1
|
Belivermiş M, Swarzenski PW, Oberhänsli F, Melvin SD, Metian M. Effects of variable deoxygenation on trace element bioaccumulation and resulting metabolome profiles in the blue mussel (Mytilus edulis). CHEMOSPHERE 2020; 250:126314. [PMID: 32234623 DOI: 10.1016/j.chemosphere.2020.126314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
The dissolved oxygen concentration of the world's oceans has systematically declined by 2% over the past 50 years, and there has been a notable commensurate expansion of the global oxygen minimum zones (OMZs). Such wide-scale ocean deoxygenation affects the distribution of biological communities, impacts the physiology of organisms that may affect their capacity to absorb and process contaminants. Therefore, the bioaccumulation efficiencies of three contrasting radionuclides, 110mAg, 134Cs and 65Zn were investigated using controlled aquaria in the blue mussel Mytilus edulis under three contrasting dissolved oxygen regimes: normoxic; 7.14 mg L-1, reduced oxygen; 3.57 mg L-1 and hypoxic 1.78 mg L-1 conditions. Results indicated that hypoxic conditions diminished 110mAg uptake in the mussel, whereas depuration rates were not affected. Similarly, hypoxia appeared to cause a decrease in the 65Zn bioaccumulation rate, as evidenced by both weakened uptake and rapid elimination rates. Effects of hypoxia on the metabolome of mussels were also explored by untargeted Nuclear Magnetic Resonance (NMR) spectroscopic methods. The metabolic response was characterised by significantly greater abundance of several amino acids, amino sulfonic acids, dicarboxylic acids, carbohydrates and other metabolites in the lowest oxygen treatment, as compared to the higher oxygen treatments. Clearance rates significantly dropped in hypoxic conditions compared to normoxia. Results suggest that hypoxic conditions, and even partly moderate hypoxia, alter ventilation, an-aerobic, oxidative and osmoregulation metabolism of this mussel, which may further influence the trace element bioaccumulation capacity.
Collapse
Affiliation(s)
- Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey; International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco.
| | - Peter W Swarzenski
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco
| | - François Oberhänsli
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, 4215, Australia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco.
| |
Collapse
|
2
|
Guo X, Feng C. Biological toxicity response of Asian Clam (Corbicula fluminea) to pollutants in surface water and sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:56-70. [PMID: 29524903 DOI: 10.1016/j.scitotenv.2018.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 05/27/2023]
Abstract
As a typical test species, Asian Clam (Corbicula fluminea) is widely used in the identification and evaluation of freshwater toxicity. This study provides a summary of the research published from 1979 to 2018. The focus was on the bioaccumulation, morphological and behavioral changes, and biochemical index alterations of Corbicula fluminea to target pollutants (i.e., ammonia, metal(loid)s, and organic chemicals) in surface water and sediment. The applications on the evaluation of actual aquatic pollution, determination of toxicological mechanisms, prediction of toxicity, and bioremediation are also specifically discussed. The primary purpose is to facilitate the comprehensive understanding and accurate application of Corbicula fluminea in freshwater ecotoxicological studies.
Collapse
Affiliation(s)
- Xiaoyu Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Harrigan KM, Moore PA. Scaling to the Organism: An Innovative Model of Dynamic Exposure Hotspots in Stream Systems. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:372-394. [PMID: 28875229 DOI: 10.1007/s00244-017-0444-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
In flowing systems, fluctuations in the frequency, magnitude, and duration of exposure occurs due to turbulence and geomorphology, causing spatial and temporal variations in chemical exposure at the scale of the organism. Spatial models representing toxicant distribution at the appropriate scales of stream organisms are noticeably missing from the literature. To characterize the fine scale distribution of pollutants in freshwater streams at the scale of a benthic organism, nine artificial stream habitats were created (riffle, pool, run, bend, woody debris) with either sand or gravel substrate. Dopamine was released as a chemical tracer, mimicking a groundwater source, and measurements were recorded with a microelectrode and Epsilon electrochemical recording system. Proxies for the frequency, magnitude, and duration of chemical exposure were extracted. Geographic information systems and an inverse distance weight interpolation technique were used to predict spatially the chemical distribution throughout the habitats. Spatial and temporal variations of exposure were exhibited within and across habitats, indicating that the frequency, magnitude, and duration of exposure is influenced by the organism's location within a habitat and the habitat it resides in. The run and pool with sand substrate contained the greatest frequency, magnitude, and duration of exposure, suggesting a more detrimental exposure compared to other habitats. Differences in peak heights within and across habitats are orders of magnitude in value. Spatial and temporal fluctuations of fine scale exposure need to be considered in both ecotoxicology and water quality modeling to represent and understand the exposure of pollutants impacting benthic organisms.
Collapse
Affiliation(s)
- Kristen M Harrigan
- Laboratory for Sensory Ecology, Department of Biological Sciences, J.P. Scott Center for Neuroscience, Mind, and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
- University of Michigan Biological Station, 9133 Biological Road, Pellston, MI, 49769, USA
| | - Paul A Moore
- Laboratory for Sensory Ecology, Department of Biological Sciences, J.P. Scott Center for Neuroscience, Mind, and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA.
- University of Michigan Biological Station, 9133 Biological Road, Pellston, MI, 49769, USA.
| |
Collapse
|
4
|
Rosa IC, Garrido R, Ré A, Gomes J, Pereira JL, Gonçalves F, Costa R. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:825-830. [PMID: 26254082 DOI: 10.1016/j.scitotenv.2015.07.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/16/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
The freshwater Corbicula fluminea is a major aquatic nuisance worldwide. Current pest control methods raise cost-effectiveness and environmental concerns, which motivate research into improved mitigation approaches. In this context, the susceptibility of the clams to chemicals under reduced oxygen conditions was examined. Biocides with different mechanisms of toxicity (niclosamide, polyDADMAC, ammonium nitrate, potassium chloride and dimethoate) were tested under normoxic (>7 mg L(-1) dissolved O2) and hypoxic (<2 mg L(-1) dissolved O2) conditions. Hypoxia was observed to potentiate chemical treatment, particularly when combined with non-overwhelming doses that would produce only intermediate responses by themselves. For niclosamide, ammonium nitrate and dimethoate, clam mortality enhancements up to 400% were observed under hypoxia as compared to dosing upon normal dissolved oxygen conditions. For polyDADMAC and potassium chloride, substantially lower mortality enhancements were found. The differences in the clams' sensitivity to the chemicals under hypoxia could be linked to the expected mechanisms of action. This suggests that judicious selection of the biocide is essential if optimized combined control treatments are to be designed and provides an insight into the interference of frequent hypoxia events in the response of natural clam populations to contaminant loads.
Collapse
Affiliation(s)
- Inês C Rosa
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Garrido
- CIEPQPF - Research Centre for Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Ré
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João Gomes
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Raquel Costa
- CIEPQPF - Research Centre for Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
5
|
Song Y, Salbu B, Teien HC, Sørlie Heier L, Rosseland BO, Høgåsen T, Tollefsen KE. Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (Salmo salar). BMC Genomics 2014; 15:694. [PMID: 25145280 PMCID: PMC4148957 DOI: 10.1186/1471-2164-15-694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 08/11/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Uranium (U) is a naturally occurring radionuclide that has been found in the aquatic environment due to anthropogenic activities. Exposure to U may pose risk to aquatic organisms due to its radiological and chemical toxicity. The present study aimed to characterize the chemical toxicity of U in Atlantic salmon (Salmo salar) using depleted uranium (DU) as a test model. The fish were exposed to three environmentally relevant concentrations of DU (0.25, 0.5 and 1.0 mg U/L) for 48 h. Hepatic transcriptional responses were studied using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Plasma variables and chromosomal damages were also studied to link transcriptional responses to potential physiological changes at higher levels. RESULTS The microarray gene expression analysis identified 847, 891 and 766 differentially expressed genes (DEGs) in the liver of salmon after 48 h exposure to 0.25, 0.5 and 1.0 mg/L DU, respectively. These DEGs were associated with known gene ontology functions such as generation of precursor metabolites and energy, carbohydrate metabolic process and cellular homeostasis. The salmon DEGs were then mapped to mammalian orthologs and subjected to protein-protein network and pathway analysis. The results showed that various toxicity pathways involved in mitochondrial functions, oxidative stress, nuclear receptor signaling, organ damage were commonly affected by all DU concentrations. Eight genes representative of several key pathways were further verified using qPCR No significant formation of micronuclei in the red blood cells or alterations of plasma stress variables were identified. CONCLUSION The current study suggested that the mitochondrion may be a key target of U chemical toxicity in salmon. The induction of oxidative stress and uncoupling of oxidative phosphorylation may be two potential modes of action (MoA) of DU. These MoAs may subsequently lead to downstream events such as apoptosis, DNA repair, hypoxia signaling and immune response. The early toxicological mechanisms of U chemical toxicity in salmon has for the first time been systematically profiled. However, no other physiological changes were observed. Future efforts to link transcriptional responses to adverse effects have been outlined as important for understanding of potential risk to aquatic organisms.
Collapse
Affiliation(s)
- You Song
- Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Centre for Environmental Radioactivity (CERAD), P,O, Box 5003, N-1432 Ås, Norway.
| | | | | | | | | | | | | |
Collapse
|