1
|
Xiao R, Ali A, Xu Y, Abdelrahman H, Li R, Lin Y, Bolan N, Shaheen SM, Rinklebe J, Zhang Z. Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106924. [PMID: 34634621 DOI: 10.1016/j.envint.2021.106924] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Global concerns towards potentially toxic elements (PTEs) are steadily increasing due to the significant threats that PTEs pose to human health and environmental quality. This calls for immediate, effective and efficient remediation solutions. Earthworms, the 'ecosystem engineers', can modify and improve soil health and enhance plant productivity. Recently, considerable attention has been paid to the potential of earthworms, alone or combined with other soil organisms and/or soil amendments, to remediate PTEs contaminated soils. However, the use of earthworms in the remediation of PTEs contaminated soil (i.e., vermiremediation) has not been thoroughly reviewed to date. Therefore, this review discusses and provides comprehensive insights into the suitability of earthworms as potential candidates for bioremediation of PTEs contaminated soils and mitigating environmental and human health risks. Specifically, we reviewed and discussed: i) the occurrence and abundance of earthworms in PTEs contaminated soils; ii) the influence of PTEs on earthworm communities in contaminated soils; iii) factors affecting earthworm PTEs accumulation and elimination, and iv) the dynamics and fate of PTEs in earthworm amended soils. The technical feasibility, knowledge gaps, and practical challenges have been worked out and critically discussed. Therefore, this review could provide a reference and guidance for bio-restoration of PTEs contaminated soils and shall also help developing innovative and applicable solutions for controlling PTEs bioavailability for the remediation of contaminated soils and the mitigation of the environment and human risks.
Collapse
Affiliation(s)
- Ran Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yaqiong Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Perth WA 6009, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Cândido GS, Martins GC, Vasques ICF, Lima FRD, Pereira P, Engelhardt MM, Reis RHCL, José Marques J. Toxic effects of lead in plants grown in brazilian soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:305-313. [PMID: 32076927 DOI: 10.1007/s10646-020-02174-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Lead (Pb) in soils can be transferred to plants, animals, and even humans. The toxicity of Pb is worrisome and therefore environmental quality criteria, established by laws to support the management of contaminated sites, have been developed to prevent its deleterious effects in a wide range of soils, uses, and occupations. In Brazil, the CONAMA Resolution 420/2009 established that Brazilian states may define their prevention values (PV) for metals in soils. However, the established values should be well studied, since a wide variation of sensitivity of species exposed to Pb is reported and several have a high tolerance. We aimed to evaluate Pb toxicity to validate the suitability of the current Brazilian Pb-prevention value. A trial was carried with two plant species (sorghum and soybean) grown in two tropical soils (Typic Hapludox and Rhodic Acrudox), following ISO 11.269-2 protocols (ISO 2012). The tested soils were contaminated with Pb-acetate at the following concentrations: 0, 200, 400, 800, 1200, 1600, 2200, 2800, and 3200 mg kg-1 of dry soil. Differences regarding species sensitivity were observed and sorghum seemed to be less sensitive to Pb concentration in soils. Soil characteristics as higher clay and organic matter content were responsible for decreasing the overall availability of Pb for plants. Using data from this study and from the literature, we constructed a species sensitivity distribution curve and calculated the HC5 (hazardous concentration to 5% of variables evaluated). The HC5 was 132.5 mg kg-1, which suggests that the PV currently used in Brazil (72 mg kg-1) is sufficiently protective for Brazilian soils.
Collapse
Affiliation(s)
| | | | | | | | - Polyana Pereira
- Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | | | | | | |
Collapse
|
3
|
Maboeta M, Fouché T. Utilizing an earthworm bioassay (Eisenia andrei) to assess a South African soil screening value with regards to effects from a copper manufacturing industry. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:322-326. [PMID: 24875827 DOI: 10.1007/s00128-014-1302-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Metal contamination of soil due to industrialization has become an increasingly important problem in South Africa. This study aimed to investigate the potential impact of a copper (CuSO4·5H2O) production company on the soil environment. Bioassays using Eisenia andrei were performed to assess changes in biomass, reproduction and a biomarker, neutral red retention time, over a 28 day period. Earthworms exposed to soils from the Cu production site differed significantly (p < 0.05) from those exposed to soils 500 m and 5 km away in terms of the measured endpoints. These findings are consistent with the results from the chemical analysis which showed an elevated soil Cu content for both sites closest to the chemical production company compared to the reference site. The results confirm the importance and predictive value of using bioassays in conjunction with chemical analysis during soil quality assessments.
Collapse
Affiliation(s)
- Mark Maboeta
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa,
| | | |
Collapse
|
4
|
Li L, Wu H, van Gestel CAM, Peijnenburg WJGM, Allen HE. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 188:144-152. [PMID: 24583712 DOI: 10.1016/j.envpol.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg(-1)) and Zn (168 mg kg(-1)) in old apple orchards and Pb (73 mg kg(-1)) and Cd (0.57 mg kg(-1)) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl2-extractable soil concentrations (R(2) = 0.70, p < 0.001 for Cu; R(2) = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions.
Collapse
Affiliation(s)
- Lianzhen Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China.
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Willie J G M Peijnenburg
- National Institute of Public Health and The Environment, Laboratory for Ecological Risk Assessment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Jiang M, Zeng G, Zhang C, Ma X, Chen M, Zhang J, Lu L, Yu Q, Hu L, Liu L. Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District. PLoS One 2013; 8:e71176. [PMID: 23951103 PMCID: PMC3738634 DOI: 10.1371/journal.pone.0071176] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/27/2013] [Indexed: 12/03/2022] Open
Abstract
Xiawanggang River region is considered to be one of the most polluted areas in China due to its huge amount discharge of pollutants and accumulation for years. As it is one branch of Xiang River and the area downstream is Changsha city, the capital of Hunan Province, the ecological niche of Xiawangang River is very important. The pollution treatment in this area was emphasized in the Twelfth Five-Year Plan of Chinese government for Xiang River Water Environmental Pollution Control. In order to assess the heavy metal pollution and provide the base information in this region for The Twelfth Five-Year Plan, contents and fractions of four heavy metals (Cd, Cu, Pb and Zn) covering both sediments and soils were analyzed to study their contamination state. Three different indexes were applied to assess the pollution extent. The results showed this area was severely polluted by the four heavy metals, and the total concentrations exceeded the Chinese environmental quality standard for soil, grade III, especially for Cd. Moreover, Cd, rated as being in high risk, had a high mobility as its great contents of exchangeable and carbonates fractions in spite of its relative low content. Regression analysis revealed clay could well explain the regression equation for Cd, Cu and Zn while pH and sand could significantly interpret the regression equation for Pb. Moreover, there was a significant correlation between Non-residual fraction and Igeo for all the four metals. Correlation analysis showed four metals maybe had similar pollution sources.
Collapse
Affiliation(s)
- Min Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
- * E-mail: (GZ); (CZ)
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
- * E-mail: (GZ); (CZ)
| | - Xiaoying Ma
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Canada
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Lunhui Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Qian Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Langping Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Lifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| |
Collapse
|
6
|
Simon E, Vidic A, Braun M, Fábián I, Tóthmérész B. Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:917-924. [PMID: 22843352 DOI: 10.1007/s11356-012-1091-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Urban soil is an important component of urban ecosystems. This study focuses on heavy metal contamination in soils of Wien (Austria) and results are compared to those for a few large European cities. We analysed the elemental contents of 96 samples of topsoil from urban, suburban and rural areas in Wien along a dynamic (floodplain forest) and a stable (oak-hornbeam forest) urbanization gradient. The following elements were quantified using ICP-OES technique: Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Pb, P, S and Zn. For heavy metals PI (pollution index) values were used to assess the level of pollution. The PI values indicated high level of pollution by Pb in the suburban and rural area of stable gradient and in the urban area of dynamic gradient; moderate level of pollution was indicated for Cd in the urban area of stable gradient. The level of pollution was moderate for Co in the suburban and rural area of the stable gradient, and for Cu in suburban area of stable gradient, and urban area of dynamic gradient. The pollution level of Zn was moderate in all areas. Urban soils, especially in urban parks and green areas may have a direct influence on human health. Thus, the elemental analysis of soil samples is one of the best ways to study the effects of urbanization. Our results indicated that the heavy metal contamination was higher in Wien than in a few large European cities.
Collapse
Affiliation(s)
- Edina Simon
- Department of Ecology, University of Debrecen, Debrecen, PO Box 71, 4010 Hungary.
| | | | | | | | | |
Collapse
|
7
|
Gaw S, Northcott G, Kim N, Wilkins A, Jensen J. Comparison of earthworm and chemical assays of the bioavailability of aged 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, and heavy metals in orchard soils. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1306-1316. [PMID: 22447312 DOI: 10.1002/etc.1817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/29/2011] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
Orchard soils can contain elevated concentrations of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p'-DDT), and heavy metals as a result of historical agrichemical applications. The bioavailability of p,p'-DDE, p,p'-DDT, As, Cd, Cu, and Pb from five field-aged New Zealand orchards and three grazing soils was assessed by using a 28-d bioassay with Aporrectodea caliginosa and chemical assays. Significant relationships were found between total soil and earthworm tissue concentrations for p,p'-DDE (p < 0.001), p,p'-DDT (p < 0.001), Cu (p < 0.001), and Pb (p < 0.01). Two neutral salt solutions, 0.01 M CaCl(2) and 1 M NH(4)NO(3), were used as surrogate measures of the bioavailability of heavy metals. Copper was the only heavy metal for which significant correlations were found between neutral-salt-extractable and earthworm tissue concentrations (p < 0.001). Up to 28% of the aged DDT residues were released from the soils by Tenax over a 24-h extraction period. Significant relationships (p < 0.01) between the Tenax-extractable and earthworm tissue concentrations for p,p'-DDE and p,p'-DDT showed that Tenax provides a good surrogate measure of the bioavailability of these compounds to A. caliginosa. Surprisingly, there was a similarly significant relationship (p < 0.001) between the total soil and earthworm tissue concentrations for p,p'-DDE and p,p'-DDT, suggesting that total soil concentrations alone were sufficient to predict uptake by A. caliginosa. These results demonstrate that the aged agrichemical residues in orchard soils, and particularly p,p'-DDE and p,p'-DDT, remain highly bioavailable to A. caliginosa despite decades of weathering and continue to present an environmental risk.
Collapse
Affiliation(s)
- Sally Gaw
- The University of Waikato, Hamilton, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Fritsch C, Cœurdassier M, Giraudoux P, Raoul F, Douay F, Rieffel D, de Vaufleury A, Scheifler R. Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape. PLoS One 2011; 6:e20682. [PMID: 21655187 PMCID: PMC3105103 DOI: 10.1371/journal.pone.0020682] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Department of Chrono-Environment, UMR UFC/CNRS 6249 USC INRA, University of Franche-Comté, Besançon, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abollino O, Malandrino M, Giacomino A, Mentasti E. The role of chemometrics in single and sequential extraction assays: A review. Anal Chim Acta 2011; 688:104-21. [DOI: 10.1016/j.aca.2010.12.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/23/2010] [Accepted: 12/13/2010] [Indexed: 11/30/2022]
|
10
|
Lair GJ, Zehetner F, Fiebig M, Gerzabek MH, van Gestel CAM, Hein T, Hohensinner S, Hsu P, Jones KC, Jordan G, Koelmans AA, Poot A, Slijkerman DME, Totsche KU, Bondar-Kunze E, Barth JAC. How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:3336-3346. [PMID: 19604610 DOI: 10.1016/j.envpol.2009.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
In many densely populated areas, riverine floodplains have been strongly impacted and degraded by river channelization and flood protection dikes. Floodplains act as buffers for flood water and as filters for nutrients and pollutants carried with river water and sediment from upstream source areas. Based on results of the EU-funded "AquaTerra" project (2004-2009), we analyze changes in the dynamics of European river-floodplain systems over different temporal scales and assess their effects on contaminant behaviour and ecosystem functioning. We find that human-induced changes in the hydrologic regime of rivers have direct and severe consequences on nutrient cycling and contaminant retention in adjacent floodplains. We point out the complex interactions of contaminants with nutrient availability and other physico-chemical characteristics (pH, organic matter) in determining ecotoxicity and habitat quality, and draw conclusions for improved floodplain management.
Collapse
Affiliation(s)
- G J Lair
- Institute of Soil Research, University of Natural Resources and Applied Life Sciences, Peter-Jordan-Str 82, A-1190 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
van Gestel CAM, Koolhaas JE, Hamers T, van Hoppe M, van Roovert M, Korsman C, Reinecke SA. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:895-903. [PMID: 19062144 DOI: 10.1016/j.envpol.2008.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/28/2008] [Accepted: 11/02/2008] [Indexed: 05/27/2023]
Abstract
Effects on earthworms in the contaminated floodplain area the Biesbosch, the Netherlands, were determined at different levels of organization using a combination of field and laboratory tests. The species Lumbricus rubellus, collected from different polluted sites in the Biesbosch, showed reduced values for the biomarker neutral red retention time (NRRT), mainly explained by high metal concentrations in the soil and the resulting high internal copper concentrations in the earthworms. Organic pollutant levels in earthworms were low and did not explain reduced NRRTs. Earthworm abundance and biomass were not correlated with pollutant levels in the soil. Litterbag decomposition and bait-lamina feeding activity, measures of the functional role of earthworms, were not affected by metal pollution and did not show any correlation with metal concentrations in soil or earthworms nor with NRRT. Effects at the biochemical level therefore did not result in a reduced functioning of earthworm communities.
Collapse
Affiliation(s)
- Cornelis A M van Gestel
- Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
van Gestel CAM. Physico-chemical and biological parameters determine metal bioavailability in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 406:385-395. [PMID: 18620734 DOI: 10.1016/j.scitotenv.2008.05.050] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 05/26/2023]
Abstract
The Netherlands Stimulation program on System-oriented Ecotoxicological Research focused on three study areas, including two floodplains and a peaty grassland. All three areas were polluted with metals, with total soil concentrations often exceeding Dutch Intervention Values. The floodplain areas showed a homogeneous distribution of metal pollution, while pollution in the peaty area was more heterogeneous. This study aimed at establishing possible general trends in metal bioavailability by combining results obtained at the three different study sites. Available metal concentrations, measured as pore water or 0.01 M CaCl2 extractable concentrations in soil, were lowest in the floodplain soils, probably due to the high pH (> 7.0) and high organic matter (8-30%) and clay contents (13-42%). In the peaty soil, having a lower soil pH (4.5-6.5) but higher organic matter contents (38-60%), in some but not all samples Cu concentrations in pore water and Cu and Pb concentrations in 0.01 CaCl2 extracts were higher than in non-polluted reference areas. Plants in the floodplain areas had only low metal concentrations in their leaves, but soil invertebrates and small mammals did contain elevated concentrations in their body. Cd showed high levels in earthworms, snails and small mammals, while also Cu levels were sometimes increased in earthworms, millipedes and small mammals from the floodplain areas. Earthworms from the peaty area contained increased levels of Cu and Pb. These results suggest that metal bioavailability cannot be predicted from available concentrations in pore water or 0.01 M CaCl2 soil extracts, but requires measurement of biota and more insight into the biodynamics of metal uptake.
Collapse
Affiliation(s)
- Cornelis A M van Gestel
- Institute of Ecological Science, Department of Animal Ecology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|