1
|
Baos R, Tanferna A, Blas J, Jiménez B, González MJ, Hiraldo F, Sergio F. Metal and arsenic contamination of a terrestrial top-predator, the black kite (Milvus migrans), after the Aznalcóllar mine spill (southwestern Spain): Temporal trends and fitness consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177291. [PMID: 39477118 DOI: 10.1016/j.scitotenv.2024.177291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 11/10/2024]
Abstract
Top-predators serve as sentinels of ecosystem health due to their sensitivity to environmental contamination. However, our understanding on how contaminants affect individual fitness is still scarce, especially for long-lived species. Here, we measured blood concentrations of 4 metals (Cd, Cu, Pb, and Zn) and one metalloid (As) in black kite (Milvus migrans) adults from Doñana National Park (SW Spain) following a major mine spill. Besides temporal variation (1998-2001) in metal and As concentrations, we tested how metal and As profiles changed across individuals in relation to their sex, age or breeding status, and examined whether metal and As concentrations affected individuals' fitness (breeding success and mortality). We found that, overall, blood concentrations of Pb, Cd and As increased throughout the study period in black kites, mirroring the progressive increase previously reported for their main prey. Both sex (Cu and Zn) and breeding status (Zn and Pb) affected element concentrations. Non-breeding (floater) females had higher levels of Zn than their breeding counterparts. The same pattern of higher contamination in floaters was observed for Pb, which might be related to differences in diet and foraging activity between breeders and floaters. The percentage of the individuals with Pb concentrations that exceeded toxicity thresholds (> 200 μg/L) was relatively high (15.4 %). Moreover, Pb concentrations were negatively correlated to males' breeding success. We found no clear evidence to support metal and As effects on survival or life expectancy after accounting for environmental and individual sources of variation. Our results highlight the importance of long-term studies of marked individuals in wild populations; detailed knowledge of ecological processes relevant to these populations, combined with measures of contaminant exposure at individual level, provides opportunities to enhance our understanding of its fitness effects and potential demographic consequences.
Collapse
Affiliation(s)
- Raquel Baos
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Alessandro Tanferna
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Julio Blas
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Madrid, Spain
| | - María José González
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Madrid, Spain
| | - Fernando Hiraldo
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Fabrizio Sergio
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD-CSIC), Seville, Spain.
| |
Collapse
|
2
|
Taylor NS, Sadowski J, Schuster HS, Weyers A, Weltje L. Occurrence of common frog (Rana temporaria) and common toad (Bufo bufo) adults and metamorphs in agricultural fields in Germany: Potential for exposure to plant protection products. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2218-2230. [PMID: 38837650 DOI: 10.1002/ieam.4952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
To characterize the potential for exposure of amphibian terrestrial life stages to plant protection products (PPP), we studied the occurrence and habitat use of adult and metamorph common frogs (Rana temporaria) and common toads (Bufo bufo) in an agricultural landscape in Germany. The four selected study sites were breeding ponds with approximately 80% agricultural land within a 1-km radius. Adults were monitored by radio tracking for two years, and metamorph numbers were assessed for one summer using pitfall traps alongside drift fences. The results demonstrate that adults were rarely present in arable fields at any of the sites (overall 0.5% and 4% of total observations for frogs and toads, respectively). Metamorph captures in arable fields were more variable, ranging from 1.2% to 38.8% (frogs) and from 0.0% to 26.1% (toads) across study sites. Unsurprisingly, most captures in arable fields for both toad and frog metamorphs occurred at the site where the pond was completely surrounded by arable fields. Overall, the presence of adult amphibians in arable fields was limited and, for the metamorphs, occurred primarily when crops were denser and PPP spray interception higher. Diurnal hiding behavior was observed with the highest activity recorded at night, further reducing the risk of dermal exposure from direct PPP overspraying. In addition, it appeared that alternative habitats, such as woody structures or water bodies in the broader surrounding area, were preferred by the animals over the arable areas. The use of buffer zones around water bodies in agricultural areas would be an effective risk mitigation measure to protect terrestrial adults and metamorphs residing there and would reduce spray drift entry into water bodies during PPP application. It is hoped that these results will contribute to the discussion of risk assessment and mitigation options for amphibians. Integr Environ Assess Manag 2024;20:2218-2230. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Nadine S Taylor
- Cambridge Environmental Assessments (RSK ADAS Ltd), Cambridge, UK
| | - Jan Sadowski
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut (JKI), Münster, Germany
| | - Hanna S Schuster
- Cambridge Environmental Assessments (RSK ADAS Ltd), Cambridge, UK
| | - Arnd Weyers
- Bayer AG, Crop Science Division, Environmental Safety, Monheim, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions-Ecotoxicology, Limburgerhof, Germany
| |
Collapse
|
3
|
Faburé J, Hedde M, Le Perchec S, Pesce S, Sucré E, Fritsch C. Role of trophic interactions in transfer and cascading impacts of plant protection products on biodiversity: a literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35190-w. [PMID: 39422865 DOI: 10.1007/s11356-024-35190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Plant protection products (PPPs) have historically been one of the classes of chemical compounds at the frontline of raising scientific and public awareness of the global nature of environmental pollution and the role of trophic interactions in shaping the impacts of chemicals on ecosystems. Despite increasingly strong regulatory measures since the 1970s designed to avoid unintentional effects of PPPs, their use is now recognised as a driver of biodiversity erosion. The French Ministries for the Environment, Agriculture and Research commissioned a collective scientific assessment to synthesise the current science and knowledge on the impacts of PPPs on biodiversity and ecosystem services. Here we report a literature review of the state of knowledge on the propagation of PPP residues and the effects of PPPs in food webs, including biopesticides, with a focus on current-use PPPs. Currently used PPPs may be stronger drivers of the current biodiversity loss than the banned compounds no longer in use, and there have been far fewer reviews on current-use PPPs than legacy PPPs. We first provide a detailed overview of the transfer and propagation of effects of PPPs through trophic interactions in both terrestrial and aquatic ecosystems. We then review cross-ecosystem trophic paths of PPP propagation, and provide insight on the role of trophic interactions in the impacts of PPPs on ecological functions. We conclude with a summary of the available knowledge and the perspectives for tackling the main gaps, and address areas that warrant further research and pathways to advancing environmental risk assessment.
Collapse
Affiliation(s)
- Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Campus AgroParis Saclay, 22 Place de L'Agronomie, CS 80022, 91120, Palaiseau, France.
| | - Mickael Hedde
- Université de Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, Eco&Sols, 34060, Montpellier, France
| | | | | | - Elliott Sucré
- MARBEC (Marine Biodiversity, Exploitation and Conservation), Université de Montpellier, CNRS, Ifremer, IRD, 34000, Montpellier, France
- Université de Mayotte, Dembeni, 97660, Mayotte, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université de Franche-Comté, 25000, Besançon, France
| |
Collapse
|
4
|
Phaenark C, Phankamolsil Y, Sawangproh W. Ecological and health implications of heavy metal bioaccumulation in Thai Fauna: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117086. [PMID: 39353378 DOI: 10.1016/j.ecoenv.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals pose significant threats to ecosystems and human health due to their persistence and bioaccumulation. In Thailand, rapid industrialization, extensive agriculture, and urban development have exacerbated heavy metal pollution in both aquatic and terrestrial ecosystems. This systematic review, conducted according to PRISMA guidelines, evaluates study designs and methodologies to assess heavy metal bioaccumulation in Thai fauna, with a focus on ecological and health impacts. The review reveals that fish, particularly from families like Cyprinidae and Cichlidae, account for 42.11 % of studies, with species such as swamp eel, Henicorhynchus siamensis, Arius maculatus, Osteogeneiosus militaris, Puntioplites proctozystron, and Channa striata showing significant bioaccumulation. Molluscs (31.58 %), including Tegillarca granosa and Filopaludina martensi, serve as critical bioindicators of aquatic pollution due to their filter-feeding habits. Amphibians and crustaceans, like Fejervarya limnocharis and Fenneropenaeus merguiensis, also demonstrate vulnerability to heavy metal contamination. Key contamination hotspots include urban waterways in Bangkok, industrial discharges in Songkhla Lake, and mining sites in Loei Province, highlighting widespread environmental and health impacts. Despite extensive research, gaps remain, particularly concerning benthic scavengers and detritivores, which are vital for ecosystem functions. The review underscores the need for targeted monitoring and mitigation, including stricter regulations on industrial discharges, improved waste treatment, and better management of agricultural runoff. While metals like cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn) are well-studied, further research on less-examined metals and species-specific bioaccumulation patterns is crucial to enhancing environmental management, supporting biodiversity conservation, and improving ecosystem resilience in Thailand.
Collapse
Affiliation(s)
- Chetsada Phaenark
- Conservation Biology Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Yutthana Phankamolsil
- Environmental Engineering and Disaster Management Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Weerachon Sawangproh
- Conservation Biology Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand.
| |
Collapse
|
5
|
Samma S, Khan MSI, Chowdhury MTI, Islam MA, Fick J, Kaium A. Evaluating Soil-Vegetable Contamination with Heavy Metals in Bogura, Bangladesh: A Risk Assessment Approach. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241282601. [PMID: 39346962 PMCID: PMC11437587 DOI: 10.1177/11786302241282601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/24/2024] [Indexed: 10/01/2024]
Abstract
This study quantified hazardous heavy metals (Cu, Cr, and Pb) in soil and vegetables (potato, tomato, pepper, cauliflower, and cabbage) across six upazilas (Kahaloo, Bogura Sadar, Shajahanpur, Shibganj, Nandigram, and Dupchanchia) in Bogura district, Bangladesh, assessing their health and environmental impacts. The detection method was validated for its accuracy and precision with QC samples. Results indicated that Cu levels in all samples were within safe limits set by BFSA and FAO/WHO, whereas Cr and Pb in vegetables exceeded permissible levels, though soil concentrations remained within limits. Pb contamination was particularly severe in vegetables (CF > 6), and all vegetables showed significant contamination degrees (CD), highlighting extensive heavy metal pollution. The Pollution Load Index (PLI) identified Kahaloo and Bogura Sadar as the most polluted, whereas Nandigram and Dupchanchia were the least. Bioaccumulation factors (BF) for all metals were <1, suggesting minimal transfer to edible parts. However, the ecological risk index (ERi) and potential ecological risk index (PERI) suggested low ecological risks, but health risk assessments indicated that vegetable consumption poses significant carcinogenic and non-carcinogenic risks (CHR > 10-4, HI > 1) across all upazilas. The findings underscore the urgent need for measures to mitigate heavy metal pollution in these areas to safeguard environmental and public health.
Collapse
Affiliation(s)
- Sadia Samma
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md. Sirajul Islam Khan
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | | | - Mohammed Ariful Islam
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Jerker Fick
- Department of Chemistry, Umeå Universitet, Umeå, Sweden
| | - Abdul Kaium
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- Department of Chemistry, Umeå Universitet, Umeå, Sweden
| |
Collapse
|
6
|
Chételat J, Jung TS, Awan M, Baryluk S, Harrower W, Kukka PM, McClelland C, Mowat G, Pelletier N, Rodford C, Stimmelmayr R. Tissue Distribution and Toxicological Risk Assessment of Mercury and Other Elements in Northern Populations of Wolverine (Gulo gulo). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:114-126. [PMID: 39097543 PMCID: PMC11377595 DOI: 10.1007/s00244-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
Wolverines are facultative scavengers that feed near the top of terrestrial food chains. We characterized concentrations of mercury and other trace elements in tissues of wolverine from a broad geographic area, representing much of their contemporary distribution in northwestern North America. We obtained tissues from 504 wolverines, from which mercury was measured on muscle (n = 448), kidney (n = 222), liver (n = 148), hair (n = 130), and brain (n = 52). In addition, methylmercury, seven trace elements (arsenic, cadmium, chromium, cobalt, lead, nickel, selenium), and arsenic compounds were measured on a subset of samples. Concentrations of mercury and other trace elements varied between tissues and were generally highest in kidney compared to brain, liver and muscle. Mercury was predominately as methylmercury in brain and muscle, but largely as inorganic mercury in liver and kidney. Mercury concentrations of hair were moderately correlated with those of internal tissues (Pearson r = 0.51-0.75, p ≤ 0.004), making hair a good non-lethal indicator of broad spatial or temporal differences in mercury exposure to wolverine. Arsenobetaine was the dominant arsenic compound identified in tissues, and arsenite, arsenocholine and dimethylarsinic acid were also detected. A preliminary risk assessment suggested the cadmium, lead, mercury, and selenium concentrations in our sample of wolverines were not likely to pose a risk of overt toxicological effects. This study generated a comprehensive dataset on mercury and other trace elements in wolverine, which will support future contaminants study of this northern terrestrial carnivore.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada.
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, YT, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Malik Awan
- Department of Environment, Government of Nunavut, Arviat, NU, Canada
| | - Steven Baryluk
- Environment and Climate Change, Government of the Northwest Territories, Inuvik, NT, Canada
| | - William Harrower
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Piia M Kukka
- Department of Environment, Government of Yukon, Whitehorse, YT, Canada
| | - Christine McClelland
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Garth Mowat
- Ministry of Forests, Government of British Columbia, Nelson, BC, Canada
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Nicolas Pelletier
- Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada
| | - Christine Rodford
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
7
|
Odetti LM, Paravani EV, Simoniello MF, Poletta GL. Micronucleus test in reptiles: Current and future perspectives. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503772. [PMID: 39054003 DOI: 10.1016/j.mrgentox.2024.503772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Micronucleus (MN) cell counting emerged in 1973-1975 as a valid alternative for characterizing chromosomal damage caused by different agents. It was first described in mammals, but its application was rapidly extended to other vertebrates, mainly fish. However, it was not until 28 years later that this test was implemented in studies on reptiles. Nowadays, reptiles are found to be excellent non-target species from environmental contamination exposure and MN test has become a fundamental tool for analyzing genotoxic effects induced by various xenobiotics. In this article we provide an updated review of the application of the MN test in reptile species, from an ecotoxicological perspective. Therefore, we present (I) a bibliometric analysis of the available research on genotoxic-induced MN formation in reptile species; (II) the use of reptiles as sentinel organisms in ecotoxicological studies; and (III) the strength and weakness of the application of the MN test in this group. With this review, we aim to provide a comprehensive view on the use of the MN test in ecotoxicology and to encourage further studies involving reptile species.
Collapse
Affiliation(s)
- L M Odetti
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 12 1917, CABA C1033AAJ, Argentina.
| | - E V Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - Ma F Simoniello
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - G L Poletta
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 12 1917, CABA C1033AAJ, Argentina
| |
Collapse
|
8
|
Tison L, Beaumelle L, Monceau K, Thiéry D. Transfer and bioaccumulation of pesticides in terrestrial arthropods and food webs: State of knowledge and perspectives for research. CHEMOSPHERE 2024; 357:142036. [PMID: 38615963 DOI: 10.1016/j.chemosphere.2024.142036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Arthropods represent an entry point for pesticide transfers in terrestrial food webs, and pesticide accumulation in upper chain organisms, such as predators can have cascading consequences on ecosystems. However, the mechanisms driving pesticide transfer and bioaccumulation in food webs remain poorly understood. Here we review the literature on pesticide transfers mediated by terrestrial arthropods in food webs. The transfer of pesticides and their potential for bioaccumulation and biomagnification are related to the chemical properties and toxicokinetic of the substances, the resistance and detoxification abilities of the contaminated organisms, as well as by their effects on organisms' life history traits. We further identify four critical areas in which knowledge gain would improve future predictions of pesticides impacts on terrestrial food webs. First, efforts should be made regarding the effects of co-formulants and pesticides mixtures that are currently understudied. Second, progress in the sensitivity of analytical methods would allow the detection of low concentrations of pesticides in small individual arthropods. Quantifying pesticides in arthropods preys, their predators, and arthropods or vertebrates at higher trophic level would bring crucial insights into the bioaccumulation and biomagnification potential of pesticides in real-world terrestrial food webs. Finally, quantifying the influence of the trophic structure and complexity of communities on the transfer of pesticides could address several important sources of variability in bioaccumulation and biomagnification across species and food webs. This narrative review will inspire future studies aiming to quantify pesticide transfers in terrestrial food webs to better capture their ecological consequences in natural and cultivated landscapes.
Collapse
Affiliation(s)
- Léa Tison
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France; Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140, Villenave d'Ornon, France.
| | - Léa Beaumelle
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France; CNRS, Université Toulouse III Paul Sabatier, 31062, Toulouse, France
| | - Karine Monceau
- UMR CNRS 7372 CEBC - La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Denis Thiéry
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France
| |
Collapse
|
9
|
Mingo V, Foudoulakis M, Wheeler JR. Mechanistic modelling of amphibian body burdens after dermal uptake of pesticides from soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123614. [PMID: 38387548 DOI: 10.1016/j.envpol.2024.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Amphibians are currently considered to be covered by pesticide Environmental Risk Assessment schemes by surrogacy assumptions of exposure and susceptibility based on typical laboratory test species such as fish, mammals, and birds. While multiple reviews have shown for this approach to be adequate in the case of aquatic stages, the same cannot be definitively stated for terrestrial stages. Concerns have risen that exposure of amphibians is likely to be highly influenced by dermal absorption, primarily due to the high permeability of their skin and the lack of a protective layer, such as fur or feathers. It is thus hypothesized that dermal uptake could be a significant route of exposure. Consequently, it is necessary to determine the relative importance of different exposure routes that might affect the integrated toxicity outcome for terrestrial amphibian life-stages. Here, a one-compartment Toxicokinetic model was derived and tested using a publicly available dataset containing relevant exposure and uptake information for juvenile anurans exposed to 13 different pesticides. Modelled body burdens were then compared to measured burdens for a total of 815 individuals. Overall, a good concordance between modelled and measured values was observed, with the predicted and measured body burdens differing by a factor of 2 on average (overall R2 of 0.80 and correlation coefficient of 0.89), suggesting good predictivity of the model. Accordingly, the model predicts realistic body burdens for a variety of frog and toad species, and overall, for anurans. As the model includes rehydration (implicit in the evaluated studies) but currently does not account for metabolism, it can be seen as a worst-case assessment. We suggest toxicokinetic models, such as the one here presented, could be used to characterize dermal exposure in amphibians, screen for pesticides of concern, and prioritize risk assessment efforts, whilst reducing the need for de novo vertebrate testing.
Collapse
Affiliation(s)
| | | | - James R Wheeler
- Corteva Agriscience, Bergen op Zoom, North Brabant, the Netherlands
| |
Collapse
|
10
|
Dos Santos RL, Mariz CF, Mascarenhas-Júnior PB, Barboza RSL, Dos Santos EM, de Sousa Correia JM, de Carvalho PSM. Nondestructive Evaluation of Metal Bioaccumulation and Biochemical Biomarkers in Blood of Broad-Snouted Caiman (Caiman latirostris) from Northeastern Brasil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411291 DOI: 10.1002/etc.5823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Studies on the bioaccumulation and toxicity of contaminants in Crocodylians are scarce. We evaluated alterations in concentrations of the nondestructive biomarkers butyrylcholinesterase (BChE), glutathione-S-transferase (GST), superoxide dismutase (SOD), and reduced glutathione (GSH), together with bioaccumulation of the metals iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), chronium (Cr), aluminium (Al), and lead (Pb) in Caiman latirostris captured in Tapacurá Reservoir (TR; São Lourenço da Mata, Pernambuco, Brasil), in urbanized areas of Pernambuco State (UA; Brasil) and from the AME Brasil caiman farm (AF; Marechal Deodoro, Alagoas, Brasil); the latter was used as a potential reference with low levels of contamination. For metal analysis, 500 µL of blood was digested in 65% HNO3 and 30% H2 O2 . The samples were analyzed by inductively coupled plasma-optical emission spectrometry. For analysis of biomarkers, an aliquot of blood was centrifuged to obtain plasma in which biochemical assays were performed. Blood concentrations of metals analyzed in animals from AF were lower compared with TR and UA, confirming that animals from the caiman farm could be used as references with low levels of contamination. Iron, Cu, Mn, Al, and Pb exceeded toxic levels for other vertebrates in animals from TR and UA. Butyrylcholinesterase activity showed significant reduction in adults from UA and TR compared with AF. An increase in the activity of GST and GSH, in adults of TR and UA in relation to AF, was verified. Superoxide dismutase activity showed a significant reduction in adults of TR in relation to AF, and the concentrations of Cu and Mn were negatively correlated with SOD activity. Animals from UA and TR showed greater concentrations of the analyzed metals compared with reference animals, and changes in biomarkers were seen, confirming the potential of these nondestructive chemical and biological parameters in blood of C. latirostris for biomonitoring of pollution. Environ Toxicol Chem 2024;00:1-18. © 2024 SETAC.
Collapse
Affiliation(s)
- Rayssa Lima Dos Santos
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório Interdisciplinar de Anfibios e Répteis, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório de Ecotoxicologia Aquática, Universidade Federal de Pernambuco, Recife, Brasil
| | - Célio Freire Mariz
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório de Ecotoxicologia Aquática, Universidade Federal de Pernambuco, Recife, Brasil
| | - Paulo Braga Mascarenhas-Júnior
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório Interdisciplinar de Anfibios e Répteis, Universidade Federal de Pernambuco, Recife, Brasil
| | - Rafael Sá Leitão Barboza
- Laboratório Interdisciplinar de Anfibios e Répteis, Universidade Federal de Pernambuco, Recife, Brasil
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal Rural de Pernambuco, Recife, Brasil
| | | | | | | |
Collapse
|
11
|
Khwankitrittikul P, Poapolathep A, Poapolathep S, Prasanwong C, Kulprasertsri S, Khidkhan K. Species Differences and Tissue Distribution of Heavy Metal Residues in Wild Birds. Animals (Basel) 2024; 14:308. [PMID: 38254477 PMCID: PMC10812407 DOI: 10.3390/ani14020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Birds are useful as bioindicators of metal pollution, but the variety of species and tissue distribution may influence the study of heavy metal burdens in birds. The objective of this study was to determine the levels of heavy metals in wild birds' carcasses to acquire information on species differences and the tissue distribution of metals in wild birds in Thailand. Species differences in metal buildup were observed in the livers and kidneys, but not in the feathers. A significantly higher accumulation of Cd was found in the livers and kidneys of the granivorous birds compared to those in the water birds. In all the groups of birds, the Pb level in the livers (>15 ppm) and feathers (>4 ppm) exceeded the threshold limits, causing potential lead poisoning and disturbing the reproductive success. The Cd accumulation in the kidneys was above 2-8 ppm, indicating increased environmental exposure to Cd in these birds. The Cd, Pb, Ni, Zn, and Fe concentrations in the livers could be estimated using the kidneys, while the Pb level in the liver may be predicted using feathers. Furthermore, water birds' feathers may be potentially appropriate bioindicators for long-term exposure. Research on the origin of metal contamination is needed to reduce the threat of heavy metals to the health of both birds and other wildlife species.
Collapse
Affiliation(s)
- Patamawadee Khwankitrittikul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (A.P.); (S.P.)
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (A.P.); (S.P.)
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (A.P.); (S.P.)
| | - Chayanid Prasanwong
- Department of National Parks, Wildlife and Plant Conservation, Bangphra Waterbird Breeding Center, Bangphra, Sriracha, Chonburi 20110, Thailand;
| | - Sittinee Kulprasertsri
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Kraisiri Khidkhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (A.P.); (S.P.)
| |
Collapse
|
12
|
Munshed M, Van Griensven Thé J, Fraser R, Matthews B, Elkamel A. Country-Wide Ecological Health Assessment Methodology for Air Toxics: Bridging Gaps in Ecosystem Impact Understanding and Policy Foundations. TOXICS 2024; 12:42. [PMID: 38250998 PMCID: PMC10820021 DOI: 10.3390/toxics12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Amid the growing concerns about air toxics from pollution sources, much emphasis has been placed on their impacts on human health. However, there has been limited research conducted to assess the cumulative country-wide impact of air toxics on both terrestrial and aquatic ecosystems, as well as the complex interactions within food webs. Traditional approaches, including those of the United States Environmental Protection Agency (US EPA), lack versatility in addressing diverse emission sources and their distinct ecological repercussions. This study addresses these gaps by introducing the Ecological Health Assessment Methodology (EHAM), a novel approach that transcends traditional methods by enabling both comprehensive country-wide and detailed regional ecological risk assessments across terrestrial and aquatic ecosystems. EHAM also advances the field by developing new food-chain multipliers (magnification factors) for localized ecosystem food web models. Employing traditional ecological multimedia risk assessment of toxics' fate and transport techniques as its foundation, this study extends US EPA methodologies to a broader range of emission sources. The quantification of risk estimation employs the quotient method, which yields an ecological screening quotient (ESQ). Utilizing Kuwait as a case study for the application of this methodology, this study's findings for data from 2017 indicate a substantial ecological risk in Kuwait's coastal zone, with cumulative ESQ values reaching as high as 3.12 × 103 for carnivorous shorebirds, contrasted by negligible risks in the inland and production zones, where ESQ values for all groups are consistently below 1.0. By analyzing the toxicity reference value (TRV) against the expected daily exposure of receptors to air toxics, the proposed methodology provides valuable insights into the potential ecological risks and their subsequent impacts on ecological populations. The present contribution aims to deepen the understanding of the ecological health implications of air toxics and lay the foundation for informed, ecology-driven policymaking, underscoring the need for measures to mitigate these impacts.
Collapse
Affiliation(s)
- Mohammad Munshed
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Lakes Environmental Software, Waterloo, ON N2L 3L3, Canada
| | - Jesse Van Griensven Thé
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Lakes Environmental Software, Waterloo, ON N2L 3L3, Canada
| | - Roydon Fraser
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bryan Matthews
- Lakes Environmental Software, Waterloo, ON N2L 3L3, Canada
| | - Ali Elkamel
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
13
|
Sousa-Guedes D, Cunha SC, Fernandes JO, Semedo D, Sillero N, Marco A, Bessa F. Can plastic pollution contaminate loggerhead turtle nests? Evaluation of flame retardants (PBDEs) levels in the sand. MARINE POLLUTION BULLETIN 2023; 195:115550. [PMID: 37722265 DOI: 10.1016/j.marpolbul.2023.115550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Plastic pollution is a global environmental issue affecting multiple ecosystems, namely sea turtle nesting grounds. We analysed the potential chemical contamination caused by plastic debris in loggerhead turtle (Caretta caretta) nests, focusing on polybrominated diphenyl ethers (PBDEs, a class of flame retardants). For that, we conducted a field experiment in a turtle hatchery (Cabo Verde) by placing plastic fragments in the nests at two depths: surface and ~20 cm. We evaluated the nests' success and quantified the levels of PBDEs in the sand using GC-MS/MS. Our results suggest that plastics on the nests' surface can leak contaminants, infiltrating the sand up to 20 cm. Buried plastics showed no relevant leakage of chemicals. While hatching and emergence success was unaffected, we found a relationship between leucistic embryos and contamination levels. Our study highlights the threats of plastic accumulation on beaches, which can potentially leak chemicals and contaminate turtle nests.
Collapse
Affiliation(s)
- Diana Sousa-Guedes
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111 Sal Rei, Boa Vista Island, Cabo Verde; Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Sara C Cunha
- LAQV/Requimte, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira, 4050-313 Porto, Portugal.
| | - José O Fernandes
- LAQV/Requimte, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira, 4050-313 Porto, Portugal.
| | - Diana Semedo
- BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111 Sal Rei, Boa Vista Island, Cabo Verde
| | - Neftalí Sillero
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| | - Adolfo Marco
- BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111 Sal Rei, Boa Vista Island, Cabo Verde; Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain.
| | - Filipa Bessa
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
14
|
Kalisińska E, Kot K, Łanocha-Arendarczyk N. Red fox as a potential bioindicator of metal contamination in a European environment. CHEMOSPHERE 2023; 319:138037. [PMID: 36736471 DOI: 10.1016/j.chemosphere.2023.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In times of widespread environmental pollution with heavy metals of anthropogenic origin and the increasing dynamics of this process, it is justified to collect as much data as possible on the concentration of metals in terrestial mammals from unpolluted areas. The purpose of this research was to present the concentration of essential (chromium, copper, iron, manganese, molybdenum, and zinc), probably essential (nickel, vanadium) and non-esential element (cadmium, lead, silver, strontium, and tin) in the liver, kidneys, muscles and brain of red fox (Vulpes vulpes) inhabiting north-western Poland. We revealed that the concentration of all metals, apart from Ni, was different between studied tissues. Sn and Mo have the highest affinity to the liver, whereas Ag, Sr, Cr had higher concentrations in the brain than in other organs. Various positive relationship between the concentrations of metals were observed in the tissues. Moreover, we noted negative correlations between Ag and Sn in the kidneys and brain, and between Cu and Ag in the liver. In our study the red fox was used as biomonitor for the assessment of exposure of carnivores to metals, in the generally unpolluted areas of Central Europe. Data presented in the report may be used as comparative values in similar ecotoxicological studies.
Collapse
Affiliation(s)
- Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| |
Collapse
|
15
|
Balčiauskas L, Stirkė V, Garbaras A, Balčiauskienė L. Shrews Under-Represented in Fruit Farms and Homesteads. Animals (Basel) 2023; 13:1028. [PMID: 36978569 PMCID: PMC10044566 DOI: 10.3390/ani13061028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Shrews are a less studied group of small mammals than rodents. Between 2018 and 2022, we surveyed 23 sites in Lithuania, including natural and anthropogenic habitats, with the aim to assess the proportion of Soricidae in small mammal communities and their diet based on stable isotope analysis. The average representation of Soricidae was 3.1%, about half the long-term average in other habitats in the country. The highest proportions were in meadows and farmsteads, at 4.9% and 5.0% respectively. Shrews were not trapped on farms or in young orchards, and their relative abundance was very low in intensively managed orchards (0.006 individuals per 100 trap days). Neomys fodiens and N. anomalus were unexpectedly found in homesteads, including in outbuildings. Sorex araneus and S. minutus had similar diets. The trophic carbon/nitrogen discrimination factor between invertebrates and shrew hair was 2.74‱/3.98‱ for S. araneus, 1.90‱/3.78‱ for S. minutus in the orchards. The diet of N. fodiens and N. anomalus at the homesteads requires further investigation. We propose that the under-abundance of shrews may be due to contamination by plant protection products and a lack of invertebrates under intensive agricultural practices.
Collapse
Affiliation(s)
| | | | - Andrius Garbaras
- General Jonas Žemaitis Military Academy of Lithuania, Šilo str. 5A, 10322 Vilnius, Lithuania
| | | |
Collapse
|
16
|
Kerric A, Mazerolle MJ, Giroux JF, Verreault J. Halogenated flame retardant exposure pathways in urban-adapted gulls: Are atmospheric routes underestimated? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160526. [PMID: 36471522 DOI: 10.1016/j.scitotenv.2022.160526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Urban-adapted gulls can be exposed to flame retardants while foraging in landfills where elevated concentrations of polybrominated diphenyl ethers (PBDEs) and other halogenated flame retardants (HFRs) have frequently been measured in air. However, the contribution of atmospheric exposure has largely been overlooked compared to dietary exposure in birds and other wildlife. The overall objective of this study was to investigate the contribution of atmospheric exposure pathways relative to diet for PBDEs and other HFRs in ring-billed gulls (Larus delawarensis) nesting in the densely populated Montreal area (QC, Canada). Miniature passive air samplers (PASs) were deployed on the back of wild-caught ring-billed gulls for ten days. Concentrations of PBDEs and other HFRs were determined in PASs carried by ring-billed gulls as well as their lungs, stomach content, liver, preen oil, and onto the surface of their feathers. We evaluated the atmospheric and dietary exposure routes for the most abundant HFRs in samples using a structural equation model implemented in a Bayesian framework. Results indicated that lung concentrations of BDE-28 increased with its levels in air determined using bird-borne PASs. No association was found between BDE-28 concentrations in lungs and liver, whereas BDE-209 concentrations in liver increased with those in lungs. Moreover, BDE-28 and -47 concentrations in liver increased with those on feather surface, while liver BDE-47 concentrations were also positively related with those in stomach content. These findings suggested that, in addition to dietary exposure, atmospheric exposure pathways through inhalation and co-ingestion during feather maintenance (preening) significantly contribute to the accumulation of PBDEs in liver of ring-billed gulls. Atmospheric exposure to HFRs should therefore be considered in future landfill-foraging wildlife species as a potential exposure route compared to the traditional dietary exposure pathway.
Collapse
Affiliation(s)
- Anaïs Kerric
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Marc J Mazerolle
- Centre d'Étude de la Forêt (CEF), Département des sciences du bois et de la forêt, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Jean-François Giroux
- Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
17
|
Ding J, Wang S, Yang W, Zhang H, Yu F, Zhang Y. Tissue distribution and association of heavy metal accumulation in a free-living resident passerine bird tree sparrow Passer montanus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120547. [PMID: 36343853 DOI: 10.1016/j.envpol.2022.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Passerine birds have been increasingly used as effective sentinels of ecosystem contamination. They can provide direct evidence of the bioavailability and accumulation of heavy metal elements in the environment. In this study, the bioaccumulation of four heavy metals (Cu, Zn, Pb, and Cd) and Ca in different organs and tissues (feathers, internal organs, skeletons, and muscles) of an urban bird, tree sparrow (Passer montanus), collected from a polluted site [Baiyin (BY)] and a relatively unpolluted site [Liujiaxia (LJX)], and their associations were investigated. There were significantly higher and lower concentrations of heavy metals and Ca, respectively, in different organs and tissues of sparrows in BY than those in LJX. However, except for Pb, the heavy metal levels were below the threshold of sublethal effects. Age-dependent variations in metals were quantified, and it was found that adult bird contained higher concentration of different organs and tissue metals, except for feathers, compared with nestlings and juveniles. The tissue distribution of heavy metals in sparrows of different ages and sex was similar in the two study sites, and heavy metal elements were mainly accumulated in the feathers. This study further investigated the correlation between heavy metals in different organs and tissues and found that the correlations between them were strong in nestlings and adults but weak in juveniles. In addition, Pb and Cd in internal organs, skeletons, and muscles of young sparrows can be estimated using feathers, whereas Cu and Zn were found in adult sparrows. Altogether, our results suggest that tree sparrows will serve as valuable biomonitors of environmental heavy metal pollution and will underscore the importance of tissue types in avian ecotoxicology field studies.
Collapse
Affiliation(s)
- Jian Ding
- School of Life Sciences, Henan Normal University, Xinxiang 453007, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huijie Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Yu
- School of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
18
|
Rattner BA, Wazniak CE, Lankton JS, McGowan PC, Drovetski SV, Egerton TA. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. HARMFUL ALGAE 2022; 120:102319. [PMID: 36470599 DOI: 10.1016/j.hal.2022.102319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/17/2023]
Abstract
The Chesapeake Bay, along the mid-Atlantic coast of North America, is the largest estuary in the United States and provides critical habitat for wildlife. In contrast to point and non-point source release of pesticides, metals, and industrial, personal care and household use chemicals on biota in this watershed, there has only been scant attention to potential exposure and effects of algal toxins on wildlife in the Chesapeake Bay region. As background, we first review the scientific literature on algal toxins and harmful algal bloom (HAB) events in various regions of the world that principally affected birds, and to a lesser degree other wildlife. To examine the situation for the Chesapeake, we compiled information from government reports and databases summarizing wildlife mortality events for 2000 through 2020 that were associated with potentially toxic algae and HAB events. Summary findings indicate that there have been few wildlife mortality incidents definitively linked to HABs, other mortality events that were suspected to be related to HABs, and more instances in which HABs may have indirectly contributed to or occurred coincident with wildlife mortality. The dominant toxins found in the Chesapeake Bay drainage that could potentially affect wildlife are microcystins, with concentrations in water approaching or exceeding human-based thresholds for ceasing recreational use and drinking water at a number of locations. As an increasing trend in HAB events in the U.S. and in the Chesapeake Bay have been reported, additional information on HAB toxin exposure routes, comparative sensitivity among species, consequences of sublethal exposure, and better diagnostic and risk criteria would greatly assist in predicting algal toxin hazard and risks to wildlife.
Collapse
Affiliation(s)
- Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA.
| | - Catherine E Wazniak
- Maryland Department of Natural Resources, Resource Assessment Service, Annapolis, MD 21401, USA
| | - Julia S Lankton
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Peter C McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD 21401, USA
| | - Serguei V Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA
| | - Todd A Egerton
- Virginia Department of Health, Division of Shellfish Safety and Waterborne Hazards, Norfolk, VA 23510, USA
| |
Collapse
|
19
|
Nessi A, Winkler A, Tremolada P, Saliu F, Lasagni M, Ghezzi LLM, Balestrieri A. Microplastic contamination in terrestrial ecosystems: A study using barn owl (Tyto alba) pellets. CHEMOSPHERE 2022; 308:136281. [PMID: 36064015 DOI: 10.1016/j.chemosphere.2022.136281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are recognised as an emerging environmental problem that needs to be carefully monitored. So far, MPs have been widely recorded in marine and freshwater ecosystems. Still, few studies have focused on MP occurrence in terrestrial ecosystems, although soils are suspected to be one of the main MP reservoirs. To test a non-invasive method for assessing MP contamination in terrestrial ecosystems, we analysed the pellets of a top terrestrial predator, the barn owl (Tyto alba). Sixty pellets were collected from three agricultural areas (20 pellets each) and analysed to assess both barn owl diet and MP content. Thirty-four MPs were confirmed by micro-Fourier Transform Infrared Spectroscopy (μ-FTIR) analysis in 33% of the pellets (min-max 1-5 MPs per pellet). Most of the detected items were microfibres (88.2%). Polyethylene terephthalate, polyacrylonitrile and polyamide were the most abundant polymers. One of the three sites was significantly less contaminated. In the two sites with the highest MP occurrences, barn owl diet was characterised by predation on synanthropic rodents, particularly brown rats (Rattus norvegicus), which may indicate habitat degradation and increased exposure to MPs. Analyses also suggest that Savi's pine vole (Microtus savii) is the prey least at risk of MP contamination, probably due to its strictly herbivorous diet. We argue that the analysis of barn owl pellets may represent a cost-effective method for monitoring MP contamination in terrestrial ecosystems.
Collapse
Affiliation(s)
- Alessandro Nessi
- Department of Environmental Science and Policy, University of Milan, 20133, Milan, Italy.
| | - Anna Winkler
- Department of Environmental Science and Policy, University of Milan, 20133, Milan, Italy
| | - Paolo Tremolada
- Department of Environmental Science and Policy, University of Milan, 20133, Milan, Italy
| | - Francesco Saliu
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | - Alessandro Balestrieri
- Department of Environmental Science and Policy, University of Milan, 20133, Milan, Italy
| |
Collapse
|
20
|
Silori R, Shrivastava V, Singh A, Sharma P, Aouad M, Mahlknecht J, Kumar M. Global groundwater vulnerability for Pharmaceutical and Personal care products (PPCPs): The scenario of second decade of 21st century. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115703. [PMID: 35932733 DOI: 10.1016/j.jenvman.2022.115703] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The global production of PPCPs have increased by multiple folds promoting excessive exposure of its metabolites to humans via different aquatic systems. The higher residence time of toxic precursors of these metabolites pose direct human health risk. Among the different aquatic systems, the contamination of groundwater by PPCPs is the most concerning threat. This threat is especially critical considering the lesser oxidizing potential of the groundwater as compared to freshwater/river water. A major challenge also arises due to excessive dependency of the world's population on groundwater, which is exponentially increasing with time. This makes the identification and characterization of spatial contamination hotspots highly probabilistic as compared to other freshwater systems. The situation is more vulnerable in developing countries where there is a reported inadequacy of wastewater treatment facilities, thereby forcing the groundwater to behave as the only available sequestrating sink for all these contaminants. With increased consumption of antibiotics and other pharmaceuticals compounds, these wastes have proven capability in terms of enhancing the resistance among the biotic community of the soil systems, which ultimately can become catastrophic and carcinogenic in near future. Recent studies are supporting the aforementioned concern where compounds like diclofenac (analgesic) have attained a concentration of 1.3 mgL-1 in the aquifer systems of Delhi, India. The situation is far worse for developed nations where prolonged and indiscriminate usage of antidepressants and antibiotics have life threating consequences. It has been confirmed that certain compounds like ofloxacin (antibiotics) and bis-(2-ethylhexyl)phthalate are present in some of the most sensitive wells/springs of the United States and Mexico. The current trend of the situation has been demonstrated by integrating a comparative approach of the published literatures in last three years. This review provides first-hand information report for formulating a directive policy framework for tackling PPCPs issues in the groundwater system.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Ashwin Singh
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India
| | - Pradeep Sharma
- Department of Environmental Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Marwan Aouad
- College of Engineering, Applied Science University (ASU), Kingdom of Bahrain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
21
|
Links between individual performance, trace elements and stable isotopes in an endangered caribou population. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Fritsch C, Appenzeller B, Burkart L, Coeurdassier M, Scheifler R, Raoul F, Driget V, Powolny T, Gagnaison C, Rieffel D, Afonso E, Goydadin AC, Hardy EM, Palazzi P, Schaeffer C, Gaba S, Bretagnolle V, Bertrand C, Pelosi C. Pervasive exposure of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes. Sci Rep 2022; 12:15904. [PMID: 36151261 PMCID: PMC9508241 DOI: 10.1038/s41598-022-19959-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge gaps regarding the potential role of pesticides in the loss of agricultural biodiversity worldwide and mixture-related issues hamper proper risk assessment of unintentional impacts of pesticides, rendering essential the monitoring of wildlife exposure to these compounds. Free-ranging mammal exposure to legacy (Banned and Restricted: BRPs) and currently used (CUPs) pesticides was investigated, testing the hypotheses of: (1) a background bioaccumulation for BRPs whereas a "hot-spot" pattern for CUPs, (2) different contamination profiles between carnivores and granivores/omnivores, and (3) the role of non-treated areas as refuges towards exposure to CUPs. Apodemus mice (omnivore) and Crocidura shrews (insectivore) were sampled over two French agricultural landscapes (n = 93). The concentrations of 140 parent chemicals and metabolites were screened in hair samples. A total of 112 compounds were detected, showing small mammal exposure to fungicides, herbicides and insecticides with 32 to 65 residues detected per individual (13-26 BRPs and 18-41 CUPs). Detection frequencies exceeded 75% of individuals for 13 BRPs and 25 CUPs. Concentrations above 10 ng/g were quantified for 7 BRPs and 29 CUPs (in 46% and 72% of individuals, respectively), and above 100 ng/g for 10 CUPs (in 22% of individuals). Contamination (number of compounds or concentrations) was overall higher in shrews than rodents and higher in animals captured in hedgerows and cereal crops than in grasslands, but did not differ significantly between conventional and organic farming. A general, ubiquitous contamination by legacy and current pesticides was shown, raising issues about exposure pathways and impacts on ecosystems. We propose a concept referred to as "biowidening", depicting an increase of compound diversity at higher trophic levels. This work suggests that wildlife exposure to pesticide mixtures is a rule rather than an exception, highlighting the need for consideration of the exposome concept and questioning appropriateness of current risk assessment and mitigation processes.
Collapse
Affiliation(s)
- Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- LTSER "Zone Atelier Arc Jurassien", 25030, Besançon Cedex, France.
| | - Brice Appenzeller
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Louisiane Burkart
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Michael Coeurdassier
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Renaud Scheifler
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Francis Raoul
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Vincent Driget
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Thibaut Powolny
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Candice Gagnaison
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Dominique Rieffel
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Eve Afonso
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Anne-Claude Goydadin
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Emilie M Hardy
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Paul Palazzi
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Charline Schaeffer
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Sabrina Gaba
- UMR 7372 CEBC, CNRS-La Rochelle Université, USC INRAE, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val De Sèvre", 79360, Beauvoir Sur Niort, France
| | - Vincent Bretagnolle
- UMR 7372 CEBC, CNRS-La Rochelle Université, USC INRAE, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val De Sèvre", 79360, Beauvoir Sur Niort, France
| | - Colette Bertrand
- UMR 1402 EcoSys, INRAE-AgroParisTech-Université Paris-Saclay, RD 10 Route de St Cyr, 78026, Versailles Cedex, France
| | - Céline Pelosi
- UMR 1402 EcoSys, INRAE-AgroParisTech-Université Paris-Saclay, RD 10 Route de St Cyr, 78026, Versailles Cedex, France
- UMR EMMAH, INRAE-Avignon Université, 84000, Avignon, France
| |
Collapse
|
23
|
Teitelbaum CS, Ackerman JT, Hill MA, Satter JM, Casazza ML, De La Cruz SEW, Boyce WM, Buck EJ, Eadie JM, Herzog MP, Matchett EL, Overton CT, Peterson SH, Plancarte M, Ramey AM, Sullivan JD, Prosser DJ. Avian influenza antibody prevalence increases with mercury contamination in wild waterfowl. Proc Biol Sci 2022; 289:20221312. [PMID: 36069010 PMCID: PMC9449466 DOI: 10.1098/rspb.2022.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022] Open
Abstract
Environmental contamination is widespread and can negatively impact wildlife health. Some contaminants, including heavy metals, have immunosuppressive effects, but prior studies have rarely measured contamination and disease simultaneously, which limits our understanding of how contaminants and pathogens interact to influence wildlife health. Here, we measured mercury concentrations, influenza infection, influenza antibodies and body condition in 749 individuals from 11 species of wild ducks overwintering in California. We found that the odds of prior influenza infection increased more than fivefold across the observed range of blood mercury concentrations, while accounting for species, age, sex and date. Influenza infection prevalence was also higher in species with higher average mercury concentrations. We detected no relationship between influenza infection and body fat content. This positive relationship between influenza prevalence and mercury concentrations in migratory waterfowl suggests that immunotoxic effects of mercury contamination could promote the spread of avian influenza along migratory flyways, especially if influenza has minimal effects on bird health and mobility. More generally, these results show that the effects of environmental contamination could extend beyond the geographical area of contamination itself by altering the prevalence of infectious diseases in highly mobile hosts.
Collapse
Affiliation(s)
- Claire S. Teitelbaum
- Akima Systems Engineering, Herndon, VA, USA
- Contractor to U.S. Geological Survey Eastern Ecological Science Center, Laurel, MD, USA
| | - Joshua T. Ackerman
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Mason A. Hill
- U.S. Geological Survey Western Ecological Research Center, San Francisco Bay Estuary Field Station, Moffett Field, CA, USA
| | - Jacqueline M. Satter
- UC Davis College of Agricultural and Environmental Sciences, Department of Wildlife, Fish, and Conservation Biology, Davis, CA, USA
| | - Michael L. Casazza
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Susan E. W. De La Cruz
- U.S. Geological Survey Western Ecological Research Center, San Francisco Bay Estuary Field Station, Moffett Field, CA, USA
| | | | - Evan J. Buck
- U.S. Geological Survey Eastern Ecological Science Center, Laurel, MD, USA
| | - John M. Eadie
- UC Davis College of Agricultural and Environmental Sciences, Department of Wildlife, Fish, and Conservation Biology, Davis, CA, USA
| | - Mark P. Herzog
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Elliott L. Matchett
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Cory T. Overton
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Sarah H. Peterson
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | | | - Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
| | | | - Diann J. Prosser
- U.S. Geological Survey Eastern Ecological Science Center, Laurel, MD, USA
| |
Collapse
|
24
|
Méndez-Rivera M, Mena F, Pinnock-Branford M, Ruepert C, Barquero MD, Jiménez RR, Alvarado G. Effects of the insecticide β-endosulfan on tadpoles of Isthmohyla pseudopuma (Anura: Hylidae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106231. [PMID: 35939882 DOI: 10.1016/j.aquatox.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Conventional agriculture uses pesticides intensively. Once pesticides are released into the environment, they can be toxic to non-target organisms. Exposure of amphibians to pesticides can be lethal and affect their growth, development and behavior. β-endosulfan is a persistent organochlorine that has been detected in environmental samples within protected sites in Costa Rica, far from agricultural areas. The aim of this study was to evaluate the lethal and sublethal effects, as well as changes in three biomarkers (Cholinesterase activity [ChE], glutathione S-transferase activity [GST] and lipid peroxidation [LPO]) in tadpoles of Isthmohyla pseudopuma exposed to β-endosulfan. A 96-h acute test (20, 40, 60, 80, 100 and 200 µg/L) was performed in order to calculate the median lethal concentration (LC50), while effects on growth and development were assessed during a 4-weeks chronic test (10, 20, 30 and 50 µg/L). In addition, we measured the aforementioned biomarkers in tadpoles exposed to concentrations below the LC50. The 96-h LC50 for this species was 123.6 µg/L. We found no evidence of β-endosulfan influencing any of the three biomarkers evaluated. At 50 µg/L, both length and total weight of tadpoles decreased with respect to the control. Also, at 30 and 50 µg/L we observed that individuals showed a slower development. Therefore, we demonstrated that at sublethal concentrations, β-endosulfan negatively affects I. pseudopuma at early stages causing tadpoles to develop slower and smaller than normal.
Collapse
Affiliation(s)
- Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José 2060, Costa Rica.
| | - Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Margaret Pinnock-Branford
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Clemens Ruepert
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Marco D Barquero
- Sede del Caribe, Universidad de Costa Rica, Limón 2060, Costa Rica
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian National Zoological Park, Conservation Biology Institute, Washington, DC, United States
| | - Gilbert Alvarado
- Laboratorio de Patología Experimental y Comparada (LAPECOM), Escuela de Biología, Universidad de Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
25
|
Leighton GRM, Bishop JM, Camarero PR, Mateo R, O'Riain MJ, Serieys LEK. Poisoned chalice: Use of transformed landscapes associated with increased persistent organic pollutant concentrations and potential immune effects for an adaptable carnivore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153581. [PMID: 35104517 DOI: 10.1016/j.scitotenv.2022.153581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Wildlife around cities bioaccumulate multiple harmful environmental pollutants associated with human activities. Exposure severity can vary based on foraging behaviour and habitat use, which can be examined to elucidate exposure pathways. Carnivores can play vital roles in ecosystem stability but are particularly vulnerable to bioaccumulation of pollutants. Understanding the spatial and dietary predictors of these contaminants can inform pollutant control, and carnivores, at the top of food webs, can act as useful indicator species. We test for exposure to toxic organochlorines (OCs), including dichloro-diphenyl-trichloroethane (DDT) and polychlorinated biphenyls (PCBs), in a medium-sized felid, the caracal (Caracal caracal), across the peri-urban and agricultural landscapes of the city of Cape Town, South Africa. Concentrations in both blood (n = 69) and adipose tissue (n = 25) were analysed along with detailed spatial, dietary, demographic, and physiological data to assess OC sources and exposure risk. The analysis revealed widespread exposure of Cape Town's caracals to organochlorines: detection rate was 100% for PCBs and 83% for DDTs in blood, and 100% for both compounds in adipose. Caracals using human-transformed areas, such as vineyards and areas with higher human population and electrical transformer density, as well as wetland areas, had higher organochlorine burdens. These landscapes were also highly selected foraging areas, suggesting caracals are drawn into areas that co-incidentally increase their risk of exposure to these pollutants. Further, biomagnification potential was higher in individuals feeding on higher trophic level prey and on exotic prey. These findings point to bioaccumulation of OC toxicants and widespread exposure across local food webs. Additionally, we report possible physiological effects of exposure, including elevated white blood cell and platelet count, suggesting a degree of immunological response that may increase disease susceptibility. Cape Town's urban fringes likely represent a source of toxic chemicals for wildlife and require focused attention and action to ensure persistence of this adaptable mesocarnivore.
Collapse
Affiliation(s)
- Gabriella R M Leighton
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa.
| | - Jacqueline M Bishop
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Laurel E K Serieys
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa; Cape Leopard Trust, Cape Town, South Africa; Panthera, NY, New York, USA
| |
Collapse
|
26
|
Evans MN, Waller S, Müller CT, Goossens B, Smith JA, Bakar MSA, Kille P. The price of persistence: Assessing the drivers and health implications of metal levels in indicator carnivores inhabiting an agriculturally fragmented landscape. ENVIRONMENTAL RESEARCH 2022; 207:112216. [PMID: 34656630 DOI: 10.1016/j.envres.2021.112216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.
Collapse
Affiliation(s)
- Meaghan N Evans
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia.
| | - Simon Waller
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Benoit Goossens
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia; Sustainable Places Institute, Cardiff University, Cardiff, CF10 3BA, UK; Sabah Wildlife Department, Kota Kinabalu, 88100, Malaysia
| | - Jeremy A Smith
- School of Applied Sciences, University of South Wales, CF37 4BB, UK
| | | | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
27
|
Celis JE, Espejo W, de A Padilha J, Kidd KA, Gonçalves R, Dorneles P, Oliveira D, Malm O, Celis CA, Chiang G. Trophodynamics of trace elements in marine organisms from cold and remote regions of southern hemisphere. ENVIRONMENTAL RESEARCH 2022; 206:112421. [PMID: 34838759 DOI: 10.1016/j.envres.2021.112421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Trace metals bioaccumulate in aquatic organisms and some of them biomagnify through food webs, posing a threat to the organisms or their human consumers. Although the trophodynamics of many trace metals is well known in the northern hemisphere, much less is known about metals in aquatic food webs from cold and remote coastal zones of the southern hemisphere. To fill this gap, we investigated the trophodynamics of Al, Co, Cr, Li, Mo, Ni, Sr, and V, which were measured in marine macroinvertebrates and fishes from inshore and offshore locations in each of the Chilean Patagonia and the Antarctic Peninsula area. In Patagonia, there was biodilution of these metals across the whole food web, while biomagnification of Li and Ni was significantly found across the lower food web at the offshore site. In Antarctica, significant biodilution of Al, Li, Ni, Mo, Sr and V occurred through the whole food web for the inshore site, but no tendency (biodilution or biomagnification) was found (p > 0.05) across the organisms at lower trophic levels for the offshore site. Our data suggest that the geographic location and species influences the trophodynamics of these trace elements and expand our understanding of metal fate in remote locations of the southern hemisphere.
Collapse
Affiliation(s)
- José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Winfred Espejo
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile; GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile.
| | - Janeide de A Padilha
- Radioisotope Lab, Biophysics Institute, Federal University of Rio de Janeiro, Brazil
| | - Karen A Kidd
- Department of Biology and School of Earth, Environment & Society, McMaster University, 1280, Main Street West Hamilton, Ontario, Canada
| | - Rodrigo Gonçalves
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro, Brazil
| | - Paulo Dorneles
- Radioisotope Lab, Biophysics Institute, Federal University of Rio de Janeiro, Brazil
| | - Douglas Oliveira
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro, Brazil
| | - Olaf Malm
- Radioisotope Lab, Biophysics Institute, Federal University of Rio de Janeiro, Brazil
| | - Christopher A Celis
- Comisión Chilena de Energía Nuclear, Nueva Bilbao, 12501, Las Condes, Santiago, Chile
| | - Gustavo Chiang
- Ecology & Biodiversity Department & Sustainability Research Centre, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
28
|
Mercury Levels in Feathers of Penguins from the Antarctic Peninsula Area: Geographical and Inter-Specific Differences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189918. [PMID: 34574839 PMCID: PMC8471030 DOI: 10.3390/ijerph18189918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022]
Abstract
Polar regions, symbols of wilderness, have been identified as potential sinks of mercury coming from natural and anthropogenic sources at lower latitudes. Changes in ice coverage currently occurring in some areas such as the Antarctic Peninsula could enhance these phenomena and their impacts on local biota. As long-lived species at the top of food chains, seabirds are particularly sensitive to this highly toxic metal with the capacity to be biomagnified. Specifically, their feathers can be useful for Hg monitoring since they mainly accumulate its most toxic and persistent form, methyl-Hg. To that end, feathers of gentoo (Pygoscelis papua), chinstrap (P. antarcticus), and Adélie penguins (P. adeliae) (n = 108) were collected by passive sampling in seven different locations throughout the Antarctic Peninsula area and analyzed by ICP-MS after microwave-digestion. More than 93% of the samples showed detectable Hg levels (range: 6.3–12,529.8 ng g−1 dry weight), and the highest ones were found in the feathers of chinstrap penguins from King George Island. Hg bioconcentration and biomagnification seem to be occurring in the Antarctic food web, giving rise to high but non-toxic Hg levels in penguins, similar to those previously found in Arctic seabirds.
Collapse
|
29
|
Glinski DA, Van Meter RJ, Purucker ST, Henderson WM. Route of exposure influences pesticide body burden and the hepatic metabolome in post-metamorphic leopard frogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146358. [PMID: 33752009 PMCID: PMC8935488 DOI: 10.1016/j.scitotenv.2021.146358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 05/05/2023]
Abstract
Pesticides are being applied at a greater extent than in the past. Once pesticides enter the ecosystem, many environmental factors can influence their residence time. These interactions can result in processes such as translocation, environmental degradation, and metabolic activation facilitating exposure to target and non-target species. Most anurans start off their life cycle in aquatic environments and then transition into terrestrial habitats. Their time in the aquatic environment is generally short; however, many important developmental stages occur during this tenure. Post-metamorphosis, most species spend many years on land but migrate back to the aquatic environment for breeding. Due to the importance of both the aquatic and terrestrial environments to the life stages of amphibians, we investigated how the route of exposure (i.e., uptake from contaminated soils vs. uptake from contaminated surface water) influences pesticide bioavailability and body burden for four pesticides (bifenthrin (BIF), chlorpyrifos (CPF), glyphosate (GLY), and trifloxystrobin (TFS)) as well as the impact on the hepatic metabolome of adult leopard frogs (Gosner stage 46 with 60-90 days post-metamorphosis). Body burden concentrations for amphibians exposed in water were significantly higher (ANOVA p < 0.0001) compared to amphibians exposed to contaminated soil across all pesticides studied. Out of 80 metabolites that were putatively identified, the majority expressed a higher abundance in amphibians that were exposed in pesticide contaminated water compared to soil. Ultimately, this research will help fill regulatory data gaps, aid in the creation of more accurate amphibian dermal uptake models and inform continued ecological risk assessment efforts.
Collapse
Affiliation(s)
- Donna A Glinski
- NRC Postdoctoral Research Fellow with the U.S. Environmental Protection Agency, Athens, GA 30605, USA.
| | - Robin J Van Meter
- Departments of Biology and Environmental Science & Studies, Washington College, Chestertown, MD 21620, USA
| | - S Thomas Purucker
- U.S. Environmental Protection Agency, ORD/CCTE, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
30
|
Wolmarans NJ, Bervoets L, Gerber R, Yohannes YB, Nakayama SM, Ikenaka Y, Ishizuka M, Meire P, Smit NJ, Wepener V. Bioaccumulation of DDT and other organochlorine pesticides in amphibians from two conservation areas within malaria risk regions of South Africa. CHEMOSPHERE 2021; 274:129956. [PMID: 33979909 DOI: 10.1016/j.chemosphere.2021.129956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The threat to wildlife from chemical exposure exists regardless of the presence of conservation boundaries. An issue exacerbated by the use of environmentally persistent insecticides for vector control and long-range transport of legacy persistent organic pollutants. In this comparative study between two important conservation regions in South Africa, Kruger National Park (KNP) and Ndumo Game Reserve (NGR), we assessed organochlorine pesticide (OCP) accumulation in several anuran species collected from within the conservation regions. The two conservation regions differ in size and subsequent proximity of collection sites to OCP input sources. Detectable concentrations of OCPs were present in ∼ half the frogs analysed from KNP and ∼all frogs from NGR and total OCP loads were similar between regions, where measured in the same species. The OCP profiles in KNP frogs were representative of legacy pesticides likely introduced via long-range transport, whereas NGR profiles showed influence of current use of DDT consistent with close proximity to sources. This indicates amphibians can accumulate OCPs within conservation regions and that the exposure of non-target organisms inside conservation regions to current use pesticides has a strong association with proximity to sources. These results serve to inform conservation management decision making with regard to the non-target organism effects of chemical interventions such as vector control pesticide use in and around conservation regions.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Lieven Bervoets
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ruan Gerber
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shouta Mm Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Patrick Meire
- Ecosystem Management Research Group (Ecobe), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
31
|
Platt SG, Win MM, Lin N, Aung SHN, John A, Rainwater T. Avian species richness in traditional rice ecosystems: a case study from upper Myanmar. JOURNAL OF THREATENED TAXA 2021. [DOI: 10.11609/jott.6992.13.7.18719-18737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Rice Oryza sativa ecosystems provide foraging and nesting habitat for a variety of birds. Myanmar is a major rice-producing nation and yet bird use of rice ecosystems remains largely unstudied. We present the results of a case study of avian species richness in a traditional rice ecosystem at Limpha Village in upper Myanmar. The rice field at Limpha occupies 17.5 ha where a single crop is produced each year without chemical inputs (fertilizer and pesticides). Village lands are contiguous with the buffer zone of Htamanthi Wildlife Sanctuary. We conducted bird surveys of the rice field during dry and wet seasons (2013–20) and documented the occurrence of 85 species (exclusive of Buttonquail these included 58 resident species, 20 migratory species, six species with both resident and migratory populations in upper Myanmar), including 10 species of conservation concern. Species richness was greatest during the dry season when an influx of Palearctic migrants was present. We ranked 52 species as Common, 23 as Uncommon, and 10 as Rare. Most birds used the rice field as foraging rather than breeding habitat. Insectivore was the most common feeding guild (43 species), followed by Omnivore (22 species), Carnivore (12 species), Granivore (6 species), Frugivore (1 species), and Nectarivore (1 species) guilds. We observed eight species associated with domestic Water Buffalo Bubalus bubalis and 15 species foraging at active fires or in burned areas in the rice field. Piles of rice straw are important foraging sites for several species. Low intensity agricultural practices, habitat heterogeneity, and proximity to the nearby swamp, forest, & Chindwin River are probably responsible for the relatively high avian species richness at Limpha. Future agricultural intensification could negatively impact avian species richness in the Limpha rice field. Our findings suggest that traditional rice agriculture is compatible with conservation objectives in the buffer zone of Htamanthi Wildlife Sanctuary. Our study, however, requires replication before generalizations can be made concerning the value of traditional rice ecosystems to avian conservation in Myanmar.
Collapse
|
32
|
Becker DJ, Speer KA, Korstian JM, Volokhov DV, Droke HF, Brown AM, Baijnauth CL, Padgett-Stewart T, Broders HG, Plowright RK, Rainwater TR, Fenton MB, Simmons NB, Chumchal MM. Disentangling interactions among mercury, immunity and infection in a Neotropical bat community. J Appl Ecol 2021; 58:879-889. [PMID: 33911313 PMCID: PMC8078557 DOI: 10.1111/1365-2664.13809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
1. Contaminants such as mercury are pervasive and can have immunosuppressive effects on wildlife. Impaired immunity could be important for forecasting pathogen spillover, as many land-use changes that generate mercury contamination also bring wildlife into close contact with humans and domestic animals. However, the interactions among contaminants, immunity and infection are difficult to study in natural systems, and empirical tests of possible directional relationships remain rare. 2. We capitalized on extreme mercury variation in a diverse bat community in Belize to test association among contaminants, immunity and infection. By comparing a previous dataset of bats sampled in 2014 with new data from 2017, representing a period of rapid agricultural land conversion, we first confirmed bat species more reliant on aquatic prey had higher fur mercury. Bats in the agricultural habitat also had higher mercury in recent years. We then tested covariation between mercury and cellular immunity and determined if such relationships mediated associations between mercury and bacterial pathogens. As bat ecology can dictate exposure to mercury and pathogens, we also assessed species-specific patterns in mercury-infection relationships. 3. Across the bat community, individuals with higher mercury had fewer neutrophils but not lymphocytes, suggesting stronger associations with innate immunity. However, the odds of infection for haemoplasmas and Bartonella spp. were generally lowest in bats with high mercury, and relationships between mercury and immunity did not mediate infection patterns. Mercury also showed species- and clade-specific relationships with infection, being associated with especially low odds for haemoplasmas in Pteronotus mesoamericanus and Dermanura phaeotis. For Bartonella spp., mercury was associated with particularly low odds of infection in the genus Pteronotus but high odds in the subfamily Stenodermatinae. 4. Synthesis and application. Lower general infection risk in bats with high mercury despite weaker innate defense suggests contaminant-driven loss of pathogen habitat (i.e. anemia) or vector mortality as possible causes. Greater attention to these potential pathways could help disentangle relationships among contaminants, immunity and infection in anthropogenic habitats and help forecast disease risks. Our results also suggest that contaminants may increase infection risk in some taxa but not others, emphasizing the importance of considering surveillance and management at different phylogenetic scales.
Collapse
Affiliation(s)
| | - Kelly A. Speer
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | | | - Dmitriy V. Volokhov
- Center for Biologies Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hannah F. Droke
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Alexis M. Brown
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Catherene L. Baijnauth
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Ticha Padgett-Stewart
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Hugh G. Broders
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Thomas R. Rainwater
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA
- Tom Yawkey Wildlife Center, Georgetown, SC, USA
| | - M. Brock Fenton
- Department of Biology, Western University, London, ON, Canada
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | | |
Collapse
|
33
|
Lemaire J, Marquis O, Bustamante P, Mangione R, Brischoux F. I got it from my mother: Inter-nest variation of mercury concentration in neonate Smooth-fronted Caiman (Paleosuchus trigonatus) suggests maternal transfer and possible phenotypical effects. ENVIRONMENTAL RESEARCH 2021; 194:110494. [PMID: 33220243 DOI: 10.1016/j.envres.2020.110494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
The deleterious effects of mercury (Hg) contamination are well documented in humans and wildlife. Chronic exposure via diet and maternal transfer are two pathways which increase the toxicological risk for wild populations. However, few studies examined the physiological impact of Hg in crocodilians. We investigated the Hg contamination in neonate Smooth-fronted Caimans, Paleosuchus trigonatus, and the use of keratinized tissues and blood to evaluate maternal transfer. Between November 2017 and February 2020, we sampled 38 neonates from 4 distinct nests. Mercury concentration was measured in claws, scutes and total blood. Highest Hg concentrations were found in claws. Strong inter-nest variations (Hg ranging from 0.17 ± 0.02 to 0.66 ± 0.07 μg.g-1 dw) presumably reflect maternal transfer. Reduced body size in neonates characterized by elevated Hg concentrations suggests an influence of Hg during embryonic development. We emphasize the use of claws as an alternative to egg collection to investigate maternal transfer in crocodilians. Our results demonstrated the need of further investigation of the impact of Hg contamination in the first life stages of crocodilians.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre D'Etudes Biologiques de Chizé, (CEBC) UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Olivier Marquis
- Muséum National D'Histoire Naturelle, Parc Zoologique de Paris, 53 Avenue de Saint Maurice, 75012, Paris, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Rosanna Mangione
- Haus des Meeres Aqua Terra Zoo GmbH, Fritz-Grünbaum Platz 1, 1060, Vienna, Austria
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, (CEBC) UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
34
|
Dennis NM, Subbiah S, Karnjanapiboonwong A, Dennis ML, McCarthy C, Salice CJ, Anderson TA. Species- and Tissue-Specific Avian Chronic Toxicity Values for Perfluorooctane Sulfonate (PFOS) and a Binary Mixture of PFOS and Perfluorohexane Sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:899-909. [PMID: 33210750 DOI: 10.1002/etc.4937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 05/23/2023]
Abstract
To further characterize avian toxicity to environmental levels of select per- and poly-fluoroalkyl substances (PFAS), we established species- and tissue-specific PFAS chronic toxicity values (CTVs) associated with a lowest-observable-adverse effect level (LOAEL) threshold previously established for northern bobwhite quail (Colinus virginianus) chronically orally exposed via drinking water to either perfluorooctane sulfonate (PFOS) or a simple PFAS mixture. Aided by advances in analytical techniques, the novel avian oral PFAS CTVs reported in the present study are lower than the previously reported toxicity reference values (TRVs) estimated for birds chronically exposed via feed. Thus, current avian PFOS TRVs may not be fully protective of wild avian populations at PFAS-impacted sites. Also, likely due to differences in bioavailability, bioaccessibility, and toxicokinetics among individual PFAS between oral exposure types, we found higher bioaccumulation factors in all assessed tissues from birds exposed via water versus feed. Thus, we propose that future characterization of chemical toxicity due to ingestion exposure initially include a full examination of all probable sources of oral exposure for the most accurate derivation of TRVs and a more complete picture of ecological risk. The avian PFAS LOAEL CTVs established in the present study can be modified with the use of uncertainty factors to derive site-specific avian TRVs for ecological risk assessment at PFAS-impacted sites. From differences observed in the behavior of PFOS when administered as either a single chemical or part of a binary mixture with perfluorohexane sulfonate (PFHxS), we verified that PFOS was absorbed and distributed differently when coadministered with PFHxS and that PFOS likely interacted with PFHxS differently among tissues, helping to explain the differences observed in avian toxicity between exposures. Environ Toxicol Chem 2021;40:899-909. © 2020 SETAC.
Collapse
Affiliation(s)
- Nicole M Dennis
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | | | - Michael L Dennis
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | | | | | - Todd A Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
35
|
Wacewicz-Muczyńska M, Socha K, Soroczyńska J, Niczyporuk M, Borawska MH. Cadmium, lead and mercury in the blood of psoriatic and vitiligo patients and their possible associations with dietary habits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143967. [PMID: 33302005 DOI: 10.1016/j.scitotenv.2020.143967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Psoriasis and vitiligo are common, autoimmune skin diseases, their etiology is still unclear. The relationship between environmental factors including diet and various skin diseases has been studied. The general mechanism of cadmium (Cd), lead (Pb) and mercury (Hg) toxicity is through the production of reactive oxygen species which are known to play a role in etiopathogenesis of skin disorders. OBJECTIVE The aim of this study was to estimate the influence of dietary habits on the concentration of Cd, Pb and Hg in the peripheral blood samples of patients with psoriasis and vitiligo. METHODS In this case-control study, sixty patients with psoriasis, fifty patients with vitiligo and fifty eight healthy people were examined. Blood levels of Cd, Pb and Hg were determined by atomic absorption spectrometry. Food-frequency questionnaires were implemented to collect the dietary data. RESULTS Significant differences (p < 0.05) of Cd levels were found between women and men with psoriasis and women and men in the control group. The concentration of Pb was significantly higher among vitiligo patients (50.04 ± 26.54 μg/L) than in healthy controls (36.04 ± 27.35 μg/L). Significantly lower ratio of Se/Pb, Zn/Pb and Cu/Pb was found among psoriatic men. Significantly (p < 0.05) lower values of Se/Hg ratio were observed among vitiligo patients compared to controls. CONCLUSIONS The elevated levels of toxic elements could increase oxidative stress which may partly contribute to inflammation in the pathogenesis of psoriasis and vitiligo, which requires further research. Analysis of the influence of frequent consumption of food products on toxic metals concentration showed that the dietary habits have impact on the content of examined toxic metals in the blood of patients. The obtained results may be useful for composing the diet and could be helpful in prevention of psoriasis and vitiligo.
Collapse
Affiliation(s)
- Marta Wacewicz-Muczyńska
- Department of Specialist Cosmetology, Medical University of Bialystok, Akademicka 3 St., 15-267 Bialystok, Poland.
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D St., 15-222 Bialystok, Poland
| | - Jolanta Soroczyńska
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D St., 15-222 Bialystok, Poland
| | - Marek Niczyporuk
- Department of Esthetic Medicine, Medical University of Bialystok, Akademicka 3 St., 15-267 Bialystok, Poland; Outdoor-Patients Dermatological Department, Medical University of Bialystok Clinical Hospital, Żurawia 14 St., 15-540 Bialystok, Poland
| | - Maria H Borawska
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D St., 15-222 Bialystok, Poland
| |
Collapse
|
36
|
Salazar-Pammo AC, Achá D, Miranda-Chumacero G. Preferential Liver Accumulation of Mercury Explains Low Concentrations in Muscle of Caiman yacare (Alligatoridae) in Upper Amazon. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:264-269. [PMID: 33394066 DOI: 10.1007/s00128-020-03081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Caiman yacare is considered one of the top predators in the Amazon basin, and understanding pollutant distribution within its tissues may help its sustainable management. As a top predator, C. yacare should have the highest mercury concentrations, but has lower Hg concentrations than carnivorous fish (Rivera et al. 2016), which are part of their diet. We compared total Hg among liver, kidney, fat, and muscle of C. yacare, and whether trends in the distribution of Hg among tissues were like other crocodilians, aquatic birds, omnivorous, and carnivorous fish. Fat had the lowest concentrations (0.025 ± 0.03 mg kg-1) followed by muscle (0.15 ± 0.06 mg kg-1), kidney (0.57 ± 0.30 mg kg-1) and liver (1.81 ± 0.80 mg kg-1). Such preferential accumulation makes C. yacare meat a safer alternative for human consumption than carnivorous fish. The relation between Hg accumulation in liver and muscle is highest in crocodilians, which has evolutive and environmental implications.
Collapse
Affiliation(s)
- Andrea C Salazar-Pammo
- Maestría en Ciencias Biológicas, Carrera de Biología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia.
- Wildlife Conservation Society, Madidi-Tambopata Landscape Conservation Program, P.O. Box 3- 35181, La Paz, Bolivia.
| | - Dario Achá
- Instituto de Ecología, Unidad de Calidad Ambiental, Universidad Mayor de San Andrés, La Paz, P.O. Box 10077, La Paz, Bolivia
| | - Guido Miranda-Chumacero
- Wildlife Conservation Society, Madidi-Tambopata Landscape Conservation Program, P.O. Box 3- 35181, La Paz, Bolivia
| |
Collapse
|
37
|
Gil-Jiménez E, de Lucas M, Ferrer M. Metalliferous Mining Pollution and Its Impact on Terrestrial and Semi-terrestrial Vertebrates: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:1-69. [PMID: 34724574 DOI: 10.1007/398_2021_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metalliferous mining, a major source of metals and metalloids, has severe potential environmental impacts. However, the number of papers published in international peer-reviewed journals seems to be low regarding its effects in terrestrial wildlife. To the best of our knowledge, our review is the first on this topic. We used 186 studies published in scientific journals concerning metalliferous mining or mining spill pollution and their effects on terrestrial and semi-terrestrial vertebrates. We identified the working status of the mine complexes studied, the different biomarkers of exposure and effect used, and the studied taxa. Most studies (128) were developed in former mine sites and 46 in active mining areas. Additionally, although several mining accidents have occurred throughout the world, all papers about effects on terrestrial vertebrates from mining spillages were from Aznalcóllar (Spain). We also observed a lack of studies in some countries with a prominent mining industry. Despite >50% of the studies used some biomarker of effect, 42% of them only assessed exposure by measuring metal content in internal tissues or by non-invasive sampling, without considering the effect in their populations. Most studied species were birds and small mammals, with a negligible representation of reptiles and amphibians. The information gathered in this review could be helpful for future studies and protocols on the topic and it facilitates a database with valuable information on risk assessment of metalliferous mining pollution.
Collapse
Affiliation(s)
| | - Manuela de Lucas
- Applied Ecology Group, Department of Ethology and Biodiversity Conservation, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Miguel Ferrer
- Applied Ecology Group, Department of Ethology and Biodiversity Conservation, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
38
|
Bird Feces as Indicators of Metal Pollution: Pitfalls and Solutions. TOXICS 2020; 8:toxics8040124. [PMID: 33353152 PMCID: PMC7767019 DOI: 10.3390/toxics8040124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Bird feces are commonly used as a proxy for measuring dietary metal exposure levels in wild populations. Our study aims to improve the reliability and repeatability of fecal metal measurements and gives some recommendations for sampling. First, we studied levels of variation in metallic element (arsenic, calcium, cadmium, cobalt, copper, nickel, lead) concentrations: temporal variation within an individual, among siblings in a brood and among-brood/spatial variation. Second, we explored the variation caused by dual composition (urate vs. feces) of bird droppings. Two sets of fresh fecal samples were collected from pied flycatcher (Ficedula hypoleuca) nestlings living in a metal polluted area in summers 2017 (dataset 1) and 2018 (dataset 2). We found a great deal of temporal intra-individual variation in metal levels, suggesting that dietary exposure varied markedly in a short time scale (within a day). A sample from only one nestling per brood did not well describe the brood mean value, and we recommend that at least four siblings should be sampled. Brood level samples give relatively good temporal repeatability for most metals. For all the metals, the levels in the fecal portion were more than double to those in the urate portion. Since the mass proportion of urate in the bird droppings varied a great deal among samples, standardizing sampling, e.g., by collecting only the fecal part, would markedly reduce the variation due to composition. Alternatively, urate portion could be used for biomonitoring of internally circulated bioavailable metal.
Collapse
|
39
|
Leeb C, Kolbenschlag S, Laubscher A, Adams E, Brühl CA, Theissinger K. Avoidance behavior of juvenile common toads (Bufo bufo) in response to surface contamination by different pesticides. PLoS One 2020; 15:e0242720. [PMID: 33253276 PMCID: PMC7704001 DOI: 10.1371/journal.pone.0242720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Most agricultural soils are expected to be contaminated with agricultural chemicals. As the exposure to pesticides can have adverse effects on non-target organisms, avoiding contaminated areas would be advantageous on an individual level, but could lead to a chemical landscape fragmentation with disadvantages on the metapopulation level. We investigated the avoidance behavior of juvenile common toads (Bufo bufo) in response to seven pesticide formulations commonly used in German vineyards. We used test arenas filled with silica sand and oversprayed half of each with different pesticide formulations. We placed a toad in the middle of an arena, filmed its behavior over 24 hours, calculated the proportion of time a toad spent on the contaminated side and compared it to a random side choice. We found evidence for the avoidance of the folpet formulation Folpan® 500 SC, the metrafenone formulation Vivando® and the glyphosate formulation Taifun® forte at maximum recommended field rates for vine and a trend for avoidance of Wettable Sulphur Stulln (sulphur). No avoidance was observed when testing Folpan® 80 WDG (folpet), Funguran® progress (copper hydroxide), SpinTorTM (spinosad), or 10% of the maximum field rate of any formulation tested. In the choice-tests in which we observed an avoidance, toads also showed higher activity on the contaminated side of the arena. As video analysis with tracking software is not always feasible, we further tested the effect of reducing the sampling interval for manual data analyses. We showed that one data point every 15 or 60 minutes results in a risk of overlooking a weak avoidance behavior, but still allows to verify the absence/presence of an avoidance for six out of seven formulations. Our findings are important for an upcoming pesticide risk assessment for amphibians and could be a template for future standardized tests.
Collapse
Affiliation(s)
- Christoph Leeb
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
- * E-mail:
| | - Sara Kolbenschlag
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Aurelia Laubscher
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Elena Adams
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Carsten A. Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Kathrin Theissinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Research Institute, Frankfurt, Germany
| |
Collapse
|
40
|
Nawrocka A, Durkalec M, Szkoda J, Filipek A, Kmiecik M, Żmudzki J, Posyniak A. Total mercury levels in the muscle and liver of livestock and game animals in Poland, 2009-2018. CHEMOSPHERE 2020; 258:127311. [PMID: 32540547 DOI: 10.1016/j.chemosphere.2020.127311] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The bioaccumulation of mercury (Hg) in the food chain may pose a threat to human health. The risk of dietary Hg intake is mostly caused by the consumption of fish and seafood, therefore the knowledge on the exposure from land animal products is limited. In our article, we summarized the results of analyses of Hg in muscle tissue and liver of different livestock and game animals obtained during ten years of official monitoring that was carried out in Poland from 2009 to 2018. The majority of the results in muscle tissue were below the limits of quantification (LOQs). The mean Hg concentrations in muscle tissue ranged from 0.6 to 5.6 μg kg-1 of wet weight and the mean liver Hg concentrations were within the range of 0.8-16.4 μg kg-1 of wet weight, with lowest levels in chickens and highest in wild boars. The results revealed decreasing trends in liver Hg in cattle and cervids over the years, which was congruous with decreasing emission of Hg in Europe. Our results showed that the consumption of meat and liver of livestock and game animals in Poland may be considered to be safe for human health, which was confirmed by the low number of noncompliant samples relative to the applicable legal limits, as well as by estimated dietary exposure.
Collapse
Affiliation(s)
- Agnieszka Nawrocka
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Maciej Durkalec
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland.
| | - Józef Szkoda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Aleksandra Filipek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Mirosława Kmiecik
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Jan Żmudzki
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| |
Collapse
|
41
|
Kar S, Leszczynski J. Is intraspecies QSTR model answer to toxicity data gap filling: Ecotoxicity modeling of chemicals to avian species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139858. [PMID: 32526407 DOI: 10.1016/j.scitotenv.2020.139858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Interspecies model represents an established approach for the response data gap filling for regulatory agencies and researchers. We propose a novel approach of intraspecies modeling within the animals of the same species, instead of animals from different species. The proposed intraspecies model is capable of more precise extrapolation of data than the interspecies model, as animals under the same species share a similar mechanism of action (MOA) and target sites for the response. Along with the advantage of better prediction over the interspecies model, the intraspecies model has all the significant features like recognition of MOA, species-specific toxicity, reduction of animal experimentation, and money and time. To establish and test the intraspecies modeling approach, we have modeled ecotoxicity of organic chemicals to three avian species: Anas platyrhynchos, Colinus virginianus, and Phasianus colchicus. The intraspecies models offer to identify the mechanistic interpretation of the ecotoxicity of the studied chemicals along with the toxicity data gap filling. The success of the intraspecies modeling relies on connecting the missing dots of toxicity for the regulatory purposes, especially when there is a scarcity of ecotoxicity experimental data and in silico models for avian species.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson MS-39217, USA
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson MS-39217, USA.
| |
Collapse
|
42
|
Solgi E, Mirzaei-Rajeouni E, Zamani A. Feathers of Three Waterfowl Bird Species from Northern Iran for Heavy Metals Biomonitoring. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:727-732. [PMID: 32333043 DOI: 10.1007/s00128-020-02852-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Waterbirds are considered the effective sentinels of aquatic ecosystems contamination and their feathers are widely used as non-destructive biological tools for contaminant biomonitoring. In this work, we measure and evaluate the concentrations of lead, copper and zinc in the breast feathers of three species namely Fulica atra, Anas crecca and Anas platyrhynchos in the wetland National Park Boujagh. Levels of lead (Pb), copper (Cu) and zinc (Zn) were below the threshold that causes sub-lethal and reproductive effects. Significant differences in metal concentrations were found among bird species. The finding indicated that highest Pb and Zn concentrations were observed in common Coot. The effect of sex on heavy metal was observed for Pb in Anas platyrhynchos and while Cu, Zn in Anas crecca. Concentrations of metals were significantly (p < 0.05) higher in resident birds than in migratory. High levels of these heavy metals show that these birds can be used to monitor contamination in the wetland.
Collapse
Affiliation(s)
- Eisa Solgi
- Department of Environment, Faculty of Natural Resources and Environment, Malayer University, Malayer, P.O. Box 65719-9581863, Hamedan, Iran.
| | - Elham Mirzaei-Rajeouni
- Department of Environment, Faculty of Natural Resources and Environment, Malayer University, Malayer, P.O. Box 65719-9581863, Hamedan, Iran
| | - Abbas Zamani
- Department of Fisheries, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
| |
Collapse
|
43
|
Lawson AJ, Moore CT, Rainwater TR, Nilsen FM, Wilkinson PM, Lowers RH, Guillette LJ, McFadden KW, Jodice PGR. Nonlinear patterns in mercury bioaccumulation in American alligators are a function of predicted age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135103. [PMID: 31863991 DOI: 10.1016/j.scitotenv.2019.135103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Mercury is a widespread, naturally occurring contaminant that biomagnifies in wetlands due to the methylation of this element by sulfate-reducing bacteria. Species that feed at the top trophic level within wetlands are predicted to have higher mercury loads compared to species feeding at lower trophic levels and are therefore often used for mercury biomonitoring. However, mechanisms for mercury bioaccumulation in sentinel species are often poorly understood, due to a lack of long-term studies or an inability to differentiate between confounding variables. We examined mercury bioaccumulation patterns in the whole blood of American alligators (Alligator mississippiensis) from a long-term mark-recapture study (1979-2017) in South Carolina, USA. Using a growth model and auxiliary information on predicted age at first capture, we differentiated between age- and size-related variation in mercury bioaccumulation, which are often confounded in alligators due to their determinate growth pattern. Contrary to predictions that the oldest or largest individuals were likely to have the highest mercury concentrations, our best-supported model indicated a peak in mercury concentration at 30-40 years of age, depending on the sex, and lower concentrations in the youngest and oldest animals. To evaluate the robustness of our findings, we re-analyzed data from a previously published study of mercury in alligators sampled at Merritt Island National Wildlife Refuge in Florida. Unlike the South Carolina data, the data from Florida contained minimal auxiliary information regarding age, yet the best supported model similarly indicated a peaked rather than increasing relationship between mercury and body size, a less-precise indicator of age. These findings highlight how long-term monitoring can differentiate between confounding variables (e.g., age and size) to better elucidate complex relationships between contaminant exposure and demographic factors in sentinel species.
Collapse
Affiliation(s)
- Abigail J Lawson
- Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC 29634, USA.
| | - Clinton T Moore
- U.S. Geological Survey, Georgia Cooperative Fish and Wildlife Research Unit, Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green Street, Athens, GA 30602, USA.
| | - Thomas R Rainwater
- Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC 29634, USA; Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC 29442, USA; Tom Yawkey Wildlife Center, 1 Yawkey Way, Georgetown, SC 29440, USA.
| | - Frances M Nilsen
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA.
| | | | - Russell H Lowers
- Integrated Mission Support Service (IMSS), Kennedy Space Center, FL 32899, USA.
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - K W McFadden
- U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA
| | - Patrick G R Jodice
- U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
44
|
Lidman J, Jonsson M, Berglund ÅMM. Availability of specific prey types impact pied flycatcher (Ficedula hypoleuca) nestling health in a moderately lead contaminated environment in northern Sweden. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113478. [PMID: 31753628 DOI: 10.1016/j.envpol.2019.113478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/26/2019] [Accepted: 10/22/2019] [Indexed: 05/26/2023]
Abstract
Anthropogenic metal contamination can cause increased stress in exposed organisms, but it can be difficult to disentangle the anthropogenic influence from natural variation in environmental conditions. In the proximity of a closed lead (Pb)/zinc (Zn) mine in northern Sweden, the health effects of Pb exposure, essential element (calcium [Ca] and Zn) uptake, and prey availability and composition were estimated on pied flycatcher (Ficedula hypoleuca) nestlings, using hemoglobin (Hb) level as a proxy for health. Pb concentration in nestling blood range between 0.00034 and 2.21 μg/g (ww) and nestlings close to the mine had higher Pb concentrations and lower Hb, but contrary to our hypothesis, Hb was not directly related to Pb accumulation. Proportions of flying terrestrial and aquatic insects in available prey and availability of flying terrestrial insects were positively associated with nestling Hb, whereas the proportion of terrestrial ground living prey, the most common prey type, showed a negative association. This suggests that positive influence of certain prey, which does not have to be the most common in the surroundings, can counteract the negative effects from Pb contamination on bird health. Nestlings inhabiting sites adjacent to lakes had an advantage in terms of prey composition and availability of preferred prey, which resulted in higher Hb. As such, our results show that during moderate exposure to metals, variation in natural conditions, such as prey availability, can have great impact on organism health compared to Pb exposure.
Collapse
Affiliation(s)
- Johan Lidman
- Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå, Sweden.
| | - Micael Jonsson
- Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå, Sweden.
| | - Åsa M M Berglund
- Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå, Sweden.
| |
Collapse
|
45
|
Rodríguez-Estival J, Ortiz-Santaliestra ME, Mateo R. Assessment of ecotoxicological risks to river otters from ingestion of invasive red swamp crayfish in metal contaminated areas: Use of feces to estimate dietary exposure. ENVIRONMENTAL RESEARCH 2020; 181:108907. [PMID: 31740034 DOI: 10.1016/j.envres.2019.108907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The invasive red swamp crayfish (Procambarus clarkii) has become a major food resource for Eurasian otters (Lutra lutra) in the Iberian Peninsula. Crayfish accumulate large amounts of metals, and hence otters could be at risk of exposure and intoxication through crayfish consumption. We conducted a food safety risk assessment for otters inhabiting two historical mining areas in central Spain affected by lead (Pb) and mercury (Hg) pollution. Estimated daily intakes (EDI) of Pb and Hg were non-invasively calculated from the proportion of crayfish remains and metal levels in otter feces. We considered that the abdominal muscle and the carcass of crayfish differ significantly in relative weight, total metal content and bioavailability of metals to reduce the uncertainty of risk characterization. Fecal concentrations of Hg and Pb in the polluted areas were 1.878 and 6.554 μg/g d. w., respectively (13-fold and 7-fold higher compared to a non-polluted area). EDI of Hg and Pb in the polluted areas were 66.02 and 78.26 μg/kg-day, respectively (14- and 8-fold higher than in the reference area). EDI from the Hg area were above minimum levels susceptible to cause neurotoxicity in mustelids, and 6.3% were above levels susceptible to cause histopathological lessions. In the Pb area, 16.7% of EDI were consistent with levels causing reproductive effects. Metal exposure through crayfish consumption might prevent or slow the recovey of otters in these polluted environments, thus this factor should be considered in management strategies aimed to protect otter populations.
Collapse
Affiliation(s)
- Jaime Rodríguez-Estival
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| |
Collapse
|
46
|
Liu Y, Luo X, Zeng Y, Deng M, Tu W, Wu Y, Mai B. Bioaccumulation and biomagnification of hexabromocyclododecane (HBCDD) in insect-dominated food webs from a former e-waste recycling site in South China. CHEMOSPHERE 2020; 240:124813. [PMID: 31542576 DOI: 10.1016/j.chemosphere.2019.124813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Hexabromocyclododecane (HBCDD) has frequently been detected in wildlife. However, there is limited research on its bioaccumulation and biomagnification in insect-dominated aquatic and terrestrial food webs. This study investigated the occurrence of HBCDD in insects and their predators collected from a former e-waste contaminated pond and its surrounding region. The concentrations of ƩHBCDD (sum concentrations of α-, β-, and γ-HBCDDs) ranged from nd to 179 ng g-1 lipid weight. α-HBCDD was the predominant diastereoisomer in all biotic samples, and the contribution of α-HBCDD was higher in predators than in prey insects. A significantly positive linear relationship was found between ƩHBCDD concentrations (lipid weight) and trophic levels based on δ15N in aquatic organisms (p < 0.05), while trophic dilution was observed in the terrestrial food web. This result indicates an opposite trophic transfer tendency of HBCDD in terrestrial and aquatic ecosystems. The biomagnification factor (BMF) for α-HBCDD was higher in terrestrial birds (2.03) than in frogs (0.29), toads (0.85), and lizards (0.63). This may be due to differences between poikilotherms and homeotherms in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| | - Yanghong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, PR China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, PR China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, PR China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
47
|
Hinton TG, Byrne ME, Webster SC, Love CN, Broggio D, Trompier F, Shamovich D, Horloogin S, Lance SL, Brown J, Dowdall M, Beasley JC. GPS-coupled contaminant monitors on free-ranging Chernobyl wolves challenge a fundamental assumption in exposure assessments. ENVIRONMENT INTERNATIONAL 2019; 133:105152. [PMID: 31518927 DOI: 10.1016/j.envint.2019.105152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Measurements of external contaminant exposures on individual wildlife are rare because of difficulties in using contaminant monitors on free-ranging animals. Most wildlife contaminant exposure data are therefore simulated with computer models. Rarely are empirical exposure data available to verify model simulations, or to test fundamental assumptions inherent in exposure assessments. We used GPS-coupled contaminant monitors to quantify external exposures to individual wolves (Canis lupus) living within the Belarus portion of Chernobyl's 30-km exclusion zone. The study provided data on animal location and contaminant exposure every 35 min for 6 months, resulting in ~6600 individual locations and 137Cs external exposure readings per wolf, representing the most robust external exposure data published to date on free ranging animals. The data provided information on variation in external exposure for each animal over time, as well as variation in external exposure among the eight wolves across the landscape of Chernobyl. The exposure data were then used to test a fundamental assumption in screening-level risk assessments, espoused in guidance documents of the U.S. Environmental Protection Agency and U.S. Department of Energy, - Mean contaminant concentrations conservatively estimate individual external exposures. We tested this assumption by comparing our empirical data to a series of simulations using the ERICA modeling tool. We found that modeled simulations of mean external exposure (10.5 mGy y-1), based on various measures of central tendency, under-predicted mean exposures measured on five of the eight wolves wearing GPS-contaminant monitors (i.e., 12.3, 26.3, 28.0, 28.8 and 35.7 mGy y-1). If under-prediction of exposure occurs for some animals, then arguably the use of averaged contaminant concentrations to predict external exposure is not as conservative as proposed by current risk assessment guidance. Thus, a risk assessor's interpretation of simulated exposures in a screening-level risk analysis might be misguided if contaminant concentrations are based on measures of central tendency. We offer three suggestions for risk assessors to consider in order to reduce the probability of underestimating exposure in a screening-level risk assessment.
Collapse
Affiliation(s)
- Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan.
| | - Michael E Byrne
- School of Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Sarah C Webster
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| | - Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - David Broggio
- Institute of Radiation Protection and Nuclear Safety, PSE-SANTE/SDOS/LEDI, 92262 Fontenay-aux-Roses, France.
| | - Francois Trompier
- Institute of Radiation Protection and Nuclear Safety, PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses, France.
| | | | - Sergay Horloogin
- Polessye State Radioecological Reserve, Choiniki, Gomel Region, Belarus.
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Justin Brown
- Norwegian Radiation and Nuclear Safety Authority, 1361 Østerås, Norway.
| | - Mark Dowdall
- Norwegian Radiation and Nuclear Safety Authority, 1361 Østerås, Norway.
| | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
48
|
Hu YC, Tang Y, Chen ZQ, Chen JY, Ding GH. Evaluation of the sensitivity of Microhyla fissipes tadpoles to aqueous cadmium. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1150-1159. [PMID: 31620949 DOI: 10.1007/s10646-019-02117-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure is harmful to amphibians in natural environments and the Cd concentration is a key parameter in water monitoring. Cd pollution has been a severe issue in the Yangtze River and its southern reaches in recent years. Acute toxicity assays were employed to determine the tolerance limits of Cd for Microhyla fissipes tadpoles and five different concentrations of Cd (0, 50, 100, 200 and 300 μg/L) were involved to detect its chronic effects on metamorphosis, growth, locomotion, genotoxicity and enzymatic activities of M. fissipes tadpoles. The results showed that the 24-h and 48-h LC50 values of Cd on M. fissipes tadpoles were 2591.3 μg/L and 1567.9 μg/L, respectively, and the presumable non-lethal concentration obtained was 172.2 μg/L. During the 70-day chronic toxicity assays, Cd showed negative impacts on survival, growth, metamorphosis and the frequency of erythrocytes nuclear abnormality of M. fissipes tadpoles. However, the Cd exposure caused the increased body size and condition of tadpoles at complete metamorphosis (GS46). The tadpoles exposed to 200 μg/L of Cd exhibited degraded locomotor performance at GS46. Weight increments of tadpoles were inhibited at Day 14 and massive deaths were observed over the next 14 days. The enzymatic activities of tadpoles experienced a shock response stage (GS30-GS35) and a complete recovery stage (GS36-GS41) in all treatments. However, the enzymatic activities (except alkaline phosphatase) of tadpoles at GS46 increased after Cd exposure, especially at high concentrations. In summary, Cd is a threat to M. fissipes tadpoles as that causes reduced fitness.
Collapse
Affiliation(s)
- Ying-Chao Hu
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Yun Tang
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Zhi-Qiang Chen
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Jing-Yi Chen
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China
| | - Guo-Hua Ding
- ADI, College of Ecology, Lishui University, 323000, Lishui, Zhejiang, People's Republic of China.
| |
Collapse
|
49
|
Liu YE, Tang B, Liu Y, Luo XJ, Mai BX, Covaci A, Poma G. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site. ENVIRONMENT INTERNATIONAL 2019; 133:105240. [PMID: 31654917 DOI: 10.1016/j.envint.2019.105240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Water snake and small common carp samples collected from a Chinese pond polluted with electronic waste (e-waste) were analyzed for organophosphorus flame retardants (PFRs), PFR metabolites, and plasticizers to investigate their occurrence, biomagnification, and maternal transfer in ovoviviparous species. Mean concentrations of total PFRs, PFR metabolites, and plasticizers were 2.2-16, 1.3-2.8 and 151-1320 ng/g wet weight (ww), respectively in analyzed organisms. Metabolites of PFRs were found in the same order of magnitude as or even higher than their parent compounds, indicating the importance of monitoring metabolites to evaluate the internal exposure of PFRs in organisms. Biomagnification factors (BMFs) were below 1 for all targeted chemicals and negatively correlated with metabolite/parent ratios (MPRs), suggesting a biodilution driven by metabolism. The lipid normalized concentrations were lower in eggs than in muscle for most of targeted chemicals. The maternal transfer potential was significantly and positively correlated with log KOW (p < 0.05) when log KOW was below 6.
Collapse
Affiliation(s)
- Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
50
|
Hines DE, Conolly RB, Jarabek AM. A Quantitative Source-to-Outcome Case Study To Demonstrate the Integration of Human Health and Ecological End Points Using the Aggregate Exposure Pathway and Adverse Outcome Pathway Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11002-11012. [PMID: 31436975 DOI: 10.1021/acs.est.9b04639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to environmental contaminants can lead to adverse outcomes in both human and nonhuman receptors. The Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) frameworks can mechanistically inform cumulative risk assessment for human health and ecological end points by linking together environmental transport and transformation, external exposure, toxicokinetics, and toxicodynamics. This work presents a case study of a hypothetical contaminated site to demonstrate a quantitative approach for implementing the AEP framework and linking this framework to AOPs. We construct an AEP transport and transformation model and then quantify external exposure pathways for humans, fishes, and small herbivorous mammals at the hypothetical site. A Monte Carlo approach was used to address parameter variability. Source apportionment was quantified for each species, and published pharmacokinetic models were used to estimate internal target site exposure from external exposures. Published dose-response data for a multispecies AOP network were used to interpret AEP results in the context of species-specific effects. This work demonstrates (1) the construction, analysis, and application of a quantitative AEP model, (2) the utility of AEPs for organizing mechanistic exposure data and highlighting data gaps, and (3) the advantages provided by a source-to-outcome construct for leveraging exposure data and to aid transparency regarding assumptions.
Collapse
Affiliation(s)
- David E Hines
- U.S. Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Rory B Conolly
- U.S. Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Annie M Jarabek
- U.S. Environmental Protection Agency , Office of Research and Development, National Center for Environmental Assessment , Research Triangle Park, Durham , North Carolina 27709 , United States
| |
Collapse
|