.fct.2024.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) form a vast family comprising more than 4700 synthetic compounds. Their molecules contain a terminal functional group and a hydrophobic carbon tail (alkyl group) at which the hydrogen atoms are totally (in the case of perfluorinated compounds) or partially (in the case of polyfluorinated compounds) replaced by fluorine atoms. Due to the very specific properties of their structure, they have been used in a vast range of applications over the last 70 years. These substances are considered to be of concern for the environment. Their effects on human health are still poorly understood because studies are still too rare, but the cutaneous route could be a significant pathway of penetration. In this context, we made a qualitative study to assess the presence of PFAS in various cosmetics such as hygiene products, skin care products, make-up and perfumes. Among the 765 products studied, we found 11 different PFAS. Polytetrafluoroethylene (PTFE) and perfluorodecalin, present in 25.9% and 22.2% of products containing it, respectively, were the most frequent. Although the presence of this type of ingredient seems to be limited in Europe, make-up appears to be the type of product most likely to contain PFAS.
Collapse
Affiliation(s)
- Couteau Céline
- Faculté de Pharmacie, Nantes Université, 9 Rue Bias, 44000, Nantes, France; Université de Brest, LIEN, EA 4685, Brest, France
| | - Brunet Catherine
- Faculté de Pharmacie, Nantes Université, 9 Rue Bias, 44000, Nantes, France
| | - Clarke Romane
- Faculté de Pharmacie, Nantes Université, 9 Rue Bias, 44000, Nantes, France
| | - Coiffard Laurence
- Faculté de Pharmacie, Nantes Université, 9 Rue Bias, 44000, Nantes, France; Université de Brest, LIEN, EA 4685, Brest, France.
| |
Collapse
|
6
|
Biggeri A, Stoppa G, Facciolo L, Fin G, Mancini S, Manno V, Minelli G, Zamagni F, Zamboni M, Catelan D, Bucchi L. All-cause, cardiovascular disease and cancer mortality in the population of a large Italian area contaminated by perfluoroalkyl and polyfluoroalkyl substances (1980-2018). Environ Health 2024; 23:42. [PMID: 38627679 PMCID: PMC11022451 DOI: 10.1186/s12940-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. METHODS The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20-84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. RESULTS During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107-109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. CONCLUSIONS For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.
Collapse
Affiliation(s)
- Annibale Biggeri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua, Padua, Italy
| | - Giorgia Stoppa
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua, Padua, Italy.
| | | | - Giuliano Fin
- Comitato mamme NO-PFAS, Vicenza, Padua, Verona, Italy
| | - Silvia Mancini
- Emilia-Romagna Cancer Registry, Romagna Cancer Institute, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy
| | - Valerio Manno
- Statistical Service, Istituto Superiore di Sanità, Rome, Italy
| | - Giada Minelli
- Statistical Service, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Zamagni
- Emilia-Romagna Cancer Registry, Romagna Cancer Institute, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy
| | | | - Dolores Catelan
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua, Padua, Italy
| | - Lauro Bucchi
- Emilia-Romagna Cancer Registry, Romagna Cancer Institute, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy
| |
Collapse
|
7
|
Liu Y, Li W, Zhang J, Yan Y, Zhou Q, Liu Q, Guan Y, Zhao Z, An J, Cheng X, He M. Associations of arsenic exposure and arsenic metabolism with the risk of non-alcoholic fatty liver disease. Int J Hyg Environ Health 2024; 257:114342. [PMID: 38401403 DOI: 10.1016/j.ijheh.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 μg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuenan Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianying Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbin Guan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Schäffer A, Groh KJ, Sigmund G, Azoulay D, Backhaus T, Bertram MG, Carney Almroth B, Cousins IT, Ford AT, Grimalt JO, Guida Y, Hansson MC, Jeong Y, Lohmann R, Michaels D, Mueller L, Muncke J, Öberg G, Orellana MA, Sanganyado E, Schäfer RB, Sheriff I, Sullivan RC, Suzuki N, Vandenberg LN, Venier M, Vlahos P, Wagner M, Wang F, Wang M, Soehl A, Ågerstrand M, Diamond ML, Scheringer M. Conflicts of Interest in the Assessment of Chemicals, Waste, and Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19066-19077. [PMID: 37943968 DOI: 10.1021/acs.est.3c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.
Collapse
Affiliation(s)
- Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, 210023 Nanjing, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400045 Chongqing, China
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Gabriel Sigmund
- Environmental Technology, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| | - David Azoulay
- Center for International Environmental Law (CIEL), Washington, D.C. 20005, United States
| | - Thomas Backhaus
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Department of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth PO4 9LY, United Kingdom
| | - Joan O Grimalt
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Catalonia, Spain
| | - Yago Guida
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Maria C Hansson
- The Centre for Environmental and Climate Science (CEC), Lund University, 22362 Lund, Sweden
| | - Yunsun Jeong
- Division of Environmental Health, Korea Environment Institute (KEI), 30147 Sejong, Republic of Korea
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02881, United States
| | - David Michaels
- Department of Environmental & Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, D.C. 20052, United States
| | - Leonie Mueller
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Jane Muncke
- Food Packaging Forum Foundation, 8045 Zurich, Switzerland
| | - Gunilla Öberg
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcos A Orellana
- Global Toxics and Human Rights Project, American University Washington College of Law, Washington, D.C. 20016, United States
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Ralf Bernhard Schäfer
- Institute for Environmental Sciences Landau, RPTU Kaiserslautern-Landau, 76829 Landau, Germany
| | - Ishmail Sheriff
- School of Civil Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ryan C Sullivan
- Department of Chemistry and Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
| | - Noriyuki Suzuki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Marta Venier
- Indiana University, Bloomington, Indiana 47405, United States
| | - Penny Vlahos
- Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengjiao Wang
- Greenpeace Research Laboratories, Department of Biosciences, University of Exeter, Exeter EX4 4RN, United Kingdom
| | - Anna Soehl
- International Panel on Chemical Pollution, 8044 Zürich, Switzerland
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto M5S 3B1, Canada
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Gonzales AK, Donaher SE, Wattier BD, Martinez NE. Exposure of Lemna minor (Common Duckweed) to Mixtures of Uranium and Perfluorooctanoic Acid (PFOA). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2412-2421. [PMID: 37477461 DOI: 10.1002/etc.5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
A variety of processes, both natural and anthropogenic, can have a negative impact on surface waters, which in turn can be detrimental to human and environmental health. Few studies have considered the ecotoxicological impacts of concurrently occurring contaminants, and that is particularly true for mixtures that include contaminants of emerging concern (CEC). Motivated by this knowledge gap, the present study considers the potential ecotoxicity of environmentally relevant contaminants in the representative aquatic plant Lemna minor (common duckweed), a model organism. More specifically, biological effects associated with exposure of L. minor to a ubiquitous radionuclide (uranium [U]) and a fluorinated organic compound (perfluorooctanoic acid [PFOA], considered a CEC), alone and in combination, were monitored under controlled laboratory conditions. Lemna minor was grown for 5 days in small, aerated containers. Each treatment consisted of four replicates with seven plants each. Treatments were 0, 0.3, and 3 ppb PFOA; 0, 0.5, and 5 ppb U; and combinations of these. Plants were observed daily for frond number and signs of chlorosis and necrosis. Other biological endpoints examined at the conclusion of the experiment were chlorophyll content and antioxidant capacity. In single-exposure experiments, a slight stimulatory effect was observed on frond number at 0.3 ppb PFOA, whereas both concentrations of U had a detrimental effect on frond number. In the dual-exposure experiment, the combinations with 5 ppb U also had a detrimental effect on frond number. Results for chlorophyll content and antioxidant capacity were less meaningful, suggesting that environmentally relevant concentrations of PFOA and U have only subtle effects on L. minor growth and health status. Environ Toxicol Chem 2023;42:2412-2421. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Annelise K Gonzales
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Sarah E Donaher
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Bryanna D Wattier
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Nicole E Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson, South Carolina, USA
| |
Collapse
|
10
|
Steenland K. Invited Perspective: The Slow Road to Finding Out Whether the "Forever" Chemicals Cause Chronic Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:71305. [PMID: 37458711 PMCID: PMC10351501 DOI: 10.1289/ehp13212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Affiliation(s)
- Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Liu D, Yan S, Wang P, Chen Q, Liu Y, Cui J, Liang Y, Ren S, Gao Y. Perfluorooctanoic acid (PFOA) exposure in relation to the kidneys: A review of current available literature. Front Physiol 2023; 14:1103141. [PMID: 36776978 PMCID: PMC9909492 DOI: 10.3389/fphys.2023.1103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctanoic acid is an artificial and non-degradable chemical. It is widely used due to its stable nature. It can enter the human body through food, drinking water, inhalation of household dust and contact with products containing perfluorooctanoic acid. It accumulates in the human body, causing potential harmful effects on human health. Based on the biodegradability and bioaccumulation of perfluorooctanoic acid in the human body, there are increasing concerns about the adverse effects of perfluorooctanoic acid exposure on kidneys. Research shows that kidney is the main accumulation organ of Perfluorooctanoic acid, and Perfluorooctanoic acid can cause nephrotoxicity and produce adverse effects on kidney function, but the exact mechanism is still unknown. In this review, we summarize the relationship between Perfluorooctanoic acid exposure and kidney health, evaluate risks more clearly, and provide a theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Pingwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanping Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiajing Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yujun Liang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Gao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|