1
|
Faisal AAH, Taha DS, Hassan WH, Lakhera SK, Ansar S, Pradhan S. Subsurface flow constructed wetlands for treating of simulated cadmium ions-wastewater with presence of Canna indica and Typha domingensis. CHEMOSPHERE 2023; 338:139469. [PMID: 37442380 DOI: 10.1016/j.chemosphere.2023.139469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
The presence of toxic cadmium ions in the wastewater resulted from industrial sector forms the critical issue for public health and ecosystem. This study determines the ability of four vertical subsurface flow constructed wetlands units in the treatment of simulated wastewater laden with cadmium ions. This was achieved through using sewage sludge byproduct as alternative for the traditional sand to be substrate for aforementioned units in order to satisfy the sustainable concepts; however, Canna indica and Typha domingensis can apply to enhance the cadmium removal. The performance of constructed wetlands has been evaluated through monitoring of the pH, dissolved oxygen (DO), temperature, and concentrations of cadmium (Cd) in the effluents for retention time (0.5-120 h) and metal concentration (5-40 mg/L). The results demonstrated that the Cd removal percentage was exceeded 82% beyond 5 days and for concentration of 5 mg/L; however, this percentage was decreased with smaller retention time and higher metal concentration. The Grau second-order kinetic model accurately simulated the measurements of effluent Cd concentrations as a function of retention times. The FT-IR analysis indicated the existence of certain functional groups capable of enhancing the Cd removal. The treated wastewater's pH, DO, temperature, total dissolved solids (TDS), and electrical conductivity (EC) all meet the requirements for irrigation water.
Collapse
Affiliation(s)
- Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Duaa S Taha
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Waqed H Hassan
- College of Engineering, University of Warith Al-Anbiyaa, Kerbala, Iraq; Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala 56001, Iraq.
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Samjhana Pradhan
- Department of Chemistry, College of Sciences and Engineering, Idaho State University, USA
| |
Collapse
|
2
|
Bui LT, Nguyen PH. Ground-level ozone in the Mekong Delta region: precursors, meteorological factors, and regional transport. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23691-23713. [PMID: 36323970 DOI: 10.1007/s11356-022-23819-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The Mekong Delta region (MDR), also known as Vietnam's rice bowl, produced a bountiful harvest of about 23.8 million tons in 2020, accounting for 55.7% of the country's total production, providing food security for 20% of the world population. With the rapid pace of industrialisation and urbanisation, the concentration of ozone in the lower atmosphere has risen to a level that reduces crop yields, especially rice, and is therefore the subject of research. This study aims to simulate the spatiotemporal distribution of ground-level ozone in the area and evaluate the impact of precursor emissions and meteorological factors on the spatiotemporal distributions of ozone concentrations. The study area was divided into seven zones, including six agro-ecological zones (AEZs) and one low-mountainous area, mainly to clarify the role of emissions in each AEZ. The simulation results showed that ground-level O3 in the MDR ranged from 40.39 to 52.13 µg/m3. In six agro-ecological zones, the average annual ground-level O3 concentration was relatively high and was the highest in zone 6 (CPZ) and zone 3 (LXZ) with values of 96.18 µg/m3 (exceeding 1.60 times the WHO Guidelines 2021) and 94.86 µg/m3 (exceeding 1.58 times the WHO Guidelines 2021), respectively. In each zone, the annual average O3 concentration tended to gradually increase from the inner delta to coastal areas. Two types of precursors, NOx and NMVOCs, are the main contributors to O3 pollution, with the largest contribution coming from zone 1 (FAZ) with 91.5 thousand tons of NOx/year and 455.2 thousand tons of NMVOCs/year. Among the meteorological factors considered, temperature (T), relative humidity (RH), and surface pressure (P) were the three main factors that contributed to the increase in ground-level ozone. The spatio-temporal distribution of ground-level O3 in the MDR was influenced by emission precursors from different zones as well as meteorological factors. The present results can help policy-makers formulate plans for agro-industrial development in the entire region.
Collapse
Affiliation(s)
- Long Ta Bui
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | - Phong Hoang Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Zulkifli MFH, Hawari NSSL, Latif MT, Hamid HHA, Mohtar AAA, Idris WMRW, Mustaffa NIH, Juneng L. Volatile organic compounds and their contribution to ground-level ozone formation in a tropical urban environment. CHEMOSPHERE 2022; 302:134852. [PMID: 35533940 DOI: 10.1016/j.chemosphere.2022.134852] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
This study aims to determine the trends of volatile organic compound (VOC) concentrations and their potential contribution to O3 formation. The hourly data (August 2017 to July 2018) for 29 VOCs were obtained from three Malaysian Department of Environment continuous air quality monitoring stations with different urban backgrounds (Shah Alam, Cheras, Seremban). The Ozone Formation Potential (OFP) was calculated based on the individual Maximum Incremental Reactivity (MIR) and VOC concentrations. The results showed that the highest mean total VOC concentrations were recorded at Cheras (148 ± 123 μg m-3), within the Kuala Lumpur urban environment, followed by Shah Alam (124 ± 116 μg m-3) and Seremban (86.4 ± 89.2 μg m-3). VOCs such as n-butane, ethene, ethane and toluene were reported to be the most abundant species at all the selected stations, with overall mean concentrations of 16.6 ± 11.9 μg m-3, 12.1 ± 13.3 μg m-3, 10.8 ± 11.9 μg m-3 and 9.67 ± 9.00 μg m-3, respectively. Alkenes (51.3-59.1%) and aromatic hydrocarbons (26.4-33.5%) have been identified as the major contributors to O3 formation in the study areas based on the overall VOC measurements. Relative humidity was found to influence the concentrations of VOCs more than other meteorological parameters. Overall, this study will contribute to further understanding of the distribution of VOCs and their contribution to O3 formation, particularly in the tropical urban environment.
Collapse
Affiliation(s)
- Mohd Faizul Hilmi Zulkifli
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia; Air Division, Department of Environment, Ministry of Environment and Water, 62574, Putrajaya, Malaysia
| | - Nor Syamimi Sufiera Limi Hawari
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia; Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, 60115, Surabaya, Indonesia.
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Anis Asma Ahmad Mohtar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Wan Mohd Razi Wan Idris
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Nur Ili Hamizah Mustaffa
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Liew Juneng
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| |
Collapse
|
4
|
Sustainable Amelioration of Heavy Metals in Soil Ecosystem: Existing Developments to Emerging Trends. MINERALS 2022. [DOI: 10.3390/min12010085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The consequences of heavy metal contamination are progressively degrading soil quality in this modern period of industry. Due to this reason, improvement of the soil quality is necessary. Remediation is a method of removing pollutants from the root zone of plants in order to minimize stress and increase yield of plants grown in it. The use of plants to remove toxins from the soil, such as heavy metals, trace elements, organic chemicals, and radioactive substances, is referred to as bioremediation. Biochar and fly ash techniques are also studied for effectiveness in improving the quality of contaminated soil. This review compiles amelioration technologies and how they are used in the field. It also explains how nanoparticles are becoming a popular method of desalination, as well as how they can be employed in heavy metal phytoremediation.
Collapse
|
5
|
A Characterization and Cell Toxicity Assessment of Particulate Pollutants from Road Traffic Sites in Kano State, Nigeria. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Emerging African countries are characterized by explosive population growth and urbanization, which threaten environmental sustainability. This study comparatively characterized ambient aerosols and assessed cytotoxicity to facilitate improving health and environmental policy. Twenty-four air samples were collected at high and low-density traffic sites in Kano State using polysulfone and stainless steel filters attached to an automated pump. The physico-chemical properties of particulate matter were determined using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). In vitro, their potential toxicity was assessed using macrophages and cell fixation with staining. Results showed 51.7% of particles as PM2.5, with the highest particle concentration in mixed sites (urban and industrial). Particle classification into four groups by elemental composition and structure showed: Si, Al, and Ca 58–67%; other fibres, Fe, S, Mo, and Zn 1–17%; non-sand non-fibres 23–56%; and silicone-based fibres 2–28%. The abundant elements are: Si, Al, Ca, Ce, Ti, Fe, Cl, Pb, and Mn. The lowest viability on cytotoxicity assessment was recorded in mixed site M2. The majority of households were located within 50 m of air sampling sites. Proximity to traffic sites worsens health, as evidenced in cytotoxicity findings. We recommend improved urban planning and intensification of emissions control.
Collapse
|
6
|
Bueno V, Bosi A, Tosco T, Ghoshal S. Mobility of solid and porous hollow SiO 2 nanoparticles in saturated porous media: Impacts of surface and particle structure. J Colloid Interface Sci 2021; 606:480-490. [PMID: 34399364 DOI: 10.1016/j.jcis.2021.07.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
Silica nanoparticles (SiO2 NPs) are of increasing interest in nano-enabled agriculture, particularly as nanocarriers for the targeted delivery of agrochemicals. Their direct application in agricultural soils may lead to the release of SiO2 NPs in the environment. Although some studies have investigated transport of solid SiO2 NPs in porous media, there is a knowledge gap on how different SiO2 NP structures incorporating significant porosities can affect the mobility of such particles under different conditions. Herein, we investigated the effect of pH and ionic strength (IS) on the transport of two distinct structures of SiO2 NPs, namely solid SiO2 NPs (SSNs) and porous hollow SiO2 NPs (PHSNs), of comparable sizes (~200 nm). Decreasing pH and increasing ionic strength reduced the mobility of PHSNs in sand-packed columns more significantly than for SSNs. The deposition of PHSNs was approximately 3 times greater than that of SSNs at pH 4.5 and IS 100 mM. The results are non-intuitive given that PHSNs have a lower density and the same chemical composition of SSNs but can be explained by the greater surface roughness and ten-fold greater specific surface area of PHSNs, and their impacts on van der Waals and electrostatic interaction energies.
Collapse
Affiliation(s)
- Vinicius Bueno
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Alessandro Bosi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Tiziana Tosco
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
7
|
Alyousifi Y, Ibrahim K, Kang W, Zin WZW. Robust empirical Bayes approach for Markov chain modeling of air pollution index. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:343-356. [PMID: 34150239 PMCID: PMC8172767 DOI: 10.1007/s40201-020-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Air pollution is a matter of concern among the public, especially for those living in urban and industrial areas. Markov chain modeling is often used to model the underlying dynamics of air pollution, which involves describing the transition probability of going from one air pollution state to another. Thus, estimating the transition probability matrix for the data of the air pollution index (API) is an essential process in the modeling. However, one may observe many zero probabilities in the transition probability matrix, especially when faced with a small sample, interpreting the results with respect to the climate condition less realistic. This study proposes a robust empirical Bayes method, which incorporates a method of smoothing the zero frequencies in the count matrix, contributing to an improved estimation of the transition probability matrix. The robustness of the empirical Bayesian estimation is investigated based on Bayes risk. The transition probability matrices estimated based on the robust empirical Bayes method for the hourly API data collected from seven monitoring stations in Malaysia for the period 2012 to 2014 are used for determining the air pollution characteristics such as the mean residence time, the steady-state probability and the mean recurrence time. Furthermore, the proposed method has been evaluated by Monte Carlo simulations. Results suggest that it is quite effective in producing non-zero transition probability estimates, and superior to the maximum likelihood method in terms of minimizing the mean squared error for individual and entire transition probabilities. Therefore, the robust empirical Bayes method proves to be an improved approach to the estimation of the Markov chain. When applied to API data, it could provide important information on air pollution dynamics that may help guiding the development of proper strategies for managing the impact of air quality. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00607-4.
Collapse
Affiliation(s)
- Yousif Alyousifi
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Kamarulzaman Ibrahim
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Wei Kang
- Center for Geospatial Sciences, University of California, Riverside, CA USA
| | - Wan Zawiah Wan Zin
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
8
|
Abstract
We examine the change in surface ozone and its precursor behavior over 20 years at four locations in western Peninsular Malaysia which have undergone urban-commercial development. Trend and correlation analyses were carried out on ozone and oxides of nitrogen observation data over the periods of 1997–2016 as well as the decadal intervals of 1997–2006 and 2007–2016. Diurnal variation composites for decadal intervals were also plotted. Significant increasing ozone concentrations were observed at all locations for the 20-year period, with a range between 0.09 and 0.21 ppb yr−1. The most urbanized location (S3) showed the highest ozone trend. Decadal intervals show that not all stations record significant increasing trends of ozone, with S1 recording decreasing ozone at a rate of −0.44 ppb yr−1 during the latter decade. Correlation analysis showed that only oxides of nitrogen ratios (NO/NO2) had significant inverse relationships with ozone at all stations corresponding to control of ozone by photostationary state reactions. The diurnal composites show that decadal difference in NO/NO2 is mostly influenced by change in nitric oxide concentrations.
Collapse
|
9
|
Saxena P, Chakraborty M, Sonwani S. Phytotoxic Effects of Surface Ozone Exposure on Rice Crop—A Case Study of Tropical Megacity of India. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/gep.2020.85020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Latif MT, Dominick D, Ahamad F, Ahamad NS, Khan MF, Juneng L, Xiang CJ, Nadzir MSM, Robinson AD, Ismail M, Mead MI, Harris NRP. Seasonal and long term variations of surface ozone concentrations in Malaysian Borneo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:494-504. [PMID: 27572541 DOI: 10.1016/j.scitotenv.2016.08.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Malaysian Borneo has a lower population density and is an area known for its lush rainforests. However, changes in pollutant profiles are expected due to increasing urbanisation and commercial-industrial activities. This study aims to determine the variation of surface O3 concentration recorded at seven selected stations in Malaysian Borneo. Hourly surface O3 data covering the period 2002 to 2013, obtained from the Malaysian Department of Environment (DOE), were analysed using statistical methods. The results show that the concentrations of O3 recorded in Malaysian Borneo during the study period were below the maximum Malaysian Air Quality Standard of 100ppbv. The hourly average and maximum O3 concentrations of 31 and 92ppbv reported at Bintulu (S3) respectively were the highest among the O3 concentrations recorded at the sampling stations. Further investigation on O3 precursors show that sampling sites located near to local petrochemical industrial activities, such as Bintulu (S3) and Miri (S4), have higher NO2/NO ratios (between 3.21 and 5.67) compared to other stations. The normalised O3 values recorded at all stations were higher during the weekend compared to weekdays (unlike its precursors) which suggests the influence of O3 titration by NO during weekdays. The results also show that there are distinct seasonal variations in O3 across Borneo. High surface O3 concentrations were usually observed between August and September at all stations with the exception of station S7 on the east coast. Majority of the stations (except S1 and S6) have recorded increasing averaged maximum concentrations of surface O3 over the analysed years. Increasing trends of NO2 and decreasing trends of NO influence the yearly averaged maximum of O3 especially at S3. This study also shows that variations of meteorological factors such as wind speed and direction, humidity and temperature influence the concentration of surface O3.
Collapse
Affiliation(s)
- Mohd Talib Latif
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Doreena Dominick
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Fatimah Ahamad
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Shuhada Ahamad
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Md Firoz Khan
- Centre for Tropical Climate Change System (IKLIM), Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Liew Juneng
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chung Jing Xiang
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Centre for Tropical Climate Change System (IKLIM), Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Andrew D Robinson
- Centre of Atmospheric Sciences, Chemistry Department, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Marzuki Ismail
- School of Marine Science and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Mohammed Iqbal Mead
- Centre for Atmospheric Informatics and Emissions Technology, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Neil R P Harris
- Centre for Atmospheric Informatics and Emissions Technology, Cranfield University, Cranfield MK43 0AL, United Kingdom
| |
Collapse
|
11
|
Hamdun AM, Arakaki T. Analysis of Ground Level Ozone and Nitrogen Oxides in the City of Dar es Salaam and the Rural Area of Bagamoyo, Tanzania. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojap.2015.44019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Mohamad ND, Ash’aari ZH, Othman M. Preliminary Assessment of Air Pollutant Sources Identification at Selected Monitoring Stations in Klang Valley, Malaysia. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
The impact of urban growth on regional air quality surrounding the Langat River Basin, Malaysia. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s10669-011-9340-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Ismail. Variation of Surface Ozone Recorded at the Eastern Coastal Region of the Malaysian Peninsula. ACTA ACUST UNITED AC 2010. [DOI: 10.3844/ajessp.2010.560.569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|