1
|
Purać J, Čelić TV, Vukašinović EL, Đorđievski S, Milić S, Ninkov J, Kojić D. Identification of a metallothionein gene and the role of biological thiols in stress induced by short-term Cd exposure in Ostrinia nubilalis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109148. [PMID: 34343701 DOI: 10.1016/j.cbpc.2021.109148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/05/2023]
Abstract
Cadmium (Cd) is a non-essential metal that is highly toxic to all living forms, characterized by an extremely high affinity for thiol (SH) groups. The aim of this work was to identify and experimentally verify metallothionein gene and to analyze the role of biological thiols in stress induced by short-term Cd exposure in Ostrinia nubilalis, one of the most important corn pests. The coding region of a metallothionein (MT) gene in O. nubilalis was identified, encoding protein, OnMT1, which contains 46 amino acids, including 12 cysteine residues, and has no aromatic amino acids. Phylogenetic analysis revealed that OnMT1 clustered together with metallothionein from Bombyx mori. Structural bioinformatics analysis strongly suggests that OnMT1 is a metallothionein with affinity for multiple transition metals. Further, in order to elucidate the role of biological thiols, O. nubilalis L5 larvae were exposed to increasing Cd concentrations in diet (6.85, 41.71, 77.35 mg kg-1) during a 48 h period, after which Cd concentration in larvae was measured (3.50, 12.02, 47.37 mg kg-1, respectively). Due to short-term Cd exposure, concentration of free protein SH groups and relative expression of OnMT1 and thioredoxin (Trx) genes was elevated, while the reduced glutathione content remained unchanged. The presented results provide evidence that OnMT1 plays a role in Cd detoxification and homeostasis, and confirm the importance of biological thiols, especially OnMT1 and Trx, in the early response of O. nubilalis to Cd poisoning, indicating interaction between Cd and thiol-linked redox reactions. Insects provide valuable insight into molecular adaptations to metals.
Collapse
Affiliation(s)
- Jelena Purać
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Tatjana V Čelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Elvira L Vukašinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Srđana Đorđievski
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Stanko Milić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Laboratory for Soil and Agroecology, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Jordana Ninkov
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Laboratory for Soil and Agroecology, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Danijela Kojić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|
3
|
Maya-Maldonado K, Cardoso-Jaime V, González-Olvera G, Osorio B, Recio-Tótoro B, Manrique-Saide P, Rodríguez-Sánchez IP, Lanz-Mendoza H, Missirlis F, Hernández-Hernández FDLC. Mosquito metallomics reveal copper and iron as critical factors for Plasmodium infection. PLoS Negl Trop Dis 2021; 15:e0009509. [PMID: 34161336 PMCID: PMC8221525 DOI: 10.1371/journal.pntd.0009509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Iron and copper chelation restricts Plasmodium growth in vitro and in mammalian hosts. The parasite alters metal homeostasis in red blood cells to its favor, for example metabolizing hemoglobin to hemozoin. Metal interactions with the mosquito have not, however, been studied. Here, we describe the metallomes of Anopheles albimanus and Aedes aegypti throughout their life cycle and following a blood meal. Consistent with previous reports, we found evidence of maternal iron deposition in embryos of Ae. aegypti, but less so in An. albimanus. Sodium, potassium, iron, and copper are present at higher concentrations during larval developmental stages. Two An. albimanus phenotypes that differ in their susceptibility to Plasmodium berghei infection were studied. The susceptible white stripe (ws) phenotype was named after a dorsal white stripe apparent during larval stages 3, 4, and pupae. During larval stage 3, ws larvae accumulate more iron and copper than the resistant brown stripe (bs) phenotype counterparts. A similar increase in copper and iron accumulation was also observed in the susceptible ws, but not in the resistant bs phenotype following P. berghei infection. Feeding ws mosquitoes with extracellular iron and copper chelators before and after receiving Plasmodium-infected blood protected from infection and simultaneously affected follicular development in the case of iron chelation. Unexpectedly, the application of the iron chelator to the bs strain reverted resistance to infection. Besides a drop in iron, iron-chelated bs mosquitoes experienced a concomitant loss of copper. Thus, the effect of metal chelation on P. berghei infectivity was strain-specific.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Victor Cardoso-Jaime
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Gabriela González-Olvera
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | - Benito Recio-Tótoro
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Iram Pablo Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | | |
Collapse
|
4
|
Neff E, Dharmarajan G. The direct and indirect effects of copper on vector-borne disease dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116213. [PMID: 33302085 DOI: 10.1016/j.envpol.2020.116213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/25/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Metal pollution is a growing concern that affects the health of humans and animals globally. Copper is an essential insect micronutrient required for respiration, pigmentation and oxidative stress protection but can also act as a potentially toxic trace element. While several studies have focused on the negative fitness effects of copper on the aquatic larvae of mosquitoes, the effects of larval copper exposure on adult mosquito fitness (i.e., survival and fecundity) and their ability to transmit parasites (i.e., vector competence) remains unclear. Here, using a well-studied model vector-parasite system, the mosquito Aedes aegypti and parasite Dirofilaria immitis, we show that sublethal copper exposure in larval mosquitoes alters adult female fecundity and vector competence. Specifically, mosquitoes exposed to copper had a hormetic fecundity response and mosquitoes exposed to 600 μg/L of copper had significantly fewer infective parasite larvae than control mosquitoes not exposed to copper. Thus, exposure of mosquito larvae to copper levels far below EPA-mandated safe drinking water limits (1300 μg/L) can impact vector-borne disease dynamics not only by reducing mosquito abundance (through increased larval mortality), but also by reducing parasite transmission risk. Our results also demonstrated that larval copper is retained through metamorphosis to adulthood in mosquitoes, indicating that these insects could transfer copper from aquatic to terrestrial foodwebs, especially in urban areas where they are abundant. To our knowledge this is the first study to directly link metal exposure with vector competence (i.e., ability to transmit parasites) in any vector-parasite system. Additionally, it also demonstrates unequivocally that mosquitoes can transfer contaminants from aquatic to terrestrial ecosystems. These results have broad implications for public health because they directly linking contaminants and vector-borne disease dynamics, as well as linking mosquitoes and contaminant dynamics.
Collapse
Affiliation(s)
- Erik Neff
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, 29801, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA.
| | - Guha Dharmarajan
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, 29801, USA
| |
Collapse
|
5
|
Perez MH, Noriega FG. Sub-lethal metal stress response of larvae of Aedes aegypti. PHYSIOLOGICAL ENTOMOLOGY 2014; 39:111-119. [PMID: 24926118 PMCID: PMC4049351 DOI: 10.1111/phen.12054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Aedes aegypti (Diptera: Culicidae) has adapted to urban environments; the urbanisation process provides suitable habitats for this disease vector subsequently increasing the probability of the transmission of pathogens in high-density environments. Urban environments provide metal stressed larval habitats. However, little is known about the physiological cost of metal stress or how this might affect the performance of this mosquito species. This study aims to characterise the sub-lethal physiological consequences of metal stress in Aedes aegypti. Various parameters of mosquito physiology under larval metal stress are assessed including larval metallothionein expression and the effects of larval metal stress on adult performance and their progeny. Results show that environmentally relevant larval metal stress compromises larval and adult development and performance, and results in larval metal tolerance along with an increase in lipid consumption. These performance costs are coupled to a dramatic increase in metallothionein expression in the midgut. Metal stress results in lowered adult body mass and neutral storage lipids at emergence, starvation tolerance, fecundity and starvation tolerance of offspring compared to non-metal stressed individuals. Ironically, larval metal stress results in increased adult longevity. Together, these findings indicate that even low levels of environmentally relevant larval metal stress have considerable physiological consequences for this important disease vector.
Collapse
Affiliation(s)
- Mario H Perez
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Wang MH, Marinotti O, Zhong D, James AA, Walker E, Guda T, Kweka EJ, Githure J, Yan G. Gene expression-based biomarkers for Anopheles gambiae age grading. PLoS One 2013; 8:e69439. [PMID: 23936017 PMCID: PMC3720620 DOI: 10.1371/journal.pone.0069439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 06/13/2013] [Indexed: 12/18/2022] Open
Abstract
Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors.
Collapse
Affiliation(s)
- Mei-Hui Wang
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, UCI Medical Center, Orange, California, United States of America
| | - Osvaldo Marinotti
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| | - Anthony A. James
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Edward Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Tom Guda
- Human Health Division, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Eliningaya J. Kweka
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Ngaramtoni, Arusha, Tanzania
| | - John Githure
- Human Health Division, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Perez MH, Noriega FG. Aedes aegypti pharate 1st instar quiescence: a case for anticipatory reproductive plasticity. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:318-24. [PMID: 23298690 PMCID: PMC3596445 DOI: 10.1016/j.jinsphys.2012.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 05/21/2023]
Abstract
Aedes aegypti mosquitoes use pharate 1st instar quiescence to cope with fluctuations in water availability hosting a fully developed 1st instar larvae within the chorion. The duration of this quiescence has been shown to affect larval fitness. This study sought to determine if an extended egg quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Our findings indicate that extended pharate 1st instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner. This study demonstrates that phenotypic plasticity results as a consequence of the duration of pharate 1st instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. These findings have implications for A. aegypti's success as a vector, geographic distribution, vector capacity and control.
Collapse
Affiliation(s)
- Mario H Perez
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
8
|
Shu Y, Zhang G, Wang J. Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 438:210-217. [PMID: 23000546 DOI: 10.1016/j.scitotenv.2012.06.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 06/07/2012] [Accepted: 06/18/2012] [Indexed: 05/28/2023]
Abstract
By exposing the common cutworm Spodoptera litura Fabricius larvae to a range of Zinc (Zn) stress, we investigated the effects of dietary Zn on Zn accumulation, metallothionein (MT), and on the ultrastructure of the midgut. The techniques we used were inductively coupled plasma-atomic emission spectrometer (ICP-AES), real-time PCR combined with cadmium-hemoglobin total saturation, and transmission electron microscopy (TEM), respectively. There was a significant dose-response relationship between the Zn accumulations in the midgut of the larvae and the Zn concentrations in the diet. Furthermore, both MT content and MT gene expression in the midgut were significantly induced in the 50-500 mg Zn/kg treatments, and were significantly positively correlated with the Zn accumulations in the midgut. When S. litura larvae were fed with the diet treated with 500 mg Zn/kg, Zn accumulation and MT content in the midgut was 4450.85 mg Zn/kg and 372.77 mg/kg, respectively, thereafter there was a little increase; the level of MT gene expression was maximal, thereafter there was a sharp decrease. TEM showed that numerous electron-dense granules (EDGs) and vacuoles appeared in the cytoplasm of the midgut cells, their number and size being closely correlated with the Zn accumulations in the midgut. Moreover, the nuclei were strongly influenced by Zn stress, evidenced by chromatin condensation and irregular nuclear membranes. Therefore, after being exposed to Zn in the threshold (500 mg Zn/kg) range, S. litura larvae could accumulate Zn in the midgut, which led to the induction of MT and changes in cell ultrastructure (mainly the presence of EDGs). The induction of MT and precipitation of Zn in EDGs may be the effective detoxification mechanisms by which the herbivorous insect S. litura defends itself against heavy metals.
Collapse
Affiliation(s)
- Yinghua Shu
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | | |
Collapse
|
9
|
Ozdemir A, Duran M, Kivanc Akyildiz G, Sen A. EROD and metallothionein inLimnodrilus profundicola(Oligochaeta: Tubifi cidae) as an indicator of pollution exposure in the Curuksu stream of Menderes river, Denizli–Turkey. DESALINATION AND WATER TREATMENT 2012. [DOI: 10.5004/dwt.2011.2116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
10
|
Perez MH, Noriega FG. Aedes aegypti pharate 1st instar quiescence affects larval fitness and metal tolerance. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:824-9. [PMID: 22426084 PMCID: PMC3358467 DOI: 10.1016/j.jinsphys.2012.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 05/10/2023]
Abstract
The eggs of the mosquito Aedes aegypti possess the ability to undergo an extended quiescence hosting a fully developed 1st instar larvae within the chorion. As a result of this life history trait pharate larvae can withstand months of quiescence inside the egg where they depend on stored maternal reserves. A. aegypti mosquitoes are frequently associated with urban habitats that may contain significant metal pollution. Therefore, the duration of quiescence and extent of nutritional depletion may affect the physiology and survival of larvae that hatch in a suboptimal habitat. The aim of this study was to determine the effect of an extended quiescence on larval nutrient reserves and the subsequent effects of metal exposure on larval fitness, survival and development. We hypothesized that an extended quiescence would reduce nutritional reserves and alter the molecular response to metal exposure thereby reducing larval survival and altering larval development. As a molecular marker for metal stress responses, we evaluated transcriptional changes in the metallothionein gene (AaMtn) in response to quiescence and metal exposure. Extended 1st instar quiescence resulted in a significant decrease in lipid reserves and negatively affected larval fitness and development. AaMtn transcription and metal tolerance were compromised in first instars emerged from eggs that had undergone an extended quiescence. These findings suggest that newly emerged mosquito larvae that had survived a relatively long pharate 1st instar quiescence (as might occur during a dry season) are more vulnerable to environmental stress. Pharate 1st instar quiescence could have implications for vector control strategies. Newly emerged mosquito larvae at the end of the dry season or start of the wet season are physiologically compromised, and therefore potentially more susceptible to vector control strategies than mosquito larvae hatched subsequently throughout the wet season.
Collapse
Affiliation(s)
- Mario H Perez
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | |
Collapse
|
11
|
Kafel A, Zawisza-Raszka A, Szulińska E. Effects of multigenerational cadmium exposure of insects (Spodoptera exigua larvae) on anti-oxidant response in haemolymph and developmental parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 162:8-14. [PMID: 22243842 DOI: 10.1016/j.envpol.2011.09.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/31/2011] [Accepted: 09/28/2011] [Indexed: 05/21/2023]
Abstract
Biochemical and organismal indices of metal tolerance were studied in Spodoptera exigua exposed to a cadmium-contaminated diet for one or many (33 or 61) generations. Reduced and oxidised glutathione, protein thiols, total anti-oxidant capacity level, glutathione transferase activity, and Cd accumulation were assayed in the haemolymph of the last instar larvae. The cadmium concentration in the whole larval body as well as larval survival, larval duration time and last instar body weight were also measured. Elevated cadmium concentration in the whole body, higher mortality and longer duration of the larval stage in one-generation exposed insects in comparison with those exposed for many generations suggest that metal tolerance builds over time. For the larvae from multigeneration metal treatment, the higher cadmium concentration in larval haemolymph positively correlated with glutathione oxidation and total anti-oxidant capacity. One-generation exposed insects had lower metal concentration in haemolymph than did 33-generation exposed insects.
Collapse
Affiliation(s)
- Alina Kafel
- University of Silesia, Department of Animal Physiology and Ecotoxicology, Katowice, Poland.
| | | | | |
Collapse
|
12
|
de Souza AS, Couri MS, Florindo L. The impact of industrial anthropization on mosquito (Diptera, Culicidae) communities in mangrove areas of Guanabara Bay (Rio de Janeiro, Brazil). NEOTROPICAL ENTOMOLOGY 2012; 41:68-73. [PMID: 23950012 DOI: 10.1007/s13744-011-0010-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 09/30/2011] [Indexed: 06/02/2023]
Abstract
The effects of industrial anthropization on species composition and community diversity of Culicidae (Diptera) were studied in a mangrove area impacted by industrial activities as compared to a preserved area, both around Guanabara Bay in the state of Rio de Janeiro, Brazil. Diversity, equitability, and species richness in Culicidae community differed between the studied areas. Indicator species analysis and correspondence analysis were carried out and indicated that the Sabethini, especially Wyeomyia (Phoniomyia) theobaldi Lane, Wyeomyia (Phoniomyia) fuscipes (Edwards), and a non-identified species of Wyeomyia sp. were associated to the preserved area, whereas Aedes taeniorhynchus Wiedemann and Aedes scapularis (Rondani) to the impacted area.
Collapse
Affiliation(s)
- A S de Souza
- Instituto Brasileiro do Meio Ambiente e dos recursos Naturais Renováveis, IBAMA, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
13
|
Mireji PO, Keating J, Hassanali A, Impoinvil DE, Mbogo CM, Muturi MN, Nyambaka H, Kenya EU, Githure JI, Beier JC. Expression of metallothionein and alpha-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:46-50. [PMID: 19735939 PMCID: PMC2783303 DOI: 10.1016/j.ecoenv.2009.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 08/08/2009] [Accepted: 08/11/2009] [Indexed: 05/09/2023]
Abstract
Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal-responsive metallothionein and alpha-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC(30) through five successive generations. Expression levels were determined in the 5th generation by semi-quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F(3,11)=4.574, P=0.038) and alpha-tubulin (F(3,11)=12.961, P=0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P=0.012), and in cadmium than in lead treatments (P=0.044). Expressions of alpha-tubulin were significantly higher in cadmium than in control treatments (P=0.008). These results demonstrate the capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal-responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated.
Collapse
Affiliation(s)
- Paul O Mireji
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Dipterean insecta owe their relevance to the well-known model organism D. melanogaster, and extensively to the Drosophila genus. In the frame of the study of metallothioneins (MTs), they constitute a bizarre exception, since Drosophila is the only metazoan organism synthesizing only MTs similar to the yeast (S. cerevisiae) Cup1 paradigmatic copper-thionein. D. melanogaster MTs are optimized for copper binding and metabolism, and no MT analogous to the mammalian MTs has been identified, unlike in the cases of other Arthropoda and invertebrates analyzed so far (Chapters 7 and 8 of this book). The D. melanogaster genome contains four MT genes (MtnA, MtnB, MtnC, and MtnD), which are clustered in the same genomic region, probably arising from amplifying duplications. The main isoforms are MtnA and MtnB, encoding peptides 40- and 43-amino acids long, comprising 10 and 12 cysteines, respectively. MtnC and MtnD probably arise from recent MtnB duplications and play a minor role in flies. Expression of the four genes is dependent on dMTF-1, a transcriptional activator homologous to the mammalian MTF-1. Major MT synthesis in larvae and adults is observed in the digestive tract, mainly in the midgut, although with a different distribution between MtnA and MtnB. Other tissues of Mtn gene expression are salivary glands, ventricula, Malpighian tubules, and hemocytes. Metal induction increases the rate of MT synthesis in these tissues, but not normally in MT gene-silent organs, and invariably, the best response is obtained for copper, followed by cadmium, and very poorly for zinc. In conclusion, all the available data suggests a definitive role of D. melanogaster MT in copper metabolism (from ingestion to distribution, storage, delivery, and detoxification in the organism) as well as in cadmium tolerance (by digestive assimilation blockage). This is readily confirmed by studies of population genetics that show that both spontaneous MtnA genomic duplications, independently isolated in worldwide locations, and fly strains containing supernumerary Mtn genes constructed in the laboratory are able to tolerate increased copper and cadmium concentrations; while Mtn and dMTF-1 knock-outs are extremely sensitive to these conditions.
Collapse
Affiliation(s)
- Sílvia Atrian
- Department of Genetics, Faculty of Biology, Universitat de Barcelona Av. Diagonal 645 E-08028 Barcelona Spain
| |
Collapse
|
15
|
Metallothionein expression induced by nickel accumulation in the midgut of Spodoptera litura Fabricius larvae exposed to nickel. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Servia MJ, Péry ARR, Heydorff M, Garric J, Lagadic L. Effects of copper on energy metabolism and larval development in the midge Chironomus riparius. ECOTOXICOLOGY (LONDON, ENGLAND) 2006; 15:229-40. [PMID: 16557356 DOI: 10.1007/s10646-005-0054-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 12/15/2005] [Indexed: 05/08/2023]
Abstract
When spiked in sediments, copper is known to reduce growth of Chironomus riparius larvae and the production of eggs by adult females. The aim of this work was to better understand the origin of these phenomena by studying the effects of copper using developmental and energetic biomarkers, such as changes in larval weight and age and changes in the levels of sugars and lipids. Four-day-old C. riparius larvae were exposed to nominal concentrations of copper of 0, 6.5, 12.5, 25 and 50 mg/kg of dry sediment (silica) in 0.6 l beakers. They were fed ad libitum and exposures were stopped at 7 and 9 days after the beginning of the tests. The larvae were weighed, sexed and aged. For each sex, the larvae belonging to the phases the most frequently found in the beakers were selected for dissection and measurement of energy reserves. The increase in the concentration of copper resulted in an increasing delay in larval growth in both sexes. Desynchronized development was observed, as shown by the increase in the number of individuals that remained in the third instar or early phases of the fourth instar, as well as by a reduction in age of males. Concerning energy reserves, the levels of sugars (glycogen, trehalose and glucose) in the dissected larvae remained almost constant among levels of exposure. In contrast, at the highest copper concentration (50 mg/kg), triglyceride levels suffered a slight reduction whereas the level of free glycerol significantly increased. It is concluded that selection of C. riparius larvae for both sex and age improves the relevance of some energy-yielding substrates as indicators of adverse physiological effects of copper.
Collapse
Affiliation(s)
- María J Servia
- UMR 985 Inra-Agrocampus Ecobiologie et Qualité des Hydrosystèmes Continentaux, Equipe Ecotoxicologie et Qualité des Milieux aquatiques, 65 rue de Saint Brieuc, F-35042, Rennes, Cedex, France
| | | | | | | | | |
Collapse
|