1
|
Xia L, Cheng L, Xi W, Zhang X, Shi X. Distinct influence of model electron shuttles on anaerobic mononitrophenols reduction in aquatic environments by Shewanella oneidensis MR-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135348. [PMID: 39079298 DOI: 10.1016/j.jhazmat.2024.135348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The environmental fate and risks of mononitrophenols (mono-NPs), the simplest nitrophenols (NPs) often found in aquatic environments, are profoundly influenced by anaerobic bioreduction and co-existing electron shuttles (ESs), but little is known about the underlying mechanisms. Here, we elucidate the pathways of anaerobic mono-NPs bioreduction by Shewanella oneidensis MR-1 and assess the effect of model ESs on these processes. We found that all three mono-NPs isomers could be readily reduced to their corresponding aminophenols by S. oneidensis MR-1 under anaerobic conditions. CymA, a core component of the Mtr respiratory pathway, performs a dynamic role in these bioreduction, which is highly dependent on the bioreduction kinetics. The exogenous addition of quinones was found to accelerate the mono-NPs bioreduction through interactions with key outer-membrane proteins (e.g., OmcA and MtrC), and all these processes matched well to linear free energy relationships (LFERs). Surprisingly, adding riboflavin did not influence the bioreduction of all three mono-NPs isomers, which may be due to the contribution of OmcA and MtrC to these bioreduction processes and their downregulated expression. This study enhances our understanding of the environmental fate of mono-NPs and their bioconversion processes, providing valuable insights for the bioremediation of nitrophenol-contaminated sites.
Collapse
Affiliation(s)
- Lisong Xia
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Lei Cheng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Wenni Xi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiliang Zhang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
2
|
Dohare S, Rawat HK, Bhargava Y, Kango N. Characterization of Diesel Degrading Indigenous Bacterial Strains, Acinetobacter pittii and Pseudomonas aeruginosa, Isolated from Oil Contaminated Soils. Indian J Microbiol 2024; 64:749-757. [PMID: 39011005 PMCID: PMC11246406 DOI: 10.1007/s12088-024-01317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024] Open
Abstract
In this study, 13 diesel degrading bacteria were isolated from the oil contaminated soils and the promising strains identified as Acinetobacter pittii ED1 and Pseudomonas aeruginosa BN were evaluated for their diesel degrading capabilities. These strains degraded the diesel optimally at 30 °C, pH 7.0 and 1% diesel concentration. Both the strains produced biofilm at 1% diesel concentration indicating their ability to tolerate diesel induced abiotic stress. Gravimetric analysis of the spent medium after 7 days of incubation showed that A. pittii ED1 and P. aeruginosa BN degraded 68.61% and 76% diesel, respectively, while biodegradation reached more than 90% after 21 days. Fourier Transform Infrared (FTIR) analysis of the degraded diesel showed 1636.67 cm-1 (C=C stretch, N-H bond) peak corresponding to alkenes and primary amines, while GC-TOF-MS analysis showed decline in hydrocarbon intensities after 7 days of incubation. The present study revealed that newly isolated A. pittii ED1 and P. aeruginosa BN were able to degrade diesel hydrocarbons (C11-C18, and C19-C24) efficiently and have potential for bioremediation of the oil-contaminated sites. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01317-3.
Collapse
Affiliation(s)
- Sonam Dohare
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Hemant Kumar Rawat
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Yogesh Bhargava
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Naveen Kango
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| |
Collapse
|
3
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
4
|
Li J, Wen Y, Fang Z, Yang W, Song X. Application of cold-adapted microbial agents in soil contaminate remediation: biodegradation mechanisms, case studies, and safety assessments. RSC Adv 2024; 14:12720-12734. [PMID: 38645519 PMCID: PMC11027001 DOI: 10.1039/d4ra01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
The microbial agent technology has made significant progress in remediating nitro-aromatic compounds (NACs), such as p-nitrophenol, 2,4-dinitrophenol, and 2,4,6-Trinitrotoluene, in farmland soil over the past decade. However, there are still gaps in our understanding of the bioavailability and degradation mechanisms of these compounds in low-temperature environments. In this review, we provide a comprehensive summary of the strategies employed by cold-adapted microorganisms and elucidate the degradation pathways of NACs pollutants. To further analyze their metabolic mechanisms, we propose using mass balance to improve our understanding of biochemical processes and refine the degradation pathways through stoichiometry analysis. Additionally, we suggest employing 13C-metabolic flux analysis to track enzyme activity and intermediate products during bio-degradation processes with the aim of accelerating the remediation of nitro-aromatic compounds, particularly in cold regions. Through a comprehensive analysis of pollutant metabolic activities and a commitment to the 'One Health' approach, with an emphasis on selecting non-pathogenic strains, the environmental management strategies for soil remediation could be positioned to develop and implement safe and effective measure.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University Shenyang 110044 China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources China
| | - Zheng Fang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Wenqi Yang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| |
Collapse
|
5
|
Chi X, Zhao Z, Han Q, Yan H, Ji B, Chai Y, Li S, Liu K. Insights into autotrophic carbon fixation strategies through metagonomics in the sediments of seagrass beds. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106002. [PMID: 37119661 DOI: 10.1016/j.marenvres.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 04/23/2023] [Indexed: 06/11/2023]
Abstract
Seagrass beds contributes up to 10% ocean carbon storage. Carbon fixation in seagrass bed greatly affect global carbon cycle. Currently, six carbon fixation pathways are widely studied: Calvin, reductive tricarboxylic acid (rTCA), Wood-Ljungdahl (WL), 3-hydroxypropionate (3HP), 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) and dicarboxylate/4-hydroxybutyrate (DC/4-HB). Despite the knowledges about carbon fixation increase, the carbon fixation strategies in seagrass bed sediment remain unexplored. We collected seagrass bed sediment samples from three sites with different characteristics in Weihai, a city in Shandong, China. The carbon fixation strategies were investigated through metagenomics. The results exhibited that five pathways were present, of which Calvin and WL were the most dominant. The community structure of microorganisms containing the key genes of these pathways were further analyzed, and those dominant microorganisms with carbon fixing potential were revealed. Phosphorus significantly negatively corelated with those microorganisms. This study provides an insight into the strategies of carbon fixation in seagrass bed sediments.
Collapse
Affiliation(s)
- Xiangqun Chi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zhiyi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qiuxia Han
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huaxiao Yan
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Bei Ji
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yating Chai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Ma Z, Li Y, Lu Z, Pan J, Li M. A novel biosensor-based method for the detection of p-nitrophenol in agricultural soil. CHEMOSPHERE 2023; 313:137306. [PMID: 36410515 DOI: 10.1016/j.chemosphere.2022.137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Directly measurement of the bioavailable concentration of soil contaminants is essential for their accurate risk assessment. In this study, we successfully modified and identified the key genetic elements (pobR1-3) for the bio-detection of p-nitrophenol and synthesized five novel whole-cell biosensors (Escherichia coli BL21/pPNP-mrfp, E. coli BL21/pPNP-CFP, E. coli BL21/pPNP-YFP, E. coli BL21/pPNP-GFP, and E. coli BL21/pPNP-amilCP) to directly detect the concentration of p-nitrophenol in soils. These biosensor methods contained a simple biosensor activation and sample extraction step, a cost-effective detection means, and a fast detection process (5 h) by using a 96-microwell plate with a low background value and high-reliability equation for p-nitrophenol detection. These biosensors had a detection limit of 6.21-25.2 μg/kg and a linear range of 10-10000 μg/kg for p-nitrophenol in four soils. All biosensors showed better detection performance in the detection of p-nitrophenol in soil samples. The biosensors method can help to quickly and directly assess the actual bioavailable fractions of p-nitrophenol in soils, thus facilitating to understand the environmental cycling of p-nitrophenol.
Collapse
Affiliation(s)
- Zhao Ma
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, PR China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
7
|
Zhu L, Mei X, Peng Z, Yang J, Li Y. A paper-based microfluidic sensor array combining molecular imprinting technology and carbon quantum dots for the discrimination of nitrophenol isomers. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129012. [PMID: 35504132 DOI: 10.1016/j.jhazmat.2022.129012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/31/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Paper-based microfluidic analytical devices (μPADs) have recently attracted attention as a rapid test kit owing to their low cost and nonrequirement for external driving pump. However, low accuracy and poor anti-interference ability of μPADs under complex detection condition limit their practical applications. Here, we present a facile way to prepare a novel fluorescence sensor-array μPAD for multi-analyte discrimination based on molecular imprinting technology, and its sensing behavior was studied by using three nitrophenol (NP) isomers (2-, 3-, and 4-NP) as the testing models. Carbon quantum dots (CQDs) emitting blue light were grafted on glass-fiber paper, followed by in-situ modification of three types of molecularly imprinted polymers (MIPs) with 2-, 3-, and 4-NP as template. Each sensing unit on the array showed differential yet cross-reactive binding affinity to NP isomers, resulting in distinct fluorescence quenching efficiency. Thus, precise distinguishment of the three NPs was realized with the MIPs/CQDs/paper-based sensor array. Furthermore, the discrimination ability of the platform was evaluated in mixtures of the NP isomers. Practicability of this apparatus was validated by identification of blind samples and 100% accuracy was achieved. The μPAD has proven to be highly sensitive and accurate, which will serve as an ideal analytical tool in the fields of environment monitoring, disease prognosis, food safety and so on.
Collapse
Affiliation(s)
- Liang Zhu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuecui Mei
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengchun Peng
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiao Yang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Qian Y, Zhao G, Zhou J, Zhao H, Mutter TY, Huang X. Combined Bioremediation of Bensulfuron-Methyl Contaminated Soils With Arbuscular Mycorrhizal Fungus and Hansschlegelia zhihuaiae S113. Front Microbiol 2022; 13:843525. [PMID: 35295293 PMCID: PMC8918986 DOI: 10.3389/fmicb.2022.843525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the past decades, because of large-scale bensulfuron-methyl (BSM) application, environmental residues of BSM have massively increased, causing severe toxicity in rotation-sensitive crops. The removal of BSM from the environment has become essential. In this study, the combined bioremediation of the arbuscular mycorrhizal fungi (AMF) Rhizophagus intraradices and BSM-degrading strain Hansschlegelia zhihuaiae S113 of BSM-polluted soil was investigated. BSM degradation by S113 in the maize rhizosphere could better promote AMF infection in the roots of maize, achieving an infection rate of 86.70% on the 36th day in the AMF + S113 + BSM group. Similarly, AMF enhanced the colonization and survival of S113 in maize rhizosphere, contributing 4.65 × 105 cells/g soil on the 15th day and 3.78 × 104 cells/g soil on the 20th day to a population of colonized-S113 (based possibly on the strong root system established by promoting plant-growth AMF). Both S113 and AMF coexisted in rhizosphere soil. The BSM-degrading strain S113 could completely remove BSM at 3 mg/kg from the maize rhizosphere soil within 12 days. AMF also promoted the growth of maize seedlings. When planted in BSM-contaminated soil, maize roots had a fresh weight of 2.59 ± 0.26 g in group S113 + AMF, 2.54 ± 0.20 g in group S113 + AMF + BSM, 2.02 ± 0.16 g in group S113 + BSM, and 2.61 ± 0.25 g in the AMF group, all of which exceeded weights of the control group on the 36th day except for the S113 + BSM group. Additionally, high-throughput sequencing results indicated that simultaneous inoculation with AMF and strain S113 of BSM-polluted maize root-soil almost left the indigenous bacterial community diversity and richness in maize rhizosphere soil unaltered. This represents a major advantage of bioremediation approaches resulting from the existing vital interactions among local microorganisms and plants in the soil. These findings may provide theoretical guidance for utilizing novel joint-bioremediation technologies, and constitute an important contribution to environmental pollution bioremediation while simultaneously ensuring crop safety and yield.
Collapse
Affiliation(s)
- Yingying Qian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huazhu Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Thamer Y. Mutter
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Nwankwegu AS, Zhang L, Xie D, Onwosi CO, Muhammad WI, Odoh CK, Sam K, Idenyi JN. Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114313. [PMID: 34942548 DOI: 10.1016/j.jenvman.2021.114313] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Environmental pollution mitigation measure involving bioremediation technology is a sustainable intervention for a greener ecosystem biorecovery, especially the obnoxious hydrocarbons, xenobiotics, and other environmental pollutants induced by anthropogenic stressors. Several successful case studies have provided evidence to this paradigm including the putative adoption that the technology is eco-friendly, cost-effective, and shows a high tendency for total contaminants mineralization into innocuous bye-products. The present review reports advances in bioremediation, types, and strategies conventionally adopted in contaminant clean-up. It identified that natural attenuation and biostimulation are faced with notable limitations including the poor remedial outcome under the natural attenuation system and the residual contamination occasion following a biostimulation operation. It remarks that the use of genetically engineered microorganisms shows a potentially promising insight as a prudent remedial approach but is currently challenged by few ethical restrictions and the rural unavailability of the technology. It underscores that bioaugmentation, particularly the use of high cell density assemblages referred to as microbial consortia possess promising remedial prospects thus offers a more sustainable environmental security. The authors, therefore, recommend bioaugmentation for large scale contaminated sites in regions where environmental degradation is commonplace.
Collapse
Affiliation(s)
- Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya.
| | - Lei Zhang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Deti Xie
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Wada I Muhammad
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; College of Water Conservancy, Hohai University, No.1 Xikang Road, Gulou District, Nanjing, 210098, China
| | - Chuks K Odoh
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Beijing, China
| | - Kabari Sam
- Faculty of Environmental Management, Department of Marine Environment and Pollution Control, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
| | - John N Idenyi
- Department of Biotechnology, Ebonyi State University Abakaliki, Nigeria
| |
Collapse
|
10
|
Shang N, Chen L, Cheng M, Tian Y, Huang X. Biodegradation of diphenyl ether herbicide lactofen by Bacillus sp. YS-1 and characterization of two initial degrading esterases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151357. [PMID: 34742792 DOI: 10.1016/j.scitotenv.2021.151357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of the diphenyl ether herbicide lactofen in recent years has caused serious environmental problems. Therefore, detoxification and elimination of lactofen from the environment are urgently required. In this study, the lactofen-degrading strain Bacillus sp. YS-1 was isolated, which achieved a 97.6% degradation rate of 50 mg/L lactofen within 15 h. The ester bond of lactofen was hydrolyzed, which generated acifluorfen, and then, the nitro group was reduced to the amino group, which generated aminoacifluorfen. Finally, the amino group was acetylated, which formed acetylated aminoacifluorfen, a novel end product in the degradation of lactofen. The toxicity of acetylated aminoacifluorfen to the root and seedling growth of cucumber and sorghum was significantly decreased compared with that of lactofen. The two esterase genes rhoE and rapE, encoding two esterases responsible for lactofen hydrolysis to acifluorfen, were cloned and expressed. The amino acid sequences encoded by rhoE and rapE were 27.78% and 88.21% identical with known esterases, respectively. The optimum temperatures for RhoE and RapE degradation of lactofen were 35 °C and 25 °C, respectively, and both esterases displayed maximal activity at pH 8.0. Both RhoE and RapE prioritized the degradation of (S)-(+)-lactofen, (S)-(-)-quizalofop-ethyl, and (S)-(-)-diclofop-methyl. This study provided the resources of bacterial strain and hydrolyzing enzyme for the removal of lactofen from the environment and the bioremediation of herbicide-contaminated soil.
Collapse
Affiliation(s)
- Na Shang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Lingling Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Minggen Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
11
|
Jia W, Li N, Yang T, Dai W, Jiang J, Chen K, Xu X. Bioaugmentation of Atrazine-Contaminated Soil With Paenarthrobacter sp. Strain AT-5 and Its Effect on the Soil Microbiome. Front Microbiol 2021; 12:771463. [PMID: 34956132 PMCID: PMC8692732 DOI: 10.3389/fmicb.2021.771463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Atrazine, a triazine herbicide, is widely used around the world. The residue of atrazine due to its application in the fore-rotating crop maize has caused phytotoxicity to the following crop sweet potato in China. Bioaugmentation of atrazine-contaminated soil with atrazine-degrading strains is considered as the most potential method to remove atrazine from soil. Nevertheless, the feasibility of bioaugmentation and its effect on soil microbiome still need investigation. In this study, Paenarthrobacter sp. AT-5, an atrazine-degrading strain, was inoculated into agricultural soils contaminated with atrazine to investigate the bioaugmentation process and the reassembly of the soil microbiome. It was found that 95.9% of 5 mg kg−1 atrazine was removed from the soils when inoculated with strain AT-5 with 7 days, and the phytotoxicity of sweet potato caused by atrazine was significantly alleviated. qRT-PCR analysis revealed that the inoculated strain AT-5 survived well in the soils and maintained a relatively high abundance. The inoculation of strain AT-5 significantly affected the community structure of the soil microbiome, and the abundances of bacteria associated with atrazine degradation were improved.
Collapse
Affiliation(s)
- Weibin Jia
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ning Li
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tunan Yang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weixian Dai
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Chen
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xihui Xu
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Physiological Role of the Previously Unexplained Benzenetriol Dioxygenase Homolog in the Burkholderia sp. Strain SJ98 4-Nitrophenol Catabolism Pathway. Appl Environ Microbiol 2021; 87:e0000721. [PMID: 33990303 DOI: 10.1128/aem.00007-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
4-Nitrophenol, a priority pollutant, is degraded by Gram-positive and Gram-negative bacteria via 1,2,4-benzenetriol (BT) and hydroquinone (HQ), respectively. All enzymes involved in the two pathways have been functionally identified. So far, all Gram-negative 4-nitrophenol utilizers are from the genera Pseudomonas and Burkholderia. But it remains a mystery why pnpG, an apparently superfluous BT 1,2-dioxygenase-encoding gene, always coexists in the catabolic cluster (pnpABCDEF) encoding 4-nitrophenol degradation via HQ. Here, the physiological role of pnpG in Burkholderia sp. strain SJ98 was investigated. Deletion and complementation experiments established that pnpG is essential for strain SJ98 growing on 4-nitrocatechol rather than 4-nitrophenol. During 4-nitrophenol degradation by strain SJ98 and its two variants (pnpG deletion and complementation strains), 1,4-benzoquinone and HQ were detected, but neither 4-nitrocatechol nor BT was observed. When the above-mentioned three strains (the wild type and complementation strains with 2,2'-dipyridyl) were incubated with 4-nitrocatechol, BT was the only intermediate detected. The results established the physiological role of pnpG that encodes BT degradation in vivo. Biotransformation analyses showed that the pnpA-deleted strain was unable to degrade both 4-nitrophenol and 4-nitrocatechol. Thus, the previously characterized 4-nitrophenol monooxygenase PnpASJ98 is also essential for the conversion of 4-nitrocatechol to BT. Among 775 available complete genomes for Pseudomonas and Burkholderia, as many as 89 genomes were found to contain the putative pnpBCDEFG genes. The paucity of pnpA (3 in 775 genomes) implies that the extension of BT and HQ pathways enabling the degradation of 4-nitrophenol and 4-nitrocatechol is rarer, more recent, and likely due to the release of xenobiotic nitroaromatic compounds. IMPORTANCE An apparently superfluous gene (pnpG) encoding BT 1,2-dioxygenase is always found in the catabolic clusters involved in 4-nitrophenol degradation via HQ by Gram-negative bacteria. Our experiments reveal that pnpG is not essential for 4-nitrophenol degradation in Burkholderia sp. strain SJ98 but instead enables its degradation of 4-nitrocatechol via BT. The presence of pnpG genes broadens the range of growth substrates to include 4-nitrocatechol or BT, intermediates from the microbial degradation of many aromatic compounds in natural ecosystems. In addition, the existence of pnpCDEFG in 11.6% of the above-mentioned two genera suggests that the ability to degrade BT and HQ simultaneously is ancient. The extension of BT and HQ pathways including 4-nitrophenol degradation seems to be an adaptive evolution for responding to synthetic nitroaromatic compounds entering the environment since the industrial revolution.
Collapse
|
13
|
Zakaria NN, Convey P, Gomez-Fuentes C, Zulkharnain A, Sabri S, Shaharuddin NA, Ahmad SA. Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis. Microorganisms 2021; 9:microorganisms9020419. [PMID: 33671443 PMCID: PMC7922015 DOI: 10.3390/microorganisms9020419] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Bioremediation of hydrocarbons has received much attention in recent decades, particularly relating to fuel and other oils. While of great relevance globally, there has recently been increasing interest in hydrocarbon bioremediation in the marine environments of Antarctica. To provide an objective assessment of the research interest in this field we used VOSviewer software to analyze publication data obtained from the ScienceDirect database covering the period 1970 to the present, but with a primary focus on the years 2000–2020. A bibliometric analysis of the database allowed identification of the co-occurrence of keywords. There was an increasing trend over time for publications relating to oil bioremediation in maritime Antarctica, including both studies on marine bioremediation and of the metabolic pathways of hydrocarbon degradation. Studies of marine anaerobic degradation remain under-represented compared to those of aerobic degradation. Emerging keywords in recent years included bioprospecting, metagenomic, bioindicator, and giving insight into changing research foci, such as increasing attention to microbial diversity. The study of microbial genomes using metagenomic approaches or whole genome studies is increasing rapidly and is likely to drive emerging fields in future, including rapid expansion of bioprospecting in diverse fields of biotechnology.
Collapse
Affiliation(s)
- Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (N.A.S.)
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda, Bulnes 01855, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes 01855, Chile
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (N.A.S.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes 01855, Chile
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
14
|
Macclesh Del Pino LA, Morales AB, Macclesh delPino GA, Peraza-Vazquez H. Visible light induced photocatalytic degradation of 2-nitrophenol at high concentration implementing rGOTiO 2: mathematical modeling behavior. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:52-62. [PMID: 33119463 DOI: 10.1080/10934529.2020.1835390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
This investigation implemented the nanomaterial rGOTiO2 for photodegradation of 2-nitrophenol solution at high concentrations. The 2-nitrophenol photodegradation was carried out in the presence of three kinds of light sources in the visible range spectrum. The results demonstrate that the nanomaterial rGOTiO2 is capable of pollutant degradation even in the low power light source (10 W), and have high activity under sunlight. The degradation of 2-nitrophenol was monitored by UV-vis spectroscopy, adjusting method by least squares for nonlinear functions. The equation represents the material photocatalytic activity under sunlight, which excludes climatic and variance factors. This equation predicts the pure rGOTiO2 behavior under sunlight; this will enable future research to develop more advanced processes.
Collapse
Affiliation(s)
- Luis A Macclesh Del Pino
- Centro de Investigación en Petroquímica, TecNM/Instituto Tecnológico de Ciudad Madero, Altamira, México
| | - Ana B Morales
- Centro de Investigación en Petroquímica, TecNM/Instituto Tecnológico de Ciudad Madero, Altamira, México
| | | | - Hernán Peraza-Vazquez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Aplicada (CICATA) Unidad Altamira, Carretera Tampico-Puerto Industrial de Altamira, Altamira, México
| |
Collapse
|
15
|
Min J, Xu L, Fang S, Chen W, Hu X. Microbial degradation kinetics and molecular mechanism of 2,6-dichloro-4-nitrophenol by a Cupriavidus strain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113703. [PMID: 31818627 DOI: 10.1016/j.envpol.2019.113703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/03/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
2,6-Dichloro-4-nitrophenol (2,6-DCNP) is an emerging chlorinated nitroaromatic pollutant, and its fate in the environment is an important question. However, microorganisms with the ability to utilize 2,6-DCNP have not been reported. In this study, Cupriavidus sp. CNP-8 having been previously reported to degrade various halogenated nitrophenols, was verified to be also capable of degrading 2,6-DCNP. Biodegradation kinetics assay showed that it degraded 2,6-DCNP with the specific growth rate of 0.124 h-1, half saturation constant of 0.038 mM and inhibition constant of 0.42 mM. Real-time quantitative PCR analyses indicated that the hnp gene cluster was involved in the catabolism of 2,6-DCNP. The hnpA and hnpB gene products were purified to homogeneity by Ni-NTA chromatography. Enzymatic assays showed that HnpAB, a FAD-dependent two-component monooxygenase, converted 2,6-DCNP to 6-chlorohydroxyquinol with a Km of 3.9 ± 1.4 μM and a kcat/Km of 0.12 ± 0.04 μΜ-1 min-1. As the oxygenase component encoding gene, hnpA is necessary for CNP-8 to grow on 2,6-DCNP by gene knockout and complementation. The phylogenetic analysis showed that the hnp cluster originated from the cluster involved in the catabolism of chlorophenols rather than nitrophenols. To our knowledge, CNP-8 is the first bacterium with the ability to utilize 2,6-DCNP, and this study fills a gap in the microbial degradation mechanism of this pollutant at the molecular, biochemical and genetic levels. Moreover, strain CNP-8 could degrade three chlorinated nitrophenols rapidly from the synthetic wastewater, indicating its potential in the bioremediation of chlorinated nitrophenols polluted environments.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lingxue Xu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; College of Life Science of Yantai University, Yantai, China
| | - Suyun Fang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
16
|
Zeng W, Zhang S, Xia M, Wu X, Qiu G, Shen L. Insights into the production of extracellular polymeric substances of Cupriavidus pauculus 1490 under the stimulation of heavy metal ions. RSC Adv 2020; 10:20385-20394. [PMID: 35520445 PMCID: PMC9054248 DOI: 10.1039/c9ra10560c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
Three different methods (a sulfuric acid method, sodium chloride method and vibration method) were used to extract extracellular polymeric substances (EPS) from Cupriavidus pauculus 1490 (C. pauculus 1490) in the present study. The sodium chloride method was able to extract the maximum amount of EPS (86.15 ± 1.50 mg g−1-DW), and could ensure minimum cell lysis by detecting glucose-6-phosphate dehydrogenase activity and using scanning electron microscopy. This method was therefore selected as the optimal extraction method and used in subsequent experiments. On this basis, the tolerance of C. pauculus 1490 and variations in EPS secretion after the addition of different metal ions was investigated. The tolerance levels of C. pauculus 1490 to Cd(ii), Ni(ii), Cu(ii) and Co(ii) were 300 mg L−1, 400 mg L−1, 400 mg L−1 and 400 mg L−1, respectively. Low concentrations of these heavy metal ions could promote bacterial growth, while increased concentrations were found to inhibit it. The results show that metal ions, especially Cd(ii), stimulate the secretion of EPS, with an EPS yield reaching 956.12 ± 10.59 mg g−1-DW at 100 mg L−1. Real-time polymerase chain reaction (PCR) analysis showed that the key EPS synthetic genes, epsB, epsP and Wzz, were up-regulated. Fourier transform infrared spectroscopy analysis suggested that abundant functional groups in EPS play an important role in heavy metal ion complexation. These results will contribute to our understanding of the tolerance mechanism of microorganisms in the presence of different types and concentrations of metal ions. Metal ions are shown to stimulate the secretion of EPS components of Cupriavidus pauculus 1490, especially Cd(II).![]()
Collapse
Affiliation(s)
- Weimin Zeng
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Shishi Zhang
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Mingchen Xia
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Li Shen
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| |
Collapse
|
17
|
Cui L, Zhang D, Yang K, Zhang X, Zhu YG. Perspective on Surface-Enhanced Raman Spectroscopic Investigation of Microbial World. Anal Chem 2019; 91:15345-15354. [DOI: 10.1021/acs.analchem.9b03996] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - DanDan Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
da Silva BM, Maranho LT. Petroleum-contaminated sites: Decision framework for selecting remediation technologies. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120722. [PMID: 31200225 DOI: 10.1016/j.jhazmat.2019.05.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Brício Marcelino da Silva
- Graduate Program in Environmental Management, Positivo University, Rua Professor Pedro Viriato Parigot de Souza, 5300, CEP: 81.280-330, Curitiba, PR, Brazil; Federal Institution of Education, Science and Technology Fluminense, Av. Souza Mota, 350, CEP: 28.060-010, Campos dos Goytacazes, RJ, Brazil
| | - Leila Teresinha Maranho
- Graduate Program in Environmental Management, Positivo University, Rua Professor Pedro Viriato Parigot de Souza, 5300, CEP: 81.280-330, Curitiba, PR, Brazil.
| |
Collapse
|
19
|
Min J, Chen W, Hu X. Biodegradation of 2,6-dibromo-4-nitrophenol by Cupriavidus sp. strain CNP-8: Kinetics, pathway, genetic and biochemical characterization. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:10-18. [PMID: 30176407 DOI: 10.1016/j.jhazmat.2018.08.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Compound 2,6-dibromo-4-nitrophenol (2,6-DBNP) with high cytotoxicity and genotoxicity has been recently identified as an emerging brominated disinfection by-product during chloramination and chlorination of water, and its environmental fate is of great concern. To date, the biodegradation process of 2,6-DBNP is unknown. Herein, Cupriavidus sp. strain CNP-8 was reported to be able to utilize 2,6-DBNP as a sole source of carbon, nitrogen and energy. It degraded 2,6-DBNP in concentrations up to 0.7 mM, and the degradation of 2,6-DBNP conformed to Haldane inhibition model with μmax of 0.096 h-1, Ks of 0.05 mM and Ki of 0.31 mM. Comparative transcriptome and real-time quantitative PCR analyses suggested that the hnp gene cluster was likely responsible for 2,6-DBNP catabolism. Three Hnp proteins were purified and functionally verified. HnpA, a FADH2-dependent monooxygenase, was found to catalyze the sequential denitration and debromination of 2,6-DBNP to 6-bromohydroxyquinol (6-BHQ) in the presence of the flavin reductase HnpB. Gene knockout and complementation revealed that hnpA is essential for strain CNP-8 to utiluze 2,6-DBNP. HnpC, a 6-BHQ 1,2-dioxygenase was proposed to catalyze the ring-cleavage of 6-BHQ during 2,6-DBNP catabolism. These results fill a gap in the understanding of the microbial degradation process and mechanism of 2,6-DBNP.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
20
|
Zhang X, Yang YS, Lu Y, Wen YJ, Li PP, Zhang G. Bioaugmented soil aquifer treatment for P-nitrophenol removal in wastewater unique for cold regions. WATER RESEARCH 2018; 144:616-627. [PMID: 30096688 DOI: 10.1016/j.watres.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
P-nitrophenol (PNP) is a toxic and recalcitrant organic pollutant and a usual intermediate in the production of fine chemicals, which has posed a significant threat to subsurface environment safety. Soil aquifer treatment (SAT) is a promising method to remove and remediate contamination in vadose zone with low cost and high efficiency. However, there are still research gaps for the treatment of recalcitrant contaminants by SAT in cold regions, such as un-robust indigenous microbes and low temperature constraint in vadose zone. The bioaugmentation technology was first introduced into SAT in order to enhance the removal ability of PNP by SAT operated in cold regions in this study. A high-efficiency PNP-degrading bacterium was successfully isolated, which can efficiently degrade PNP below 200 mg L-1 with a degradation rate above 99% at 15 °C close to the real subsurface temperature in cold regions, and added into SAT for bioaugmentation. The feasibility of bioaugmented SAT and associated PNP removal process were investigated by laboratory sand columns, along with effects of the SAT operative parameters (namely PNP loading concentration, flow rate and soil saturation level of SAT). Within the range of PNP loading stresses tested (1-200 mg L-1), PNP removal efficiency was optimal at constant flow rate of 219 mL d-1 in unsaturated operating condition of SAT under 15 °C among all the investigated experimental conditions. Longer hydraulic residence time increased the PNP removal rate, although the accumulated mass removed reduced and the removal efficiencies remained constant in unsaturated operating condition of SAT. It is found from the comparison between the PNP removals via both unsaturated and saturated columns that slight difference only in the removal rate of PNP was observed and the highly efficient bioaugmented SAT can completely degrade PNP of 10 mg L-1 within 5 wetting/drying cycles under both scenarios.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| | - Y S Yang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China; Key Laboratory of Eco-restoration of Region Polluted Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - Ying Lu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China.
| | - Y J Wen
- Key Laboratory of Eco-restoration of Region Polluted Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - P P Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| | - Ge Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| |
Collapse
|
21
|
Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16355-16375. [PMID: 28488147 PMCID: PMC6360087 DOI: 10.1007/s11356-017-8995-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/04/2017] [Indexed: 05/28/2023]
Abstract
In recent years, microbial degradation and bioremediation approaches of polychlorinated biphenyls (PCBs) have been studied extensively considering their toxicity, carcinogenicity and persistency potential in the environment. In this direction, different catabolic enzymes have been identified and reported for biodegradation of different PCB congeners along with optimization of biological processes. A genome analysis of PCB-degrading bacteria has led in an improved understanding of their metabolic potential and adaptation to stressful conditions. However, many stones in this area are left unturned. For example, the role and diversity of uncultivable microbes in PCB degradation are still not fully understood. Improved knowledge and understanding on this front will open up new avenues for improved bioremediation technologies which will bring economic, environmental and societal benefits. This article highlights on recent advances in bioremediation of PCBs in soil. It is demonstrated that bioremediation is the most effective and innovative technology which includes biostimulation, bioaugmentation, phytoremediation and rhizoremediation and acts as a model solution for pollution abatement. More recently, transgenic plants and genetically modified microorganisms have proved to be revolutionary in the bioremediation of PCBs. Additionally, other important aspects such as pretreatment using chemical/physical agents for enhanced biodegradation are also addressed. Efforts have been made to identify challenges, research gaps and necessary approaches which in future, can be harnessed for successful use of bioremediation under field conditions. Emphases have been given on the quality/efficiency of bioremediation technology and its related cost which determines its ultimate acceptability.
Collapse
Affiliation(s)
- Jitendra K Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Ravindra K Gautam
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
- Environmental Chemistry Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Sneha V Nanekar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Roland Weber
- POPs Environmental Consulting, Göppingen, Germany
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, University of Western Sidney, Sidney, Australia
| | - Sanjeev K Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Asha A Juwarkar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
22
|
Min J, Wang J, Chen W, Hu X. Biodegradation of 2-chloro-4-nitrophenol via a hydroxyquinol pathway by a Gram-negative bacterium, Cupriavidus sp. strain CNP-8. AMB Express 2018; 8:43. [PMID: 29560541 PMCID: PMC5861257 DOI: 10.1186/s13568-018-0574-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Cupriavidus sp. strain CNP-8 isolated from a pesticide-contaminated soil was able to utilize 2-chloro-4-nitrophenol (2C4NP) as a sole source of carbon, nitrogen and energy, together with the release of nitrite and chloride ions. It could degrade 2C4NP at temperatures from 20 to 40 °C and at pH values from 5 to 10, and degrade 2C4NP as high as 1.6 mM. Kinetics assay showed that biodegradation of 2C4NP followed Haldane substrate inhibition model, with the maximum specific growth rate (μmax) of 0.148/h, half saturation constant (Ks) of 0.022 mM and substrate inhibition constant (Ki) of 0.72 mM. Strain CNP-8 was proposed to degrade 2C4NP with hydroxyquinol (1,2,4-benzenetriol, BT) as the ring-cleavage substrate. The 2C4NP catabolic pathway in strain CNP-8 is significant from those reported in other Gram-negative 2C4NP utilizers. Enzymatic assay indicated that the monooxygenase initiating 2C4NP catabolism had different substrates specificity compared with previously reported 2C4NP monooxygenations. Capillary assays showed that strain CNP-8 exhibited metabolism-dependent chemotactic response toward 2C4NP at the optimum concentration of 0.5 mM with a maximum chemotaxis index of 37.5. Furthermore, microcosm studies demonstrated that strain CNP-8, especially the pre-induced cells, could remove 2C4NP rapidly from the 2C4NP-contaminated soil. Considering its adaptability to pH and temperature fluctuations and great degradation efficiency against 2C4NP, strain CNP-8 could be a promising candidate for the bioremediation of 2C4NP-contaminated sites.
Collapse
|
23
|
Yue W, Chen M, Cheng Z, Xie L, Li M. Bioaugmentation of strain Methylobacterium sp. C1 towards p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:431-440. [PMID: 29096256 DOI: 10.1016/j.jhazmat.2017.10.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
This work was conducted in order to evaluate an instance of bioaugmentation, namely, the addition of a novel p-nitrophenol (PNP)-degrading bacterium Methylobacterium sp. C1 coaggregated with two other broad-spectrum coaggregating strains (Bacillus megaterium T1 and Bacillus cereus G5) within sequence batch biofilm reactors (SBBRs). Results showed that biofilms consisting of C1 and coaggregating bacteria were resistant to shock loads and were more efficient at PNP removal. High-throughput sequencing data revealed that biofilms formed in the presence of the coaggregating bacteria demonstrated greater microbial diversity. These results suggest that broad-spectrum coaggregating bacteria may be capable of mediating the immobilization of exogenous degrading bacteria into biofilms, rendering them more resistant to toxic compounds and environmental stresses. This represents the first attempt to assess the bioaugmentation of PNP-contaminated wastewater treatment through the utilization of broad-spectrum coaggregating bacteria.
Collapse
Affiliation(s)
- Wenlong Yue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Mei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Zhongqin Cheng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Liqun Xie
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Mengying Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
24
|
Kamal T, Khan SB, Haider S, Alghamdi YG, Asiri AM. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Int J Biol Macromol 2017; 104:56-62. [DOI: 10.1016/j.ijbiomac.2017.05.157] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/20/2017] [Accepted: 05/25/2017] [Indexed: 01/23/2023]
|
25
|
Min J, Chen W, Wang J, Hu X. Genetic and Biochemical Characterization of 2-Chloro-5-Nitrophenol Degradation in a Newly Isolated Bacterium, Cupriavidus sp. Strain CNP-8. Front Microbiol 2017; 8:1778. [PMID: 28959252 PMCID: PMC5604080 DOI: 10.3389/fmicb.2017.01778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Compound 2-chloro-5-nitrophenol (2C5NP) is a typical chlorinated nitroaromatic pollutant. To date, the bacteria with the ability to degrade 2C5NP are rare, and the molecular mechanism of 2C5NP degradation remains unknown. In this study, Cupriavidus sp. strain CNP-8 utilizing 2-chloro-5-nitrophenol (2C5NP) and meta-nitrophenol (MNP) via partial reductive pathways was isolated from pesticide-contaminated soil. Biodegradation kinetic analysis indicated that 2C5NP degradation by this strain was concentration dependent, with a maximum specific degradation rate of 21.2 ± 2.3 μM h−1. Transcriptional analysis showed that the mnp genes are up-regulated in both 2C5NP- and MNP-induced strain CNP-8. Two Mnp proteins were purified to homogeneity by Ni-NTA affinity chromatography. In addition to catalyzing the reduction of MNP, MnpA, a NADPH-dependent nitroreductase, also catalyzes the partial reduction of 2C5NP to 2-chloro-5-hydroxylaminophenol via 2-chloro-5-nitrosophenol, which was firstly identified as an intermediate of 2C5NP catabolism. MnpC, an aminohydroquinone dioxygenase, is likely responsible for the ring-cleavage reaction of 2C5NP degradation. Gene knockout and complementation indicated that mnpA is necessary for both 2C5NP and MNP catabolism. To our knowledge, strain CNP-8 is the second 2C5NP-utilizing bacterium, and this is the first report of the molecular mechanism of microbial 2C5NP degradation.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Jinpei Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
26
|
Min J, Wang B, Hu X. Effect of inoculation of Burkholderia sp. strain SJ98 on bacterial community dynamics and para-nitrophenol, 3-methyl-4-nitrophenol, and 2-chloro-4-nitrophenol degradation in soil. Sci Rep 2017; 7:5983. [PMID: 28729667 PMCID: PMC5519733 DOI: 10.1038/s41598-017-06436-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
para-Nitrophenol (PNP), 3-methyl-4-nitrophenol (3M4NP), and 2-chloro-4-nitrophenol (2C4NP) are highly toxic compounds that have caused serious environmental issues. We inoculated an artificially contaminated soil with Burkholderia sp. strain SJ98, which has the ability to degrade PNP, 3M4NP, and 2C4NP, and quantified bioremediation. There was accelerated degradation of all nitrophenols in inoculated treatments compared to the un-inoculated treatments. The indigenous bacteria were able to degrade PNP, but not 3M4NP or 2C4NP. Real-time PCR targeting the catabolic gene pnpA showed that levels of strain SJ98 remained stable over the incubation period. High-throughput sequencing revealed that both contamination and bioaugmentation influenced the bacterial community structure. Bioaugmentation seemed to protect Kineosporia, Nitrososphaera, and Schlesneria from nitrophenol inhibition, as well as led to a sharp increase in the abundance of Nonomuraea, Kribbella, and Saccharopolyspora. There was a significant increase in the relative abundances of Thermasporomyces, Actinomadura, and Streptomyces in both contaminated and bioaugmented treatments; this indicated that these bacteria are likely directly related to nitrophenol degradation. To our knowledge, this is the first report of the simultaneous removal of PNP, 3M4NP, and 2C4NP using bioaugmentation. This study provides valuable insights into the bioremediation of soils contaminated with nitrophenols.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Bin Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
| |
Collapse
|
27
|
Patowary K, Patowary R, Kalita MC, Deka S. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon. Front Microbiol 2017; 8:279. [PMID: 28275373 PMCID: PMC5319985 DOI: 10.3389/fmicb.2017.00279] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/09/2017] [Indexed: 11/24/2022] Open
Abstract
Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.
Collapse
Affiliation(s)
- Kaustuvmani Patowary
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | - Rupshikha Patowary
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University Guwahati, India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| |
Collapse
|
28
|
Fu H, Zhang JJ, Xu Y, Chao HJ, Zhou NY. Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors. Lett Appl Microbiol 2017; 64:203-209. [DOI: 10.1111/lam.12696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022]
Affiliation(s)
- H. Fu
- Key Laboratory of Agricultural and Environmental Microbiology; Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - J.-J. Zhang
- Key Laboratory of Agricultural and Environmental Microbiology; Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - Y. Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - H.-J. Chao
- Key Laboratory of Agricultural and Environmental Microbiology; Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - N.-Y. Zhou
- Key Laboratory of Agricultural and Environmental Microbiology; Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
29
|
Kynadi AS, Suchithra TV. Bacterial Degradation of Phenol to Control Environmental Pollution. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Pinto AP, Rodrigues SC, Caldeira AT, Teixeira DM. Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1372-1381. [PMID: 26479911 DOI: 10.1016/j.scitotenv.2015.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
An approach to reduce the contamination of water sources with pesticides is the use of biopurificaction systems. The active core of these systems is the biomixture. The composition of biomixtures depends on the availability of local agro-industrial wastes and design should be adapted to every region. In Portugal, cork processing is generally regarded as environmentally friendly and would be interesting to find applications for its industry residues. In this work the potential use of different substrates in biomixtures, as cork (CBX); cork and straw, coat pine and LECA (Light Expanded Clay Aggregates), was tested on the degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation strategies using the white-rot fungus Lentinula edodes inoculated into the CBX, was also assessed. The results obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. Furthermore, higher degradation of all the pesticides was achieved by use of bioaugmented biomixtures. Indeed, the biomixtures inoculated with L. edodes EL1 were able to mineralize the selected xenobiotics, revelling that these white-rot fungi might be a suitable fungus for being used as inoculum sources in on-farm sustainable biopurification system, in order to increase its degradation efficiency. After 120 days, maximum degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin, of bioaugmented CBX, was 89.9%, 75.0%, 65.0% and 99.4%, respectively.. The dominant metabolic route of terbuthylazine in biomixtures inoculated with L. edodes EL1 proceeded mainly via hydroxylation, towards production of terbuthylazine-hydroxy-2 metabolite. Finally, sorption process to cork by pesticides proved to be a reversible process, working cork as a mitigating factor reducing the toxicity to microorganisms in the biomixture, especially in the early stages.
Collapse
Affiliation(s)
- A P Pinto
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, Évora University, Portugal.
| | - S C Rodrigues
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A T Caldeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| | - D M Teixeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| |
Collapse
|
31
|
González AJ, Fortunato MS, Papalia M, Radice M, Gutkind G, Magdaleno A, Gallego A, Korol SE. Selection and identification of a bacterial community able to degrade and detoxify m-nitrophenol in continuous biofilm reactors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:245-251. [PMID: 26283285 DOI: 10.1016/j.ecoenv.2015.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
Nitroaromatics are widely used for industrial purposes and constitute a group of compounds of environmental concern because of their persistence and toxic properties. Biological processes used for decontamination of nitroaromatic-polluted sources have then attracted worldwide attention. In the present investigation m-nitrophenol (MNP) biodegradation was studied in batch and continuous reactors. A bacterial community able to degrade the compound was first selected from a polluted freshwater stream and the isolates were identified by the analysis of the 16S rRNA gene sequence. The bacterial community was then used in biodegradation assays. Batch experiments were conducted in a 2L aerobic microfermentor at 28 °C and with agitation (200 rpm). The influence of abiotic factors in the biodegradation process in batch reactors, such as initial concentration of the compound and initial pH of the medium, was also studied. Continuous degradation of MNP was performed in an aerobic up-flow fixed-bed biofilm reactor. The biodegradation process was evaluated by determining MNP and ammonium concentrations and chemical oxygen demand (COD). Detoxification was assessed by Vibrio fischeri and Pseudokirchneriella subcapitata toxicity tests. Under batch conditions the bacterial community was able to degrade 0.72 mM of MNP in 32 h, with efficiencies higher than 99.9% and 89.0% of MNP and COD removals respectively and with concomitant release of ammonium. When the initial MNP concentration increased to 1.08 and 1.44 mM MNP the biodegradation process was accomplished in 40 and 44 h, respectively. No biodegradation of the compound was observed at higher concentrations. The community was also able to degrade 0.72 mM of the compound at pH 5, 7 and 9. In the continuous process biodegradation efficiency reached 99.5% and 96.8% of MNP and COD removal respectively. The maximum MNP removal rate was 37.9 gm(-3) day(-1). Toxicity was not detected after the biodegradation process.
Collapse
Affiliation(s)
- Ana J González
- Cátedra de Higiene y Sanidad. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.
| | - María S Fortunato
- Cátedra de Higiene y Sanidad. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Papalia
- Laboratorio de Resistencia Bacteriana. Cátedra de Microbiología, Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcela Radice
- Laboratorio de Resistencia Bacteriana. Cátedra de Microbiología, Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana. Cátedra de Microbiología, Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Anahí Magdaleno
- Cátedra de Higiene y Sanidad. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Gallego
- Cátedra de Higiene y Sanidad. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Sonia E Korol
- Cátedra de Higiene y Sanidad. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
32
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
33
|
Chi XQ, Liu K, Zhou NY. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea. Appl Microbiol Biotechnol 2015; 99:6069-82. [DOI: 10.1007/s00253-015-6462-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 10/23/2022]
|
34
|
Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier. ScientificWorldJournal 2014; 2014:901702. [PMID: 25580463 PMCID: PMC4279423 DOI: 10.1155/2014/901702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 02/01/2023] Open
Abstract
Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.
Collapse
|
35
|
Arora PK, Srivastava A, Singh VP. Bacterial degradation of nitrophenols and their derivatives. JOURNAL OF HAZARDOUS MATERIALS 2014; 266:42-59. [PMID: 24374564 DOI: 10.1016/j.jhazmat.2013.12.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/22/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
This review intends to provide an overview of bacterial degradation of nitrophenols (NPs) and their derivatives. The main scientific focus is on biochemical and genetic characterization of bacterial degradation of NPs. Other aspects such as bioremediation and chemotaxis correlated with biodegradation of NPs are also discussed. This review will increase our current understanding of bacterial degradation of NPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
36
|
Prateek, Thakur C, Srivastava VC, Mall ID. Comparative Studies on Nitrophenol Removal byAdsorption and Simultaneous Adsorption-Biodegradation Processes. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2013. [DOI: 10.1515/ijcre-2013-0088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this paper, it was aimed to study the removal of 4-nitrophenol (NP) from aqueous solution by adsorption using granular activated carbon (GAC); and in sequencing batch reactor (SBR) without any adsorbent (blank-SBR) and with an SBR loaded with GAC (GAC–SBR). During adsorption study with GAC, effect of pH, adsorbent dose (m) and contact time (t) were studied. Adsorption isotherm, kinetic and thermodynamic parameters were determined. During NP removal in SBR, effect of hydraulic retention time (HRT), initial concentration (C
0) and m were studied. The percent removal in case of GAC–SBR was found to be greater in comparison to blank-SBR. The removal of NP from blank-SBR and GAC–SBR for C
0 of 35, 65 and 100 mg/l was found to be 90.46% and 91.23% (m=2 g/l); 52.33% and 96.05% (m=2.5 g/l); 20.01% and 92.72% (m=2.5 g/l), respectively.
Collapse
Affiliation(s)
- Prateek
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Chandrakant Thakur
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Indra Deo Mall
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|