1
|
Yang H, Kong L, Chen Z, Wu J. Effect of functional groups of polystyrene nanoplastics on the neurodevelopmental toxicity of acrylamide in the early life stage of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107177. [PMID: 39612669 DOI: 10.1016/j.aquatox.2024.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/17/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Polystyrene nanoplastics (PS NPs) and acrylamide (ACR), both emerging contaminants, have been found to be related to neurotoxicity. However, the effects of PS NPs on ACR-induced neurodevelopmental toxicity remain unclear. In this study, anionic carboxyl polystyrene nanoplastics (PS NPs-COOH), cationic amino polystyrene nanoplastics (PS NPs-NH2) and unmodified PS NPs were selected to investigate their interaction with ACR. A serious of the neurotoxicity biomarkers from individual to molecular level were evaluated to explore the specific mechanisms. The results indicated that the unmodified PS NPs had the most significant impact on embryonic development at low concentrations in combination with ACR. The toxicity of the other two functionalized PS NPs increased with concentration, exhibiting a clear dose-response relationship. Meanwhile, all three kinds of PS NPs significantly enhanced the impacts of ACR on the locomotion behavior of zebrafish larvae. Analysis of zebrafish nervous system development showed that PS NPs-COOH exhibit greater toxicity to the central nervous system. In contrast, PS NPs-NH2 had a more significant impact on the motor nervous system. Gene expression analysis revealed that ACR and PS NPs significantly affected the expression levels of neurodevelopmental related genes, including Neurog1, Elavl3, Gfap, Gap43, Mbpa, Shha. PS NPs modified with functional groups could induce corresponding neurotoxicity by affecting genes expression related to neuronal differentiation, motor neuron, and axonal development. Based on the comprehensive biomarker response index, the order of the impacts of NPs on the neurotoxicity of ACR was PS NPs-COOH > PS NPs-NH2 > PS NPs. In conclusion, this study provides new insights into the interactive biological effects of NPs and ACR on zebrafish embryo, contributing to a better understanding of their environmental risk to aquatic ecosystem.
Collapse
Affiliation(s)
- Haohan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Linghui Kong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhuoyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
2
|
Sharma S, Rojas A, Gour A, Serradimigni R, Leong C, Sharma A, Dasgupta S. Assessing molecular changes underlying isopropylated phenyl phosphate (IPP)-induced larval sensorimotor response deficits in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117619. [PMID: 39742644 DOI: 10.1016/j.ecoenv.2024.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Isopropylated phenyl phosphates (IPP) are an additive organophosphate flame retardant (OPFR) that has been extensively used in furniture, electronics, automobiles, plastics, and children's products to slow down the spread of fire but its continued leaching leads to toxicity concerns. Toxicological information on this important legacy contaminant is limiting. Using zebrafish, our prior whole embryonic RNA-seq data revealed disruption of gene sets enriched for DNA methylation, neurotransmitter synthesis, retinoic acid signaling and eye development. Within this study, we used zebrafish embryos to systemically study these biological targets. Our initial range-finding experiments revealed significant morphological impacts like pericardial edema, yolk sac edema and spinal curvature, coupled with a significant increase in the levels of dopamine and 3-methoxytyramine. We then conducted an in vitro retinoic acid receptor (RAR) assay and showed that IPP inhibits RARα, but not RARβ and RARγ. Following this, our larval behavioral (photomotor and acoustic response assays) at environmentally relevant, sub-μM concentrations showed significant hypoactivity, indicating sensorimotor deficits within exposed embryo. We then assessed global DNA methylation using a combination of whole-mount immunohistochemistry and ELISA for 5-methylcytosine (5-mC) and showed significant IPP-induced hypermethylation within whole embryo in situ. Finally, we focused on eye and brains as targets. We dissected eyes and brains from IPP-exposed larvae and conducted 5-mC assessments and mRNA-sequencing. Interestingly, neither of the organs showed differences in 5-mC levels and the brains also did not show substantial transcriptomic effects. However, for eyes, mRNA sequencing showed 135 differentially expressed genes and these were enriched for several nervous system-associated pathways, including voltage gated ion channel activity, synaptic transmission and neurotransmitter signaling. Collectively, our data shows that IPP exposures can disrupt a battery of biological pathways spanning neurometabolomic, genetic, epigenetic as well as organ-level targets. Notably, these impacts occur at concentrations within environmental relevance where overt toxic morphological phenotypes are not recorded. Future work will focus on understanding the contribution of these molecular targets to behavioral phenotypes.
Collapse
Affiliation(s)
- Sunil Sharma
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo Rojas
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Abhishek Gour
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Connor Leong
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Abhisheak Sharma
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
3
|
Gao N, Yang L, Zhu L, Zhu L, Feng J. New Insights into the Visual Toxicity of Organophosphate Esters: An Integrated Quantitative Adverse Outcome Pathway and Cross-chemical Extrapolation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22039-22052. [PMID: 39631370 DOI: 10.1021/acs.est.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organophosphate esters (OPEs) have been documented to adversely affect visual function, potentially impacting wildlife survival and human health, thereby necessitating a comprehensive risk assessment. Despite the quantitative adverse outcome pathway (qAOP) holding promise for addressing this concern mechanistically, unclear mode of action and inadequate quantitative understanding across biological levels currently impede its development. Herein, we employed an integrated strategy, combining multiomics analyses, targeted bioassays, and modular model-fitting, to develop and validate a qAOP framework for visual toxicity of OPEs, exemplified by tris(2-butoxyethyl) phosphate, triphenyl phosphate, and tris(1,3-dichloro-2-propyl) phosphate. Our results revealed that these OPEs induce visual dysfunction in zebrafish larvae primarily via oxidative stress, then cascade to damaging photoreceptors and retinal structures, ultimately resulting in the disruption of visual behaviors (i.e., decreased optokinetic response, phototaxis, and visual motor response). The qAOP, validated through cross-chemical extrapolation, enabled the prediction for vision-related effects of OPEs within a certain domain. Integrating toxicokinetic modeling could compensate for the uncertainty in qAOP predictions, since adjusting for internal concentrations as inputs significantly enhanced the accuracy and applicability of the predictions. This work contributes to a better understanding of visual toxicity by OPEs and presents a promising paradigm for quantitative risk assessment based on the qAOP framework.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Luo C, Zhang Q, Wang D, Xie H, Zheng S, Huang W, Huang Y, Shi X, Wu K. Tri-iso-butyl phosphate (TiBP) exposure induces neurotoxicity by triggering oxidative stress accompanied by neurotransmitter system disruptions and apoptosis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125137. [PMID: 39424049 DOI: 10.1016/j.envpol.2024.125137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The current research sheds light on the biological toxicity of organophosphate flame retardants (OPFRs), yet it overlooks the neurotoxicity and potential molecular mechanisms of tris(1,3-dichloro-2-propyl) phosphate (TiBP), a prominent constituent of the OPFRs. To address this, we utilized zebrafish larvae as a model to investigate TiBP's acute toxicity and neurotoxic effects, along with the associated molecular pathways. Our findings revealed that the 96 h and 120 h LC50 values for TiBP were 56.51 mg/L and 48.85 mg/L, respectively. Gradient exposure based on the 120 h LC50 demonstrated that TiBP induced developmental toxicity, characterized by elevated heart rate, reduced body length, and diminished eye distance. Additionally, a decrease in swimming activity was observed in the light test, along with the inhibition of the neuro crest cell development in Tg (HuC:eGFP) and Tg (sox10: eGFP) zebrafish larvae following TiBP exposure, as well as the alterations of neurogenesis and ACh-related genes. Expression of key neurodevelopment genes, including mbpa, gap43, nestin, ngfra, was significantly downregulated. Furthermore, heightened anxiety-like behaviors in open field and phototaxis tests were observed, concomitant with neurotransmitter imbalances. Specifically, there was an increase in DA levels, a decrease in GABA, and an upregulation of AChE activity. These disruptions were primarily mediated through transcriptional dysregulation of neurotransmitter synthesis, transport, and reception. Upon exposure to TiBP, zebrafish larvae exhibited a concentration-dependent increase in both ROS level and apoptosis. An upregulation of antioxidant enzymes and their transcription levels indicated the presence of oxidative stress in the larvae. The induction of ddit3 was congruent with the observed apoptosis, suggesting that it may be triggered by oxidative stress via the ERs-CHOP pathway. In summary, our study indicates that oxidative stress is a pivotal molecular event in the neurotoxicity induced by TiBP, implicating the disruption of the GABAergic, dopaminergic, and cholinergic systems, as well as triggering apoptosis.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
5
|
Chakraborty G, Joshi B, Ahire K, Patra C. Tributyl phosphate inhibits neurogenesis and motor functions during embryonic development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107203. [PMID: 39667268 DOI: 10.1016/j.aquatox.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Tributyl phosphate (TBP), an organophosphate ester (OPE), is heavily used as a solvent in chemical industries, a plasticizer, and to extract radioactive molecules. Thus, widespread uses of TBP in industrialized countries led to the release of TBP and its metabolites, dibutyl phosphate (DBP) and monobutyl phosphate (MBP), in the environment and were detected in human samples. Accumulating these OPEs over time in humans and aquatic animals may develop toxicological effects. The reports also say TBP passes through the mother-fetal transmission route and may affect embryonic development. However, the impact of TBP and its metabolites on vertebrate development has been poorly studied. Ex-utero development, high fecundity, and optical transparency make the zebrafish a preferred model for toxicological evaluation. Thus, we aim to explore the toxic effects of TBP and its metabolites on aquatic animals using zebrafish as a model organism. Embryos in the chorion were incubated in 10-60 µM test chemicals from 6 to 48 h post fertilization (hpf), and analyzed the adverse effects on embryos. Our study found that 10-20 µM TBP inhibits neural growth, resulting in decreased spontaneous movement frequency and locomotive behavior without altering the overall embryonic growth and muscle functions. In contrast, DBP-treated embryos showed increased spontaneous movement frequency without changing the motor neuron growth and locomotive behavior. Further, in higher concentrations, TBP is teratogenic, and DBP is lethal to the embryos. Altogether, we found that TBP inhibits neurogenesis and motor behavior; however, its metabolite DBP is neuroexcitatory in zebrafish embryos.
Collapse
Affiliation(s)
- Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India
| | - Bhagyashri Joshi
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India
| | - Kedar Ahire
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India.
| |
Collapse
|
6
|
Li D, Xie C, Fan Z, Ding R, Wang X, Liao Y. Evidence that cadmium aggravate the toxicity of triphenyl phosphate in aquatic sediments to Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136407. [PMID: 39522218 DOI: 10.1016/j.jhazmat.2024.136407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The ubiquitous co-existence of triphenyl phosphate (TPhP) and heavy metals in sediments raises significant biotoxicity concerns. However, uncertainty still exists regarding their combined toxicity to benthic organisms. Therefore, this research was conducted to elucidate the influences of cadmium (Cd) on TPhP toxicity to Corbicula fluminea (C. fluminea) in sediments. As a result, Cd promoted the accumulation of TPhP in C. fluminea and enhanced TPhP toxicity, manifested by damaged cell membranes and pronounced histological alterations. Molecular docking revealed that TPhP-Cd complexes exhibit greater binding affinity to cytochrome P4501A1 (CYP1A1) compared to TPhP alone. With the activity of CYP1A1 increasing, the biotransformation of TPhP was promoted in low-TPhP+Cd treatments (T5C0/T5C5/T5C35). Additionally, metabolites related to antioxidant defence and repair processes were reinforced to alleviate the toxicity of TPhP and Cd. However, excessive oxidative stress impaired the CYP1A1 activity in high-TPhP+Cd treatments (T35C0/T35C5/T35C35). Furthermore, metabolic pathway analysis revealed significant perturbations in the citrate cycle, alanine, aspartate and glutamate metabolism, purine metabolism, and pyrimidine metabolism. These disruptions weakened the repair capacity and aggravated apoptosis in digestive glands, potentially contributing to the synergistic toxicity of TPhP and Cd. The results highlight the ecological risks posed by TPhP in combination with heavy metals to benthic organisms.
Collapse
Affiliation(s)
- Dandan Li
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Chen Xie
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Ziwu Fan
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Rui Ding
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Xiaoyu Wang
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Yipeng Liao
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| |
Collapse
|
7
|
Zhang Q, Wu T, Luo C, Xie H, Wang D, Peng J, Wu K, Huang W. Ecotoxicological risk assessment of the novel psychoactive substance Esketamine: Emphasis on fish skeletal, behavioral, and vascular development. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135823. [PMID: 39278034 DOI: 10.1016/j.jhazmat.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Novel psychoactive substances (NPS), such as Esketamine (Esket), often contaminate the aquatic ecosystems following human consumption, raising concerns about the residues and potential ecological hazards to non-target organisms. The study used zebrafish as a model organism to investigate the developmental toxicity and ecotoxicological effects of acute Esket exposure. Our findings demonstrate that exposure to Esket significantly affected the early development and angiogenesis of zebrafish embryos/larvae. The mandible length was significantly decreased, and the angles between the pharyngeal arch cartilages were narrowed compared to the control group (all P < 0.05). Additionally, Esket resulted in a decrease of 47.6-89.8 % in the number of neural crest cells (NCC). Transcriptome analysis indicated altered expression of genes associated with cartilage and osteoblast growth. Moreover, Esket significantly inhibited swimming ability in zebrafish larvae and was accompanied by behavioral abnormalities and molecular alterations in the brain. Potential mechanisms underlying Esket-induced behavioral disorders involve neurotransmitter system impairment, abnormal cartilage development and function, aberrant vascular development, as well as perturbations in oxidative stress and apoptosis signaling pathways. Notably, the dysregulation of skeleton development through the bone morphogenetic protein (BMP) signaling pathway is identified as the primary mechanistic behind Esket-induced behavioral disorder. This study enhances our understanding of Esket's ecotoxicology profile and provides a comprehensive assessment of the environmental risks associated with NPS.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, PR China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
8
|
Zhu H, Chen S, Huang X, Chen X, Gong Z. An ingenious chemiluminescence sensing strategy for recalcitrant triphenyl phosphate based on oxidant-free UV-activated MIL-100(Fe) gel system. Anal Chim Acta 2024; 1330:343274. [PMID: 39489957 DOI: 10.1016/j.aca.2024.343274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Organophosphate flame retardants (OPFRs) are notorious emerging contaminants threatening the environment and human health. Triphenyl phosphate (TPHP), which has an extremely serious biotoxicity, is a typical harmful OPFR. Due to its wide use, TPHP has been discovered in various environmental mediums. Moreover, it is pretty recalcitrant to the removal process, resulting in the need for a technique to understand it better. Hence, accurate and quick discrimination of TPHP in the environment is critical to further evaluate its potential effect on ecosystems and human health. RESULTS An ingenious oxidant-free chemiluminescence (CL) sensor based on the oxidant-free UV/MIL-100(Fe) gel system was established for TPHP detection. The oxidation of luminol in the UV-activated MIL-100(Fe) gel has resulted in remarkable CL emission, which is contributed by reactive oxygen species (ROS) generated by it. Notably, the CL intensity was inhibited significantly after introducing TPHP. An investigation into the mechanism underlying the effect of CL suppression demonstrated that TPHP competed with luminol to consume ROS from UV-activated MIL-100(Fe) gel, contributing to CL inhibition. The subsequent sensing performance experiments demonstrated the advantages of environmentally friendly, economic efficiency, user-friendly operation, rapid determination, potential for compact size, high selectivity, and sensitivity. Additionally, these investigations confirmed the low limit of detection (210 ng L-1) and wide linear range (10-1000 μg L-1). SIGNIFICANCE In this paper, a green, economical, and oxidant-free CL sensing strategy for TPHP has been established. It has the advantage of being rapid, having the potential for compact size, high selectivity, and sensitivity. This ingenious method has promising applications in real-time and online environmental monitoring, and it paves the way for the rapid and environmentally friendly identification of emerging contaminants that are structurally stable and recalcitrant to remove.
Collapse
Affiliation(s)
- Huanhuan Zhu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shuo Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaoying Huang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xi Chen
- SCIEX Analytical Instrument Trading Co., Shanghai, 200335, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China; State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, 611756, China.
| |
Collapse
|
9
|
Luo C, Zhang Q, Zheng S, Wang D, Huang W, Huang Y, Shi X, Xie H, Wu K. Visual toxicity in zebrafish larvae following exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), triphenyl phosphate (TPhP), and isopropyl phenyl diphenyl phosphate (IPPP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175131. [PMID: 39127212 DOI: 10.1016/j.scitotenv.2024.175131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
10
|
Yan J, Fang L, Ni A, Xi M, Li J, Zhou X, Qian Q, Wang ZJ, Wang X, Wang H. Long-Term Neurotoxic Effects and Alzheimer's Disease Risk of Early EHDPP Exposure in Zebrafish: Insights from Molecular Mechanisms to Adult Pathology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19152-19164. [PMID: 39417326 DOI: 10.1021/acs.est.4c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP), ubiquitously monitored in environmental media, is highly bioaccumulative and may pose long-term risks, even after short-term exposure. In this investigation, larval zebrafish were exposed to 0.05, 0.5, and 5.0 μg/L EHDPP from 4 to 120 h postfertilization (hpf) to examine the long-term neurotoxicity effects of early exposure. Exposure to 5.0 μg/L EHDPP yielded hyperactive locomotor behavior, which was characterized by increased swimming speed, larger turning angles, and heightened sensitivity to light-dark stimulation. The predicted targets of EHDPP (top 100 potential macromolecules) were primarily associated with brain diseases like Alzheimer's disease (AD). Comparisons of differentially expressed genes (DEGs) from AD patients (GSE48350) and RNA-seq data from EHDPP-exposed zebrafish confirmed consistently abnormal regulatory pathways. EHDPP's interaction with M1 and M5 muscarinic acetylcholine receptors likely disrupted calcium homeostasis, leading to mitochondrial dysfunction and neurotransmitter imbalance as well as abnormal locomotor behavior. Especially, 5.0 μg/L EHDPP exposure during early development (4-120 hpf) triggered early- and midstage AD-like symptoms in adulthood (180 dpf), characterized by cognitive confusion, aggression, blood-brain barrier disruption, and mitochondrial damage in brains. These findings provide deep insights into the long-term neurotoxicity effects and Alzheimer's disease risks of early EHDPP exposure at extremely low dosages.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ze-Jun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
11
|
Cao J, Lei Y, Li W, Jiang X, Li M. Coupled digital visualization and multi-omics uncover neurobehavioral dysfunction in zebrafish induced by resorcinol bis(diphenylphosphate). ENVIRONMENT INTERNATIONAL 2024; 192:109023. [PMID: 39321538 DOI: 10.1016/j.envint.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Resorcinol bis(diphenylphosphate) (RDP) is an emerging pollutant that has been frequently detected in aquatic environments, although its toxicity is poorly characterized. To understand how RDP affects the neural system, two-month-old zebrafish were exposed to RDP at concentrations of 0.1 and 10 μg/L for 60 days. Following exposure, behavioral assessments were conducted, revealing the emergence of anxiety-like symptoms and memory deficits among the adult fish exposed to RDP, especially at the higher concentration. The increased blood-brain barrier (BBB) permeability (4.67-5.58-fold higher than the control group), reduced expression of tight junction proteins and the rapid brain RDP bioaccumulation (15.63 ± 2.34 ng/g wet weight) indicated the neurotoxicity of RDP. Excess reactive oxygen species synthesis (2.20-2.50-fold) was induced by RDP, leading to mitochondrial dysfunction and decreased production of neurotransmitters in the brain, specifically serotonin (5-HT; 16.3 %) and dopamine (DA; 18.1 %). Metabolomic analysis revealed that the low-toxicity RDP dose up-regulated lipid-related metabolites, while the high-toxicity dose up-regulated arachidonic acid metabolism and disrupted amino acid metabolism, including tryptophan and tyrosine metabolism related to dopaminergic and serotonergic pathways. The dysregulation of genes in various cellular processes was identified by transcriptomics, mainly involved in cell adhesion molecules and gap junctions, and oxidative phosphorylation, which were directly associated with BBB permeability and oxidative stress, respectively. Correlation analysis of microbiome-metabolite-host links built a mechanistic hypothesis for alterations in gut microbiota (Actinobacteriota and Proteobacteria) induced by high-dose RDP leading to the alteration of tryptophan, tyrosine, and arachidonic acid metabolism, decreasing the production of 5-HT and DA through the gut-brain axis. This study provides valuable insights into the mechanism underlying RDP-induced neurotoxicity in zebrafish, which can inform ecological risk assessments.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Guan K, Ye M, Guo A, Chen X, Shan Y, Li X. Deficiency of leap2 promotes somatic growth in zebrafish: Involvement of the growth hormone system. Heliyon 2024; 10:e36397. [PMID: 39347412 PMCID: PMC11437977 DOI: 10.1016/j.heliyon.2024.e36397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Liver-expressed antimicrobial peptide-2 (LEAP2) is identified as an endogenous antagonist and inverse agonist of the growth hormone secretagogue receptor type 1a (GHSR1a), its effect on the GHSR1a is contrary to the role of GHRELIN. Growth hormone (GH) is a crucial hormone for early development. Previous studies report that LEAP2 dose-dependently attenuates ghrelin-induced GH secretion, and Leap2-knockout mice exhibit increased plasma GH levels after GHRELIN administration. Clinical data revealed a possible correlation between LEAP2 and height development. However, the role of LEAP2 in early development remains unclear. This study aimed to investigate the role of LEAP2 in early development using leap2 mutant zebrafish larvae as a model. Method We analyzed the conservation of LEAP2 peptide across multiple species and generated leap2 mutants in zebrafish by CRISPR-Cas9, dynamically observed and measured the growth and development of zebrafish larvae from fertilization to 5 day post fertilization (dpf). In situ hybridization, transcriptome sequencing, quantitative real-time PCR and Western blot were used to detect the expression levels of GH and its signaling in early stage of embryonic development. Result Our data demonstrate that zebrafish with a knockout of the leap2 gene display a significant increase in hatching rate, body length, and the distance between their eyes, all without visible developmental defects in the early stages of development. In addition, both RNA and protein analyses revealed a significant increase in GH expression in leap2 mutant. Conclusion In general, this study demonstrates that LEAP2 regulates the expression of GH during early development, particularly influencing body length.
Collapse
Affiliation(s)
- Kaiyu Guan
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Minjie Ye
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Anqi Guo
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaoyu Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yunfeng Shan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Li
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
13
|
Negi CK, Bláhová L, Phan A, Bajard L, Blaha L. Triphenyl Phosphate Alters Methyltransferase Expression and Induces Genome-Wide Aberrant DNA Methylation in Zebrafish Larvae. Chem Res Toxicol 2024; 37:1549-1561. [PMID: 39205618 PMCID: PMC11409374 DOI: 10.1021/acs.chemrestox.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging environmental contaminants, organophosphate flame retardants (OPFRs), pose significant threats to ecosystems and human health. Despite numerous studies reporting the toxic effects of OPFRs, research on their epigenetic alterations remains limited. In this study, we investigated the effects of exposure to 2-ethylhexyl diphenyl phosphate (EHDPP), tricresyl phosphate (TMPP), and triphenyl phosphate (TPHP) on DNA methylation patterns during zebrafish embryonic development. We assessed general toxicity and morphological changes, measured global DNA methylation and hydroxymethylation levels, and evaluated DNA methyltransferase (DNMT) enzyme activity, as well as mRNA expression of DNMTs and ten-eleven translocation (TET) methylcytosine dioxygenase genes. Additionally, we analyzed genome-wide methylation patterns in zebrafish larvae using reduced-representation bisulfite sequencing. Our morphological assessment revealed no general toxicity, but a statistically significant yet subtle decrease in body length following exposure to TMPP and EHDPP, along with a reduction in head height after TPHP exposure, was observed. Eye diameter and head width were unaffected by any of the OPFRs. There were no significant changes in global DNA methylation levels in any exposure group, and TMPP showed no clear effect on DNMT expression. However, EHDPP significantly decreased only DNMT1 expression, while TPHP exposure reduced the expression of several DNMT orthologues and TETs in zebrafish larvae, leading to genome-wide aberrant DNA methylation. Differential methylation occurred primarily in introns (43%) and intergenic regions (37%), with 9% and 10% occurring in exons and promoter regions, respectively. Pathway enrichment analysis of differentially methylated region-associated genes indicated that TPHP exposure enhanced several biological and molecular functions corresponding to metabolism and neurological development. KEGG enrichment analysis further revealed TPHP-mediated potential effects on several signaling pathways including TGFβ, cytokine, and insulin signaling. This study identifies specific changes in DNA methylation in zebrafish larvae after TPHP exposure and brings novel insights into the epigenetic mode of action of TPHP.
Collapse
Affiliation(s)
- Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Audrey Phan
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
14
|
Wang Y, Xu G, Chen X, Shang Y, Lu G. Changes in combined toxicity of benzophenone-3 and humic acid on Daphnia magna and zebrafish during chlorination disinfection process. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135280. [PMID: 39059296 DOI: 10.1016/j.jhazmat.2024.135280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Conventional wastewater treatment methods cannot completely remove the ultraviolet (UV) filters or dissolved organic matter. The transformation characteristics of these substances during chlorination disinfection and the varying species-specific toxicities of their combinations remain unclear. Here, Daphnia magna and zebrafish were exposed to benzophenone-3 (BP-3) and humic acid (HA) before and after chlorination disinfection. The results from chemical indicators showed that chlorination treatment decreased UV254 values and changed the intensity of parallel factors in three-dimensional fluorescence. Based on chemical analysis, the chlorine concentration and chlorination time for the toxicity experiments were set at 5 mg/L and 6 h, respectively. Exposure to HA and BP-3 before and after chlorination decreased the heart rate (by 1.37-28.12 %) in both species. However, species-specific responses, including survival rate, swimming distance, and expression of genes related to neurodevelopment, growth, and oxidative stress, were induced by chlorination. Chlorination reduced the impact of HA exposure but worsened the effects of HA and BP-3 co-exposure on D. magna. However, in zebrafish, the toxic effects intensified in most of the exposure groups after chlorination. Correlation analysis showed that the parallel factors of three-dimensional fluorescence were correlated with toxic effects on zebrafish, whereas UV254 was more significantly correlated with toxic effects on D. magna. This study provides insights into the combined toxicity of UV filters and dissolved organic matter in different aquatic organisms during chlorination, which is useful for risk control and optimization of the chlorination process.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Guanhua Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yujia Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
15
|
Wang J, Liu Y, Yan Y, Wang A, Jiang Y, Wen Z, Qiao K, Li H, Hu T, Ma Y, Zhou S, Gui W, Li S. miR-29b-triggered epigenetic regulation of cardiotoxicity following exposure to deltamethrin in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135213. [PMID: 39018602 DOI: 10.1016/j.jhazmat.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Deltamethrin is a classical pyrethroid insecticide that is frequently detected in aquatic environments and organisms. Furthermore, deltamethrin has been detected in samples related to human health and is a potential risk to public health. This study aimed to investigate the mechanism of cardiotoxicity induced by deltamethrin. Zebrafish were exposed to 0.005, 0.05, or 0.5 μg/L deltamethrin for 28 days. The results showed a significant reduction in male reproduction compared to female reproduction. Additionally, the heart rate decreased by 15.75 % in F1 after parental exposure to 0.5 μg/L deltamethrin. To evaluate cardiotoxicity, deltamethrin was administered to the zebrafish embryos. By using miRNA-Seq and bioinformatics analysis, it was discovered that miR-29b functions as a toxic regulator by targeting dnmts. The overexpression of miR-29b and inhibition of dnmts resulted in cardiac abnormalities, such as pericardial edema, bradycardia, and abnormal expression of genes related to the heart. Similar changes in the levels of miR-29b and dnmts were also detected in the gonads of F0 males and F1 embryos, confirming their effects. Overall, the results suggest that deltamethrin may have adverse effects on heart development in early-stage zebrafish and on reproduction in adult zebrafish. Furthermore, epigenetic modifications may threaten the cardiac function of offspring.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanyuan Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yujia Yan
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yuyao Jiang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Zexin Wen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University 10 Frankfurt, Frankfurt am Main 60438, Germany
| | - Hanqing Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Tiantian Hu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shengli Zhou
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, PR China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
16
|
Zhang Q, Zheng S, Shi X, Luo C, Huang W, Huang Y, Wu W, Wu K. Physiological and transcriptomic changes of zebrafish (Danio rerio) in response to Isopropylate Triphenyl Phosphate (IPPP) exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104528. [PMID: 39121912 DOI: 10.1016/j.etap.2024.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Isopropylate Triphenyl Phosphate (IPPP), a novel organophosphorus flame retardant, has become a widespread environmental pollutant. However, the toxic effects and mechanisms of IPPP remain unclear. In this study, we evaluated the neurodevelopmental toxicity effects of IPPP on zebrafish embryonic development, neurobehavior, and physiological and transcriptomic changes. The results showed that IPPP induced adverse developments such as low survival rates and hatching rates, decreased body length and eye distance, and also led to increased heart rates and embryonic malformation rates. The developmental defects mainly included typical pericardial edema, eye deformities, and a reduction in the number of newborn neurons. Mitochondrial energy metabolism disorders and apoptosis of cardiomyocytes may be responsible for heart malformation. Behavioral results showed that IPPP caused abnormal changes in swimming speed, total swimming distance and trajectory, and showed a low-dose effect. In addition, the decreased activity of neurotransmitters such as acetylcholinesterase (AchE) and dopamine (DA), and the changes in genes related to the central nervous system (CNS) and metabolism pathway may be the causes of neurodevelopmental toxicity of IPPP. Meanwhile, IPPP induced oxidative stress and apoptosis, and changed the ATPase activity of zebrafish larvae by altering nuclear factor erythroid2-related factor 2 (Nrf2) and mitochondrial signaling pathways, respectively. Transcriptome sequencing results indicated that Cytochrome P450 and drug metabolism, Energy metabolism-related pathways, Glutathione metabolism, Retinoid acid (RA) and REDOX signaling pathways were significantly enriched, and most of the genes in these pathways were up-regulated after IPPP treatment, which may be new targets for IPPP-induced neurodevelopment. In summary, the results of this study provide an important reference for a comprehensive assessment of the toxic effects and health risks of the new pollutant IPPP.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yanhong Huang
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Mental Health Center of Shantou University, Shantou, Guangdong 515065, China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
17
|
Treccani S, Ferruti P, Alongi J, Monti E, Zizioli D, Ranucci E. Ecotoxicity Assessment of α-Amino Acid-Derived Polyamidoamines Using Zebrafish as a Vertebrate Model. Polymers (Basel) 2024; 16:2087. [PMID: 39065404 PMCID: PMC11280761 DOI: 10.3390/polym16142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The aquatic ecotoxicity of three α-amino acid-derived polyamidoamines (PAAs) was studied using zebrafish embryos as a viable vertebrate model organism. The PAAs examined were water-soluble amphoteric polyelectrolytes with a primarily negative charge, which were efficient flame retardants for cotton. The fish embryo acute toxicity test performed with PAA water solutions using 1.5-500 mg L-1 concentrations showed that toxicity did not statistically differ from the control. The survival rates were indeed >90%, even at the highest concentration; the hatching rates were >80%; and the numbers of morphological defects were comparable to those of the control. Tests using transgenic zebrafish lines indicated that the numbers of microscopic vascular and musculoskeletal defects were comparable to the control, with one random concentration showing doubled alterations. Sensory-motor tests in response to visual and tactile stimuli were also performed. In the presence of PAAs, embryos exposed to alternating light/dark cycles showed an insignificant mobility reduction during the dark phase. Touch-evoked response tests revealed a mild effect of PAAs on the neuromotor system at concentrations > 10 mg L-1. The cystine/glycine copolymer at 100 mg L-1 exhibited the greatest effect. Overall, the studied PAAs showed a minimal impact on aquatic systems and should be further considered as promising ecofriendly materials.
Collapse
Affiliation(s)
- Sofia Treccani
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| | - Eugenio Monti
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Daniela Zizioli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| |
Collapse
|
18
|
Zheng Y, Li X, Nie H, Zhang F, Xun J, Xu S, Wu L. Organophosphate flame retardants tris (2-butoxyethyl) phosphate (TBEP) and tris (2-chloroethyl) phosphate (TCEP) disrupt human motor neuron development by differentially affecting their survival and differentiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174772. [PMID: 39019263 DOI: 10.1016/j.scitotenv.2024.174772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Mounting evidence in animal experiments proves that early life stage exposure to organophosphate flame retardants (OPFRs) affects the locomotor behavior and changes the transcriptions of central nervous system genes. Unfortunately, their effect on human motor neuron (MN) development, which is necessary for body locomotion and survival, has not yet characterized. Here, we utilized a spinal cord MN differentiation model from human embryonic stem cells (ESCs) and adopted this model to test the effects of two typical OPFRs tris (2-butoxyethyl) phosphate (TBEP) and tris (2-chloroethyl) phosphate (TCEP), on MN development and the possible mechanisms underlying. Our findings revealed TBEP exerted a much more inhibitory effect on MN survival, while TCEP exhibited a stronger stimulatory effect on ESCs differentiation into MN, and thus TBEP exhibited a stronger inhibition on MN development than TCEP. RNA sequencing analysis identified TBEP and TCEP inhibited MN survival mainly by disrupting extracellular matrix (ECM)-receptor interaction. Focusing on the pathway guided MN differentiation, we found both TBEP and TCEP activated BMP signaling, whereas TCEP simultaneously downregulated Wnt signaling. Collectively, this is the first study demonstrated TBEP and TCEP disrupted human MN development by affecting their survival and differentiation, thereby raising concern about their potential harm in causing MN disorders.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Xinyu Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Haifeng Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Fangrong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jiali Xun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
19
|
Xiang J, Lv BR, Shi YJ, Chen WM, Zhang JL. Environmental pollution of paraben needs attention: A study of methylparaben and butylparaben co-exposure trigger neurobehavioral toxicity in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124370. [PMID: 38876377 DOI: 10.1016/j.envpol.2024.124370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Parabens (PBs) are commonly utilized as preservatives in various commodities. Of all the PBs, methylparaben (MeP) and butylparaben (BuP) are usually found together at similar levels in the aqueous environment. Although a few studies have demonstrated that PBs are neurotoxic when present alone, the neurobehavioral toxic effects and mechanisms of coexisting MeP and BuP at environmental levels has not been determined. Neurobehavior is a sensitive indicator for identifying neurotoxicity of environmental pollutants. Therefore, adult female zebrafish (Danio rerio) were chronic co-exposure of MeP and BuP at environmental levels (5, 50, and 500 ng/L) for 60 d to investigate the effects on neurobehavior, histopathology, oxidative stress, mitochondrial function, neurotransmitters and gene expression. The results demonstrated that chronic co-exposure of MeP and BuP interfered with several behaviors (learning-memory, anxiety, fear, aggressive and shoaling behavior) in addition to known mechanisms of producing oxidative stress and disrupting energy. More intriguingly, chronic co-exposure of MeP and BuP caused retinal vacuolization and apoptosis in the optic tectum zone. It even has further effects on the phototransduction pathway, impairing optesthesia and leading to neurotransmitters dysregulation. These are critical underlying mechanisms resulting in neurobehavioral abnormalities. This study confirms that the pollution of multiple PBs by chronic co-exposure in aquatic environments can result neurobehavioral toxicity. It also suggests that the prolonged effects of PBs on aquatic ecosystems and health require close attention.
Collapse
Affiliation(s)
- Jing Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Bing-Rui Lv
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ya-Jun Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Wen-Ming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
20
|
Chen Y, Liu Q, Wang Y, Jiang M, Zhang J, Liu Y, Lu X, Tang H, Liu X. Triphenyl phosphate interferes with the synthesis of steroid hormones through the PPARγ/CD36 pathway in human trophoblast JEG-3 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3400-3409. [PMID: 38450882 DOI: 10.1002/tox.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3βHSD1, 17βHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.
Collapse
Affiliation(s)
- Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qian Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wang
- Dazhou Center Hospital, Dazhou, China
| | - Mengzhu Jiang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jing Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoxun Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
21
|
Schmandt B, Diduff M, Smart G, Williams LM. Environmentally Relevant Concentrations of Triphenyl Phosphate (TPhP) Impact Development in Zebrafish. TOXICS 2024; 12:368. [PMID: 38787147 PMCID: PMC11125690 DOI: 10.3390/toxics12050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
A common flame-retardant and plasticizer, triphenyl phosphate (TPhP) is an aryl phosphate ester found in many aquatic environments at nM concentrations. Yet, most studies interrogating its toxicity have used µM concentrations. In this study, we used the model organism zebrafish (Danio rerio) to uncover the developmental impact of nM exposures to TPhP at the phenotypic and molecular levels. At concentrations of 1.5-15 nM (0.5 µg/L-5 µg/L), chronically dosed 5dpf larvae were shorter in length and had pericardial edema phenotypes that had been previously reported for exposures in the µM range. Cardiotoxicity was observed but did not present as cardiac looping defects as previously reported for µM concentrations. The RXR pathway does not seem to be involved at nM concentrations, but the tbx5a transcription factor cascade including natriuretic peptides (nppa and nppb) and bone morphogenetic protein 4 (bmp4) were dysregulated and could be contributing to the cardiac phenotypes. We also demonstrate that TPhP is a weak pro-oxidant, as it increases the oxidative stress response within hours of exposure. Overall, our data indicate that TPhP can affect animal development at environmentally relevant concentrations and its mode of action involves multiple pathways.
Collapse
|
22
|
Xie W, Chen J, Cao X, Zhang J, Luo J, Wang Y. Roxithromycin exposure induces motoneuron malformation and behavioral deficits of zebrafish by interfering with the differentiation of motor neuron progenitor cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116327. [PMID: 38626605 DOI: 10.1016/j.ecoenv.2024.116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Roxithromycin (ROX), a commonly used macrolide antibiotic, is extensively employed in human medicine and livestock industries. Due to its structural stability and resistance to biological degradation, ROX persists as a resilient environmental contaminant, detectable in aquatic ecosystems and food products. However, our understanding of the potential health risks to humans from continuous ROX exposure remains limited. In this study, we used the zebrafish as a vertebrate model to explore the potential developmental toxicity of early ROX exposure, particularly focusing on its effects on locomotor functionality and CaP motoneuron development. Early exposure to ROX induces marked developmental toxicity in zebrafish embryos, significantly reducing hatching rates (n=100), body lengths (n=100), and increased malformation rates (n=100). The zebrafish embryos treated with a corresponding volume of DMSO (0.1%, v/v) served as vehicle controls (veh). Moreover, ROX exposure adversely affected the locomotive capacity of zebrafish embryos, and observations in transgenic zebrafish Tg(hb9:eGFP) revealed axonal loss in motor neurons, evident through reduced or irregular axonal lengths (n=80). Concurrently, abnormal apoptosis in ROX-exposed zebrafish embryos intensified alongside the upregulation of apoptosis-related genes (bax, bcl2, caspase-3a). Single-cell sequencing further disclosed substantial effects of ROX on genes involved in the differentiation of motor neuron progenitor cells (ngn1, olig2), axon development (cd82a, mbpa, plp1b, sema5a), and neuroimmunity (aplnrb, aplnra) in zebrafish larvae (n=30). Furthermore, the CaP motor neuron defects and behavioral deficits induced by ROX can be rescued by administering ngn1 agonist (n=80). In summary, ROX exposure leads to early-life abnormalities in zebrafish motor neurons and locomotor behavior by hindering the differentiation of motor neuron progenitor cells and inducing abnormal apoptosis.
Collapse
Affiliation(s)
- Wenjie Xie
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China; Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Juntao Chen
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China; Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xiaoqian Cao
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China.
| | - Yajun Wang
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Yun K, Jeon H, Kho Y, Ji K. Potential adverse outcome pathway of neurodevelopmental toxicity, inflammatory response, and oxidative stress induction mediated by three alkyl organophosphate flame retardants in zebrafish larvae. CHEMOSPHERE 2024; 356:141901. [PMID: 38583538 DOI: 10.1016/j.chemosphere.2024.141901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Following restrictions on polybrominated flame retardants, trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2-butoxyethyl) phosphate (TBEP) have been frequently used as plasticizers for fire-resistant plastics. This study investigated the neurodevelopmental effects, inflammatory response, and oxidative stress induction of three alkyl organophosphate flame retardants using a zebrafish embryo/larvae model. After exposure of zebrafish embryos to TMP, TEP, and TBEP (0, 0.02, 0.2, 2, 20, and 200 μg L-1) for 96 h, survival, development, swimming behavior, changes in acetylcholinesterase (AChE) activity, dopamine, tumor necrosis factor-alpha (TNF-α), interleukin (IL), reactive oxygen species (ROS), and antioxidant enzyme activities were observed. Concentrations of TMP, TEP, and TBEP were also measured in the whole body of exposed larvae. Our results showed that exposure to 200 μg L-1 TEP and ≥20 μg L-1 TBEP significantly reduced larval body length; however, TMP had no significant effects on developmental parameters up to 200 μg L-1. After 96 h of exposure to TBEP, total distance moved, mean velocity, AChE, and dopamine concentrations were significantly decreased. Exposure to TEP and TBEP decreased the expression of genes that regulate central nervous system development (e.g. gap43 and mbpa), whereas ROS, antioxidant enzymes, TNF-α, and IL-1β concentrations were significantly increased. Notably, pretreatment with an antioxidant N-acetylcysteine reduced neurotoxicity and oxidative stress caused by TEP and TBEP. The results of this study demonstrated that exposure to TEP and TBEP causes oxidative stress and has adverse effects on the neurobehavioral and immune system of zebrafish, leading to hypoactivity and ultimately impairing development.
Collapse
Affiliation(s)
- Kijeong Yun
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea
| | - Hyeri Jeon
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
24
|
Guo Z, Wang M, Pan Y, Lu H, Pan S. Ecological assessment of stream water polluted by phosphorus chemical plant: Physiological, biochemical, and molecular effects on zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 247:118173. [PMID: 38224935 DOI: 10.1016/j.envres.2024.118173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The rapid development of the phosphorus chemical industry has caused serious pollution problems in the regional eco-environment. However, understanding of their ecotoxic effects remains limited. This study aimed to investigate the developmental toxicity of a stream polluted by a phosphorus chemical plant (PCP) on zebrafish embryos. For this, zebrafish embryos were exposed to stream water (0, 25, 50, and 100% v/v) for 96 h, and developmental toxicity, oxidative stress, apoptosis, and DNA damage were assessed. Stream water-treated embryos exhibited decreased hatching rates, heart rates, and body lengths, as well as increased mortality and malformation rates. The general morphology score system indicated that the swim bladder and pigmentation were the main abnormal morphological endpoints. Stream water promoted antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx)), lipid peroxidation, and DNA damage. It also triggered apoptosis in the embryos' heads, hearts, and spines by activating apoptotic enzymes (Caspase-3 and Caspase-9). Additionally, stream water influenced growth, oxidative stress, and apoptosis-related 19 gene expression. Notably, tyr, sod (Mn), and caspase9 were the most sensitive indicators of growth, oxidative stress, and apoptosis, respectively. The current trial concluded that PCP-polluted stream water exhibited significant developmental toxicity to zebrafish embryos, which was regulated by the oxidative stress-mediated activation of endogenous apoptotic signaling pathways.
Collapse
Affiliation(s)
- Ziyu Guo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Min Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongliang Lu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Sha Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
25
|
Chen C, Cui D, Li J, Ren C, Yang D, Xiang P, Liu J. Organophosphorus Flame Retardant TPP-Induced Human Corneal Epithelial Cell Apoptosis through Caspase-Dependent Mitochondrial Pathway. Int J Mol Sci 2024; 25:4155. [PMID: 38673741 PMCID: PMC11050068 DOI: 10.3390/ijms25084155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
A widely used organophosphate flame retardant (OPFR), triphenyl phosphate (TPP), is frequently detected in various environmental media and humans. However, there is little known on the human corneal epithelium of health risk when exposed to TPP. In this study, human normal corneal epithelial cells (HCECs) were used to investigate the cell viability, morphology, apoptosis, and mitochondrial membrane potential after they were exposed to TPP, as well as their underlying molecular mechanisms. We found that TPP decreased cell viability in a concentration-dependent manner, with a half maximal inhibitory concentration (IC50) of 220 μM. Furthermore, TPP significantly induced HCEC apoptosis, decreased mitochondrial membrane potential in a dose-dependent manner, and changed the mRNA levels of the apoptosis biomarker genes (Cyt c, Caspase-9, Caspase-3, Bcl-2, and Bax). The results showed that TPP induced cytotoxicity in HCECs, eventually leading to apoptosis and changes in mitochondrial membrane potential. In addition, the caspase-dependent mitochondrial pathways may be involved in TPP-induced HCEC apoptosis. This study provides a reference for the human corneal toxicity of TPP, indicating that the risks of OPFR to human health cannot be ignored.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Xiang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (C.C.); (D.C.); (J.L.); (C.R.); (D.Y.)
| | - Jianxiang Liu
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (C.C.); (D.C.); (J.L.); (C.R.); (D.Y.)
| |
Collapse
|
26
|
Xu F, He Y, Xu A, Ren L, Xu J, Shao Y, Wang M, Zhao W, Zhang Y, Lu P, Zhang L. Triphenyl phosphate induces cardiotoxicity through myocardial fibrosis mediated by apoptosis and mitophagy of cardiomyocyte in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123651. [PMID: 38408505 DOI: 10.1016/j.envpol.2024.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Triphenyl phosphate (TPHP) is an organophosphorus flame retardant, but its cardiac toxicity has not been adequately investigated. Therefore, in the current study, the effect of TPHP on the heart and the underlying mechanism involved was evaluated. C57BL/6 J mice were administered TPHP (0, 5, and 50 mg/kg/day) for 30 days. In addition, H9c2 cells were treated with three various concentrations (0, 50, and 150 μM) of TPHP, with and without the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine or the mitochondrial fusion promoter M1. TPHP caused cardiac fibrosis and increased the levels of CK-MB and LDH in the serum. TPHP increased the levels of ROS, malondialdehyde (MDA), and decreased the level of superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px). Furthermore, TPHP caused mitochondrial damage, and induced fusion and fission disorders that contributed to mitophagy in both the heart of C57BL/6 J mice and H9c2 cells. Transcriptome analysis showed that TPHP induced up- or down-regulated expression of various genes in myocardial tissue and revealed enriched apoptosis pathways. It was also found that TPHP could remarkably increase the expression levels of Bax, cleaved Caspase-9, cleaved Caspase-3, and decreased Bcl-2, thereby causing apoptosis in H9c2 cells. Taken together, the results suggested that TPHP promoted mitophagy through mitochondria fusion dysfunction resulting from oxidative stress, leading to fibrosis by inducing myocardial apoptosis.
Collapse
Affiliation(s)
- Feibo Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yu He
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Aili Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jinyu Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yali Shao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Minxin Wang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Peng Lu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, China
| | - Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
27
|
Green-Ojo B, Tan H, Botelho MT, Obanya H, Grinsted L, Parker MO, Ford AT. The effects of plastic additives on swimming activity and startle response in marine amphipod Echinogammarus marinus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170793. [PMID: 38336051 DOI: 10.1016/j.scitotenv.2024.170793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Plastic additives are widely used in plastic production and are found in the environment owing to their widespread applications. Among these additives, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP) are under international watchlist for evaluation, with limited studies on amphipods. Di-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP) are banned in some countries and categorised as substances of very high concern. This study aimed to investigate the effects of NBBS, TPHP, DEHP and DBP on the swimming activity of a coastal intertidal marine amphipod, Echinogammarus marinus. Furthermore, this study is the first to quantify startle response in E. marinus in response to light stimuli. Amphipods were exposed to 0, 0.5, 5, 50 and 500 μg/l concentrations of all test compounds. Swimming activity and startle responses were assessed by video tracking and analysis using an 8-min alternating dark and light protocol after exposure on days 7 and 14. We observed an overall compound and light effect on the swimming activity of E. marinus. A significant decrease in swimming distance was found in 500 μg/l NBBS and TPHP. We observed that the startle response in E. marinus had a latency period of >2 s and animals were assessed at 1 s and the sum of the first 5 s. There was a clear startle response in E. marinus during dark to light transition, evident with increased swimming distance. NBBS exposure significantly increased startle response at environmental concentrations, while significant effects were only seen in 500 μg/l TPHP at 5 s. We found no significant effects of DEHP and DBP on swimming behaviour at the concentrations assessed. The findings of this study affirm the necessity for a continuous review of plastic additives to combat adverse behavioural effects that may be transferable to the population levels.
Collapse
Affiliation(s)
- Bidemi Green-Ojo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Marina Tenório Botelho
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK; Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, Brazil
| | - Henry Obanya
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK
| | - Lena Grinsted
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1 Street, Portsmouth, UK
| | - Mathew O Parker
- School of Pharmacy & Biomedical Science, White Swan Road, St. Michael's Building, Portsmouth, UK; Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| |
Collapse
|
28
|
Ni A, Fang L, Xi M, Li J, Qian Q, Wang Z, Wang X, Wang H, Yan J. Neurotoxic effects of 2-ethylhexyl diphenyl phosphate exposure on zebrafish larvae: Insight into inflammation-driven changes in early motor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170131. [PMID: 38246379 DOI: 10.1016/j.scitotenv.2024.170131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The extensive utilization and potential adverse impacts of the replacement flame-retardant 2-Ethylhexyl Diphenyl Phosphate (EHDPP) have raised concerns. Currently, there is limited knowledge regarding the developmental, neurological, and immunotoxic consequences of EHDPP exposure, as well as its potential behavioral outcomes. In this study, we undertook a comprehensive examination and characterization of the toxic effects over the EHDPP concentration range of 14-1400 nM. Our findings unveiled that EHDPP, even at an environmentally relevant concentration of 14 nM, exhibited excitatory neurotoxicity, eliciting a 13.5 % increase in the swimming speed of zebrafish larvae. This effect might be attributed to the potential influence of EHDPP on the release of neurotransmitters like serotonin and dopamine, which, in turn, mediated anxiety-like behavior in the zebrafish larvae. Conversely, sublethal dose EHDPP (1400 nM) exposure significantly suppressed the swimming vigor of zebrafish larvae, accompanied by morphological changes, abnormal behaviors, and alterations in intracerebral molecules. Transcriptomics revealed the underlying mechanism. The utilization of pathway inhibitors reshaped the inflammatory homeostasis and alleviated the toxicity induced by EHDPP exposure, anchoring the pivotal role played by the TLR4/NF-κB signaling pathway in EHDPP-induced adverse changes in zebrafish behavior and neurophysiology. This study observed the detrimental effects of EHDPP on fish sustainability at environmentally relevant concentrations, highlighting the practical significance for EHDPP risk management. Elucidating the toxic mechanisms of EHDPP will contribute to a deeper comprehension of how environmental pollutants can intricately influence human health.
Collapse
Affiliation(s)
- Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
29
|
Zhang Q, Wu R, Zheng S, Luo C, Huang W, Shi X, Wu K. Exposure of male adult zebrafish (Danio rerio) to triphenyl phosphate (TPhP) induces eye development disorders and disrupts neurotransmitter system-mediated abnormal locomotor behavior in larval offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133332. [PMID: 38147758 DOI: 10.1016/j.jhazmat.2023.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
30
|
Ye C, Chen Z, Lin W, Dong Z, Han J, Zhang J, Ma X, Yu J, Sun X, Li Y, Zheng J. Triphenyl phosphate exposure impairs colorectal health by altering host immunity and colorectal microbiota. CHEMOSPHERE 2024; 349:140905. [PMID: 38065263 DOI: 10.1016/j.chemosphere.2023.140905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Colorectal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD) have become one of the most common public health concerns worldwide due to the increasing incidence. Environmental factors are one of the important causes of colorectal diseases, as they can affect the intestinal barrier function, immune response and microbiota, causing intestinal inflammation and tumorigenesis. Triphenyl phosphate (TPHP), a widely used organophosphorus flame retardant that can leach and accumulate in various environmental media and biota, can enter the human intestine through drinking water and food. However, the effects of TPHP on colorectal health have not been well understood. In this study, we investigated the adverse influence of TPHP exposure on colorectal cells (in vitro assay) and C57BL/6 mice (in vivo assay), and further explored the potential mechanism underlying the association between TPHP and colorectal disease. We found that TPHP exposure inhibited cell viability, increased apoptosis and caused G1/S cycle arrest of colorectal cells. Moreover, TPHP exposure damaged colorectal tissue structure, changed immune-related gene expression in the colorectal transcriptome, and disrupted the composition of colorectal microbiota. Importantly, we found that TPHP exposure upregulated chemokine CXCL10, which was involved in colorectal diseases. Our study revealed that exposure to TPHP had significant impacts on colorectal health, which may possibly stem from alterations in host immunity and the structure of the colorectal microbial community.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhao Lin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zepeng Dong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Xueqian Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
31
|
Zhang Q, Luo C, Li Z, Huang W, Zheng S, Liu C, Shi X, Ma Y, Ni Q, Tan W, Peng J, Chen Y, Wu W, Li J, Wu K. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115960. [PMID: 38219622 DOI: 10.1016/j.ecoenv.2024.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhikang Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yikai Ma
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qingqing Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiejie Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
32
|
Green-Ojo B, Botelho MT, Umbuzeiro GDA, Gomes V, Parker MO, Grinsted L, Ford AT. Evaluation of precopulatory pairing behaviour and male fertility in a marine amphipod exposed to plastic additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122946. [PMID: 37977364 DOI: 10.1016/j.envpol.2023.122946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Plastics contain a mixture of chemical additives that can leach into the environment and potentially cause harmful effects on reproduction and the endocrine system. Two of these chemicals, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP), are among the top 30 organic chemicals detected in surface and groundwater and are currently placed on international watchlist for evaluation. Although bans have been placed on legacy pollutants such as diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP), their persistence remains a concern. This study aimed to examine the impact of plastic additives, including NBBS, TPHP, DBP, and DEHP, on the reproductive behaviour and male fertility of the marine amphipod Echinogammarus marinus. Twenty precopulatory pairs of E. marinus were exposed to varying concentrations of the four test chemicals to assess their pairing behaviour. A high-throughput methodology was developed and optimised to record the contact time and re-pair time within 15 min and additional point observations for 96 h. The study found that low levels of NBBS, TPHP, and DEHP prolonged the contact and re-pairing time of amphipods and the proportion of pairs reduced drastically with re-pairing success ranging from 75% to 100% in the control group and 0%-85% in the exposed groups at 96 h. Sperm count declined by 40% and 60% in the 50 μg/l and 500 μg/l DBP groups, respectively, whereas TPHP resulted in significantly lower sperms in 50 μg/l exposed group. Animals exposed to NBBS and DEHP showed high interindividual variability in all exposed groups. Overall, this study provides evidence that plastic additives can disrupt the reproductive mechanisms and sperm counts of amphipods at environmentally relevant concentrations. Our research also demonstrated the usefulness of the precopulatory pairing mechanism as a sensitive endpoint in ecotoxicity assessments to proactively mitigate population-level effects in the aquatic environment.
Collapse
Affiliation(s)
- Bidemi Green-Ojo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK
| | - Marina Tenório Botelho
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK; Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191, 05508-120, São Paulo, Brazil
| | | | - Vicente Gomes
- Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191, 05508-120, São Paulo, Brazil
| | - Mathew O Parker
- School of Pharmacy & Biomedical Science, White Swan Road, St. Michael's Building, Portsmouth, UK; Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lena Grinsted
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1 Street, Portsmouth, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| |
Collapse
|
33
|
Yuan W, Xiao Y, Zhang Y, Xiang K, Huang T, Diaby M, Gao J. Apoptotic mechanism of development inhibition in zebrafish induced by esketamine. Toxicol Appl Pharmacol 2024; 482:116789. [PMID: 38103741 DOI: 10.1016/j.taap.2023.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
34
|
Lu X, Hong J, Zhang J, Liu Q, Liao G, Shi Y, Tang H, Liu X. Triphenyl phosphate disrupts placental tryptophan metabolism by activating MAOA/ROS/NFκB. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166688. [PMID: 37659542 DOI: 10.1016/j.scitotenv.2023.166688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Triphenyl phosphate (TPhP) is an organophosphate flame retardant widely distributed in the environment. The neurodevelopmental toxicity of TPhP has been observed in animals and humans. Previously, we found that prenatal TPhP exposure disturbed placental tryptophan metabolism, impaired neurodevelopment in male offspring, and induced abnormal neurobehavior; however, the underlying mechanisms are unknown. In this study, using the trophoblast cell line JEG-3, we found that TPhP altered gene and protein expression in the tryptophan metabolism pathway, inhibited the tryptophan-serotonin pathway, and activated the tryptophan-kynurenine pathway. Meanwhile, TPhP induced oxidative stress by activating monoamine oxidase A (MAOA), promoting inflammatory factors including nuclear factor kappa-B (NFκB), interleukin-6, and tumor necrosis factor α. The NFκB inhibitor sulfasalazine could alleviate the effects of TPhP on tryptophan metabolism disturbance. The MAOA inhibitor clorgyline or the antioxidant N-acetylcysteine can mitigate oxidative stress and eliminate TPhP-induced inflammatory factors and tryptophan metabolism disturbances. The data above suggest that TPhP disturbed tryptophan metabolism by activating NFκB through MAOA-mediated oxidative stress. Finally, using the mouse intrauterine exposure model, the results confirmed that TPhP induced oxidative stress, activated inflammatory factors, disturbed tryptophan metabolism, and increased the levels of the tryptophan metabolites serotonin, kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid in the placenta during the second trimester of pregnancy. Overall, TPhP can disturb placental tryptophan metabolism by activating the inflammatory factor NFκB, which was induced by MAOA-induced oxidative stress. The results of this study confirm that indirect exposure to xenobiotic compounds at an early life stage can impair offspring development and provide a novel perspective on the neurodevelopmental toxicity of TPhP.
Collapse
Affiliation(s)
- Xiaoxun Lu
- The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Jiabin Hong
- The Third People's Hospital of Zhuhai, Zhuhai 519000, Guangdong, China
| | - Jing Zhang
- The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Qian Liu
- The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Ganzhong Liao
- The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Yanwei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huanwen Tang
- The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China.
| | - Xiaoshan Liu
- The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China.
| |
Collapse
|
35
|
Xiong NX, Fang ZX, Kuang XY, Wang F, Ou J, Luo SW. Upregulation of oxidative stress by triphenyl phosphate (TPhP) exposure causes antioxidant insult and apoptotic process in Epithelioma papulosum cyprini (EPC) cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119217-119227. [PMID: 37922075 DOI: 10.1007/s11356-023-30697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Triphenyl phosphate (TPhP) is the predominant compound of organophosphate flame retardants (OPFRs), which can elicit a toxicological effect on physiological response and tissue development of fish. In this study, we investigated the effect of TPhP exposure on cell viability, antioxidant capacities, and apoptosis in EPC cells. Current study revealed that TPhP exposure could decrease cell viability and promote intracellular oxidative stress in EPC cells. In addition, high-dose TPhP exposure could facilitate antioxidant insults and cause mitochondrial collapse in a dose-dependent manner, along with increased gene expressions involved in apoptosis and unfolded protein response (UPR). These results indicated that reactive oxygen species (ROS)-induced cytotoxic stress and cell death were involved in antioxidant insults and apoptotic activation in TPhP-exposed fish cells.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
36
|
Zheng S, Zhang Q, Shi X, Luo C, Chen J, Zhang W, Wu K, Tang S. Developmental hazards of 2,2',4,4'-tetrabromodiphenyl ether induced endoplasmic reticulum stress on early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115615. [PMID: 37890256 DOI: 10.1016/j.ecoenv.2023.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Polybrominated diphenyl ether flame retardants are known to have adverse effects on the development of organisms. We investigated the molecular mechanisms associated with the developmental hazards of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish, as well as the behavioral and morphological alterations involved, focusing on endoplasmic reticulum stress (ERS), oxidative stress, and apoptosis. Our study revealed behavioral alterations in zebrafish exposed to BDE-47, including impaired motor activity, reduced exploration, and abnormal swimming patterns. In addition, we observed malformations in craniofacial regions and other developmental abnormalities that may be associated with ERS-induced cellular dysfunction. BDE-47 exposure showed apparent changes in ERS, oxidative stress, and apoptosis biomarkers at different developmental stages in zebrafish through gene expression analysis and enzyme activity assays. The study indicated that exposure to BDE-47 results in ERS, as supported by the upregulation of ERS-related genes and increased activity of ERS markers. In addition, oxidative stress-related genes showed different expression patterns, suggesting that oxidative stress is involved in the BDE-47 toxic effects. Moreover, an assessment of apoptotic biomarkers revealed an imbalance in the expression levels of pro- and anti-apoptotic genes, suggesting that BDE-47 exposure activated the apoptotic pathway. These results highlight the complex interactions between ERS, oxidative stress, apoptosis, behavioral alterations, and morphological malformations following BDE-47 exposure in zebrafish. Understanding the mechanisms of toxicity of developmental hazards is essential to elucidate the toxicological effects of environmental contaminants. The knowledge can help develop strategies to mitigate their adverse effects on the health of ecosystems and humans.
Collapse
Affiliation(s)
- Shukai Zheng
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong 515041, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jiasheng Chen
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong 515041, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong 515041, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shijie Tang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong 515041, China.
| |
Collapse
|
37
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
38
|
Yan Z, Li Y, Lin A, Yang X, Lu Z, Zhang H, Tang J, Zhao J, Niu D, Zhang T, Zhao X, Li K. Development of a trace quantitative method to investigate caffeine distribution in the Yellow and Bohai Seas, China, and assessment of its potential neurotoxic effect on fish larvae. MARINE POLLUTION BULLETIN 2023; 195:115492. [PMID: 37690407 DOI: 10.1016/j.marpolbul.2023.115492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Caffeine is an emerging contaminant in aquatic environments. The study utilized a validated method to investigate the presence and distribution of caffeine in the surface water of the Yellow and Bohai Seas, urban rivers, and the Yantai estuary area. The analytical method conforms to EPA guidelines and exhibits a limit of quantification that is 200 times lower than that of prior investigations. The study revealed that the highest concentration of 1436.4 ng/L was found in convergence of ocean currents in the Yellow and Bohai Seas. The presence of larger populations and the process of urban industrialization have been observed to result in elevated levels of caffeine in offshore regions, confirming that caffeine can serve as a potential indicator of anthropogenic contamination. Fish larvae exhibited hypoactivity in response to caffeine exposure at environmentally relevant concentrations. The study revealed that caffeine pollution can have adverse effects on marine and offshore ecosystems. This emphasizes the importance of decreasing neurotoxic pollution in the aquatic environment.
Collapse
Affiliation(s)
- Zhi Yan
- School of Ocean, Yantai University, Yantai 264005, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ainuo Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Huilin Zhang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China
| | - Jianhui Tang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianmin Zhao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Donglei Niu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Zhao
- School of Ocean, Yantai University, Yantai 264005, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
39
|
Yi J, Ma Y, Ma J, Yu H, Zhang K, Jin L, Yang Q, Sun D, Wu D. Rapid Assessment of Ocular Toxicity from Environmental Contaminants Based on Visually Mediated Zebrafish Behavior Studies. TOXICS 2023; 11:706. [PMID: 37624211 PMCID: PMC10459940 DOI: 10.3390/toxics11080706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The presence of contaminants in the environment has increased in recent years, and studies have demonstrated that these contaminants have the ability to penetrate the blood-retinal barrier and directly affect the visual systems of organisms. Zebrafish are recognized as an ideal model for human eye diseases due to their anatomical and functional similarities to the human eye, making them an efficient and versatile organism for studying ocular toxicity caused by environmental contaminants in the field of environmental toxicology. Meanwhile, zebrafish exhibit a diverse repertoire of visually mediated behaviors, and their visual system undergoes complex changes in behavioral responses when exposed to environmental contaminants, enabling rapid assessment of the ocular toxicity induced by such pollutants. Therefore, this review aimed to highlight the effectiveness of zebrafish as a model for examining the effects of environmental contaminants on ocular development. Special attention is given to the visually mediated behavior of zebrafish, which allows for a rapid assessment of ocular toxicity resulting from exposure to environmental contaminants. Additionally, the potential mechanisms by which environmental contaminants may induce ocular toxicity are briefly outlined.
Collapse
Affiliation(s)
- Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Dejun Wu
- Emergency Department, Quzhou People’s Hospital, Quzhou 324000, China
| |
Collapse
|
40
|
Shi Q, Yang H, Zheng Y, Zheng N, Lei L, Li X, Ding W. Neurotoxicity of an emerging organophosphorus flame retardant, resorcinol bis(diphenyl phosphate), in zebrafish larvae. CHEMOSPHERE 2023; 334:138944. [PMID: 37211164 DOI: 10.1016/j.chemosphere.2023.138944] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Resorcinol bis(diphenyl phosphate) (RDP), an emerging organophosphorus flame retardant and alternative to triphenyl phosphate (TPHP), is a widespread environmental pollutant. The neurotoxicity of RDP has attracted much attention, as RDP exhibits a similar structure to TPHP, a neurotoxin. In this study, the neurotoxicity of RDP was investigated by using a zebrafish (Danio rerio) model. Zebrafish embryos were exposed to RDP (0, 0.3, 3, 90, 300 and 900 nM) from 2 to 144 h postfertilization. After this exposure, the decreased heart rates and body lengths and the increased malformation rates were observed. RDP exposure significantly reduced the locomotor behavior under light-dark transition stimulation and the flash stimulus response of larvae. Molecular docking results showed that RDP could bind to the active site of zebrafish AChE and that RDP and AChE exhibit potent binding affinity. RDP exposure also significantly inhibited AChE activity in larvae. The content of neurotransmitters (γ-aminobutyric, glutamate, acetylcholine, choline and epinephrine) was altered after RDP exposure. Key genes (α1-tubulin, mbp, syn2a, gfap, shhα, manf, neurogenin, gap-43 and ache) as well as proteins (α1-tubulin and syn2a) related to the development of the central nervous system (CNS) were downregulated. Taken together, our results showed that RDP can affect different parameters related to CNS development, eventually leading to neurotoxicity. This study indicated that more attention should be paid to the toxicity and environmental risk of emerging organophosphorus flame retardants.
Collapse
Affiliation(s)
- Qipeng Shi
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Huaran Yang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yanan Zheng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|