1
|
Yang Z, Xia H, Guo Z, Xie Y, Liao Q, Yang W, Li Q, Dong C, Si M. Development and application of machine learning models for prediction of soil available cadmium based on soil properties and climate features. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124148. [PMID: 38735457 DOI: 10.1016/j.envpol.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Hui Xia
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Ziyun Guo
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Yanyan Xie
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Qingzhu Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - ChunHua Dong
- Soil and Fertilizer Institute of Hunan Province, 410125, Changsha, China
| | - Mengying Si
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China.
| |
Collapse
|
2
|
Afzal M, Muhammad S, Tan D, Kaleem S, Khattak AA, Wang X, Chen X, Ma L, Mo J, Muhammad N, Jan M, Tan Z. The Effects of Heavy Metal Pollution on Soil Nitrogen Transformation and Rice Volatile Organic Compounds under Different Water Management Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:871. [PMID: 38592896 PMCID: PMC10976017 DOI: 10.3390/plants13060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China;
| | - Sidra Kaleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad 44600, Pakistan;
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Liangfang Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Jingzhi Mo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| |
Collapse
|
3
|
Pan SF, Ji XH, Liu XL, Xie YH, Xiao SY, Tian FX, Xue T, Liu SH. Influence of landform, soil properties, soil Cd pollution and rainfall on the spatial variation of Cd in rice: Contribution and pathway models based on big data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168687. [PMID: 37996024 DOI: 10.1016/j.scitotenv.2023.168687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Landform, soil properties, soil cadmium (Cd) pollution and rainfall are the important factors affecting the spatial variation of rice Cd. In this study, we conducted big data mining and model analysis of 150,000 rice-soil sampling sites to examine the effects by the above four factors on the spatial variation of rice Cd in Hunan Province, China. Specifically, the variable coefficient of rice Cd in space was significantly correlated with the partition scale according to the logistic fitting. The improved random forest results suggested that elevation (DEM) and pH were the two most important factors affecting the spatial variation of rice Cd, followed by relief, soil Cd content and rainfall. Typically, variance partitioning analysis (VPA) revealed that both the soil property and the interactive effects between the soil property and Cd pollution were the principal contributors to the rice-Cd variation, with the respective contributing rates of 30.5 % and 29.0 %. Meanwhile, the partial least square-structural equation modelling (PLS-SEM) elucidated 4 main paths of specific indirect effects on rice-Cd variation. They were landform → physicochemical property → soil acidity → rice-Cd variation, landform → soil acidity → rice-Cd variation, physicochemical property → soil acidity → rice-Cd variation, and soil texture → soil acidity → rice-Cd variation. This work can provide a general guidance for scientific zoning, accurate prediction and prevention of Cd pollution in paddy fields.
Collapse
Affiliation(s)
- Shu-Fang Pan
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Xiong-Hui Ji
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China.
| | - Xin-Liang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yun-He Xie
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Shun-Yong Xiao
- Ecological Environment Rural Station of Hunan Province, Changsha 410014, China
| | - Fa-Xiang Tian
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Tao Xue
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China
| | - Sai-Hua Liu
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha 410125, China.
| |
Collapse
|
4
|
Olteanu RL, Radulescu C, Bretcan P, Zinicovscaia I, Culicov O, Vergel K, Tanislav D, Bumbac M, Nicolescu CM, Dulama ID, Gorghiu LM. Geochemical Responses to Natural and Anthropogenic Settings in Salt Lakes Sediments from North-Eastern Romanian Plain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:935. [PMID: 36673692 PMCID: PMC9859558 DOI: 10.3390/ijerph20020935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chemical analysis was performed on sediment core samples collected from three salt lakes, Amara Lake, Caineni Lake, and Movila Miresii Lake, located in the northeast of the Romanian Plain. The concentration of 10 main elements, 6 heavy metals (HMs), 8 rare earth elements (REEs), and 10 trace elements (TEs)-determined using neutron activation analysis (NAA)-showed variability dependent on the depth sections, lake genesis and geochemical characteristics (oxbow, fluvial harbor/liman and loess saucer type). The assessment of pollution indices (contamination factor, pollution load index, geoaccumulation index, and enrichment factor) highlighted low and moderate degrees of contamination for most of the investigated elements. Principal component analysis (PCA) extracted three principal components, explaining 70.33% (Amara Lake), 79.92% (Caineni Lake), and 71.42% (Movila Miresii Lake) of the observed variability. The principal components extracted were assigned to pedological contribution (37.42%-Amara Lake, 55.88%-Caineni Lake, and 15.31%-Movila Miresii Lake), salts depositions (due to the lack of a constant supply of freshwater and through evaporation during dry periods), atmospheric deposition (19.19%-Amara Lake, 13.80%-Caineni Lake, and 10.80%-Movila Miresii Lake), leaching from soil surface/denudation, rock weathering, and mixed anthropogenic input (e.g., agricultural runoff, wastewater discharges) (13.72%-Amara Lake, 10.24%-Caineni Lake, and 45.31%-Movila Miresii Lake).
Collapse
Affiliation(s)
- Radu Lucian Olteanu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Cristiana Radulescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
- Doctoral School Chemical Engineering and Biotechnology, Politehnica University of Bucharest, 060042 Bucharest, Romania
| | - Petre Bretcan
- Faculty of Humanities, Valahia University of Targoviste, 130105 Targoviste, Romania
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Otilia Culicov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| | | | - Danut Tanislav
- Faculty of Humanities, Valahia University of Targoviste, 130105 Targoviste, Romania
| | - Marius Bumbac
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Ioana Daniela Dulama
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Laura Monica Gorghiu
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| |
Collapse
|
5
|
Li X, Zhou J, Zhou T, Li Z, Hu P, Luo Y, Christie P, Wu L. Potential mobilization of cadmium and zinc in soils spiked with smithsonite and sphalerite under different water management regimes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116336. [PMID: 36162317 DOI: 10.1016/j.jenvman.2022.116336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Particulate cadmium (Cd) and zinc (Zn) are ubiquitous in agricultural soils of Pb-Zn mining regions. Water management serves as an important agronomic measure altering the bioavailability of Zn and Cd in soils, but how this affects particulate Cd and Zn and the underlying mechanisms remain largely unknown. Microcosm soil incubation combined with spectroscopic and microscopic characterization was conducted. During a two-year-long incubation period we observed that the concentrations of soil CaCl2-extractable Zn and Cd increased 3-10 times in sphalerite-spiked soils and 1-2 times in smithsonite-spiked soils under periodic flooding conditions due to the long-term dissolution of sphalerite (SP) and smithsonite (SM). However, the increase in the concentration of CaCl2-extractable metals (Zn: from 0.607 mg kg-1 to 1.051 mg kg-1 and Cd: from 0.047 mg kg-1 to 0.119 mg kg-1) was found only in SP-treatment under continuous flooding conditions, indicating the mobilization of metals. Ultrafiltration analysis shows that the nanoparticulate fraction of Zn and Cd in soil pore water increased 5 and 7 times in SP-treatments under continuous flooding conditions, suggesting the increment of metal pools in soil pore water. HRTEM-EDX-SAED further reveals that these nanoparticles were mainly crystalline ZnS and Zn-bearing sulfate nanoparticles in the SP-treatment and amorphous ZnCO3 and ZnS nanoparticles in the SM-treatment. Therefore, the formation of the stable crystalline Zn-bearing nanoparticles in the SP-treatment may explain the elevation of the concentration of soil CaCl2-extractable Zn and Cd under continuous flooding. The potential mobility of particulate metals should therefore be expected in scenarios of continuous flooding such as paddy soils and wetland systems.
Collapse
Affiliation(s)
- Xinyang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tong Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
6
|
Formentini TA, Basile-Doelsch I, Legros S, Frierdich AJ, Pinheiro A, Fernandes CVS, Mallmann FJK, Borschneck D, da Veiga M, Doelsch E. Copper (Cu) speciation in organic-waste (OW) amended soil: Instability of OW-borne Cu(I) sulfide and role of clay and iron oxide minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157779. [PMID: 35926606 DOI: 10.1016/j.scitotenv.2022.157779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The geochemistry of copper (Cu) is generally assumed to be controlled by organic matter in soils. However, the role of clay and iron oxide minerals may be understated. Soil density fractionation, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS) were combined to assess the long-term behavior of Cu in an agricultural soil subject to organic waste application. Two unprecedented molecular environments of natural Cu (i.e. Cu inherited from the parent rock) in soils are reported: Cu dimer in the interlayer of vermiculite and Cu structurally incorporated within hematite. Moreover, the soil naturally containing Cu-vermiculite, Cu-hematite, but also Cu-kaolinite (Cutotal = 122 mg·kg-1) was amended over 11 years with Cu-rich pig slurry in which Cu was 100 % Cu(I) sulfide. Natural Cu associated with clay and iron oxide minerals persisted in the amended soil, but the exogenous Cu(I) sulfide was unstable. The increase in Cu concentration in the amended soil to 174 mg·kg-1 was accounted for the increase of Cu sorbed to kaolinite and Cu bound to organic matter. These results are important for better understanding the natural occurrence of Cu in soils and for assessing the environmental impacts of organic waste recycling in agricultural fields.
Collapse
Affiliation(s)
- Thiago A Formentini
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P. O. Box 7014, SE-750 07 Uppsala, Sweden; Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil.
| | - Isabelle Basile-Doelsch
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | - Samuel Legros
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| | - Andrew J Frierdich
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria, Australia
| | - Adilson Pinheiro
- Environmental Engineering Program, Regional University of Blumenau (FURB), 89030-000 Blumenau, SC, Brazil
| | - Cristovão V S Fernandes
- Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Fábio J K Mallmann
- Department of Soils, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Daniel Borschneck
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | | | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
7
|
Zheng X, Zou D, Wu Q, Wang H, Li S, Liu F, Xiao Z. Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:75-89. [PMID: 35809372 DOI: 10.1016/j.wasman.2022.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion and composting are attracting increasing attention due to the increased production of animal manure. It is essential to know about the fate and bioavailability of heavy metals (HMs) for further utilisation of animal manure. This review has systematically summarised the migration of HMs and the transformation of several typical HMs (Cu, Zn, Cd, As, and Pb) during anaerobic digestion and composting. The results showed that organic matter degradation increased the HMs content in biogas residue and compost (with the exception of As in compost). HMs migrated into biogas residue during anaerobic digestion through various mechanisms. Most of HMs in biogas residue and compost exceeded relevant standards. Then, anaerobic digestion increased the bioavailable fractions proportion in Zn and Cd, decreased the F4 proportion, and raised them more than moderate environmental risks. As (III) was the main species in the digester, which extremely increased As toxicity. The increase of F3 proportion in Cu and Pb was due to sulphide formation in biogas residue. Whereas, the high humus content in compost greatly increased the F3 proportion in Cu. The F1 proportion in Zn decreased, but the plant availability of Zn in compost did not reduce significantly. Cd and As mainly converted the bioavailable fractions into stable fractions during composting, but As (V) toxicity needs to be concerned. Moreover, additives are only suitable for animal manure treated with slightly HM contaminated. Therefore, it is necessary to combine more comprehensive methods to improve the manure treatment and make product utilisation safer.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Shuhui Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
8
|
Vejvodová K, Vaněk A, Spasić M, Mihaljevič M, Ettler V, Vaňková M, Drahota P, Teper L, Vokurková P, Pavlů L, Zádorová T, Drábek O. Effect of peat organic matter on sulfide weathering and thallium reactivity: Implications for organic environments. CHEMOSPHERE 2022; 299:134380. [PMID: 35318025 DOI: 10.1016/j.chemosphere.2022.134380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Weathering of Tl-containing sulfides in a model (12-week) peat pot trial was studied to better understand their geochemical stability, dissolution kinetics, alteration products and the associated release and mobility of anthropogenic Tl in organic environments. We also present the effect of industrial acid rainwater on sulfide degradation and Tl migration in naturally acidic peat. Sphalerite (ZnS) was much less stable in peat than other Tl-containing sulfides (galena and pyrite), and thus acted as a major phase responsible for Tl mobilization. Furthermore, Tl incongruently leached out over Zn from ZnS, and accumulated considerably more in the peat solutions (≤5 μg Tl/L) and the peat samples (≤0.4 mg Tl/kg) that were subjected to acid rain watering compared to a deionized H2O regime. This finding was in good agreement with the absence of secondary Tl-containing phases, which could potentially control the Tl flux into the peat. The behavior of Tl was not as conservative as Pb throughout the trial, since a higher peat mobility and migration potential of Tl was observed compared to Pb. In conclusion, industrial acid precipitations can significantly affect the stability of ZnS even in acidic peat/organic environments, making it susceptible to enhanced weathering and Tl release in the long term.
Collapse
Affiliation(s)
- Kateřina Vejvodová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic.
| | - Marko Spasić
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Leslaw Teper
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Bedzinska 60, 41-200, Sosnowiec, Poland
| | - Petra Vokurková
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Lenka Pavlů
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Tereza Zádorová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| |
Collapse
|
9
|
Assessment of the Anthropogenic Impact and Distribution of Potentially Toxic and Rare Earth Elements in Lake Sediments from North-Eastern Romania. TOXICS 2022; 10:toxics10050242. [PMID: 35622655 PMCID: PMC9145426 DOI: 10.3390/toxics10050242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
Chemical analysis was performed on sediment samples collected in two sampling sessions (July and October) from Podu Iloaiei Dam Lake, one of the most important water resources used for aquaculture in north-eastern Romania. The concentration of 15 trace elements (TEs), 8 refractory elements (REs), and 15 rare earth elements (REEs)—determined using inductively coupled plasma mass spectrometry—showed variability largely dependent of the sampling points and collection time. Manganese was the most abundant TE, V and Cr were the most abundant REs, while Ce was one of the most abundant REEs. The cerium negative anomaly and Gd positive anomaly were observed in the Chondrite-normalized distributions. In October, the Ce anomaly showed significant negative correlation with Mn, emphasizing the water body oxidation potential. The identified positive Gd anomaly was most likely associated with the use of Gd-chelating agents in magnetic resonance imaging in Iasi, the largest medical hub in north-eastern Romania. Principal component analysis extracted three factors explaining 96.0% of the observed variance, i.e., rock weathering, leaching from soil surface, contributions from urban stormwater and atmospheric deposition (50.9%), pedological contributions (23.7%), and mixed anthropogenic sources (e.g., traffic, waste discharge, agricultural activities; 21.4%). The evaluation of pollution indices highlighted low and moderate degrees of contamination for most of the elements and a considerable degree of contamination for Cd. Assigned Cd sources included fertilizers and pesticides used in the near agricultural areas or the high traffic road located near the lake. Since contamination of aquatic ecosystems with harmful elements is a human health concern, further monitoring of specific vectors in the food chain of the investigated dam lake will be of the utmost importance.
Collapse
|
10
|
Li X, Wu L, Zhou J, Luo Y, Zhou T, Li Z, Hu P, Christie P. Potential environmental risk of natural particulate cadmium and zinc in sphalerite- and smithsonite-spiked soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128313. [PMID: 35074749 DOI: 10.1016/j.jhazmat.2022.128313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd)-bearing sphalerite and smithsonite ore particles are ubiquitous in soils near metal-mining areas. Previous studies indicate that smithsonite is more readily dissolved in acidic waters and soils than sphalerite but the mobility of Cd and zinc (Zn) derived from these ores in soils is unknown. Using microcosm incubation experiments and microscopic and spectroscopic analysis, we found that the mobility of Cd and Zn derived from smithsonite is higher than from sphalerite. The mobilization rates of Cd (16.6%) and Zn (13.7%) released from smithsonite in soils after 30-day incubation experiments were higher than those from sphalerite (Cd, ~ 1.42%; Zn, ~ 0.75%). Moreover, the percentages of Cd2+ and Zn2+ in soil pore water showed a dynamic increase in smithsonite-spiked treatments but a decrease in sphalerite-spiked treatments. HRTEM-EDX-SAED analysis further indicates the occurrence of dynamic transformation of amorphous Cd and Zn species in soil pore water to crystalline ZnS and iron oxides in sphalerite-spiked soil but crystalline ZnCO3 nanoparticles were dynamically transformed to amorphous metal-bearing species in smithsonite-spiked soil. The opposite transformation trends in pore water of Zn ore-spiked soils provide new insights into the Cd environmental risks in soils affected by Zn mining.
Collapse
Affiliation(s)
- Xinyang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jiawen Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tong Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Liu P, Xiao W, Wang K, Yang Z, Wang L. Bioaccessibility of Cd and its Correlation with Divalent Mineral Nutrients in Locally Grown Rice from Two Provinces in China. Biol Trace Elem Res 2022; 200:1408-1417. [PMID: 33846929 DOI: 10.1007/s12011-021-02706-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2023]
Abstract
Rice and rice products are the main sources of Cd contamination in humans. The total and bioaccessible concentrations of Cd and three divalent nutrients, Mn, Cu, and Zn, in locally grown rice grains from Hunan and Guangdong Provinces in China were investigated. An in vitro physiologically based extraction test method was introduced to evaluate the bioaccessibility of the target metals in the rice grains. The mean concentrations of Cd in the rice grains were 0.245 mg/kg and 0.235 mg/kg from Hunan and Guangdong Provinces, respectively. Large variations were observed in the Cd concentrations, indicating a heterogeneous distribution of Cd contamination throughout the study areas. The bioaccessibility of Cd, Mn, and Zn in the gastrointestinal fractions was significantly lower than that in the gastric fractions. In contrast, the bioaccessibility of Cu at the intestinal phase was detected in the rice grains from both provinces. The correlation analysis showed significant relationships between total Cd concentrations and bioaccessible Cd fractions, indicating that higher total Cd in rice grains always resulted in higher bioaccessible Cd. Consistent correlations in the rice grains were observed between Zn and Mn. However, a lack of correlation was found between Cd and Zn in the current study. Risk assessment according to bioaccessible Cd would significantly reduce the exposure risk to Cd from rice consumption.
Collapse
Affiliation(s)
- Peng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weiwei Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Kai Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, China.
| |
Collapse
|
12
|
Parmar S, Sharma VK, Li T, Tang W, Li H. Fungal Seed Endophyte FZT214 Improves Dysphania ambrosioides Cd Tolerance Throughout Different Developmental Stages. Front Microbiol 2022; 12:783475. [PMID: 35058903 PMCID: PMC8764135 DOI: 10.3389/fmicb.2021.783475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Phytoremediation is a promising remediation method of heavy metal (HM)-contaminated soils. However, lower HM tolerance of metal accumulator inhibits its practical application and effects. The current study was aimed to illustrate the role of fungal seed endophyte (FZT214) in improving Dysphania ambrosioides Cd tolerance during different developmental stages under various Cd stresses (5, 15, 30 mg kg-1) by pot experiments. The results showed that FZT214 significantly (p < 0.05) improved the host plant's growth at the flowering and fruiting stage in most of the treatment, while at the growing stage the increase was less (p > 0.05). The seed yield was also improved (p < 0.05) in the FZT214-inoculated plants (E+) and induced early flowering was observed. Moreover, the inoculation also positively affected total chlorophyll content, antioxidant process, and lipid peroxidation in most of the treatments throughout three developmental stages. Not all but in most cases, IAA and GA were more in E+ plants while JA was more in the E- plants (non-inoculated plants) during three developmental stages. The results suggested that the colonization of FZT214 to the D. ambrosioides might trigger multiple and comprehensive protective strategies against Cd stress, which mainly include activation of the dilution effects, induced biochemical changes to overcome damage from Cd toxicity, and alteration of the endogenous phytohormones. FZT214 can find competent application in the future to improve the growth of other crop plants.
Collapse
Affiliation(s)
- Shobhika Parmar
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Vijay K. Sharma
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Wenting Tang
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Le Bars M, Legros S, Levard C, Chevassus-Rosset C, Montes M, Tella M, Borschneck D, Guihou A, Angeletti B, Doelsch E. Contrasted fate of zinc sulfide nanoparticles in soil revealed by a combination of X-ray absorption spectroscopy, diffusive gradient in thin films and isotope tracing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118414. [PMID: 34728325 DOI: 10.1016/j.envpol.2021.118414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68ZnS. This combination was crucial to highlight the dissolution of nano-68ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.
Collapse
Affiliation(s)
- Maureen Le Bars
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France; UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France.
| | - Samuel Legros
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France; UPR Recyclage et Risque, CIRAD, 18524, Dakar, Senegal
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Claire Chevassus-Rosset
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Mélanie Montes
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Marie Tella
- CIRAD, US Analyses, F-34398, Montpellier, France; Analyses, Univ Montpellier, CIRAD, Montpellier, France
| | - Daniel Borschneck
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Abel Guihou
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Emmanuel Doelsch
- UPR Recyclage et Risque, CIRAD, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
14
|
Pons ML, Collin B, Doelsch E, Chaurand P, Fehlauer T, Levard C, Keller C, Rose J. X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116897. [PMID: 33774364 DOI: 10.1016/j.envpol.2021.116897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
Collapse
Affiliation(s)
- Marie-Laure Pons
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France.
| | - Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et Risque, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Till Fehlauer
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Catherine Keller
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Jérôme Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| |
Collapse
|
15
|
Dong Q, Liu Y, Liu G, Guo Y, Yang Q, Shi J, Hu L, Liang Y, Yin Y, Cai Y, Jiang G. Enriched isotope tracing to reveal the fractionation and lability of legacy and newly introduced cadmium under different amendments. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123975. [PMID: 33265016 DOI: 10.1016/j.jhazmat.2020.123975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
The newly introduced Cd (CdN) has different environmental fates than legacy Cd (CdL) and how to distinguish them in soil under different amendments is crucial for understanding natural aging and engineered remediation of Cd pollution in soil. In this study, enriched stable isotope tracer (112Cd) was introduced to distinguish the fate of CdN and CdL in paddy soil under pH adjustment and quicklime, slaked lime, and biochar amendments. The behaviors of CdN and CdL were studied during 56 days of flooding incubation through overlying water analysis, sequential extraction fractionation and lability (exchangeable pool probed by 110Cd isotopic spike) assessment. The results showed that soil pH is the main driving factor controlling the partition of both CdN and CdL in overlying water. During the incubation, CdN transformed quickly from soluble fraction to residual fraction under all treatments. In addition, at the end of the incubation, CdN concentrations in residual fraction were much higher than that of CdL, suggesting a more thorough aging of CdN than CdL. The labile CdN (ECdN) under pH adjustment and biochar amendment decreased during incubation and ECdN% was essentially the same with that of ECdL% after 28 days, indicating the aging equilibrium of exchangeable pool of CdN.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States of America
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Yang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States of America
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Paul V, Sankar MS, Vattikuti S, Dash P, Arslan Z. Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA. CHEMOSPHERE 2021; 263:128243. [PMID: 33297190 DOI: 10.1016/j.chemosphere.2020.128243] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Trace elements and heavy metals concentrate in aquatic sediments, potentially endangering benthic organisms. Comparing the concentration of metals in different aquatic bodies will help evaluate their accumulation and distribution characteristics within these systems. Metal pollution and enrichment indices in sediments from diverse aquatic systems in Southern USA, including agricultural ponds, man-made reservoir, river, swamp, and coastal environment were investigated. Following total digestion of the sediments, the concentrations of chromium (Cr), cobalt (Co), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), antimony (Sb), lead (Pb), and uranium (U) were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Pb was found to be highly enriched in the sediment samples from all five environments. The samples from coastal and agricultural ponds showed highest degree of anthropogenic modification (enrichment factor >10), especially with Se, U, and Pb. Agricultural ponds, previously unknown as a metal hotspot, had the most deteriorated sediment quality as determined by high pollution load index (>1) and contamination factor (>6) for Cd and U. Principal component analysis comparing land use land cover distribution surrounding the aquatic systems to metal concentrations confirmed that agriculture-related land activities correlated well with majority of the metals. Overall, compared to agricultural ponds and coastal regions, sediments in river, swamp and man-made reservoir systems contained relatively fewer metal pollutants, the former two serving as collection points for metal-laden fertilizers and chemicals. The research provides key insights into simultaneously comparing metal accumulation in multiple water bodies and is useful to test and develop effective sediment quality guidelines.
Collapse
Affiliation(s)
- Varun Paul
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - M S Sankar
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA; Geosystems Research Institute, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Shannon Vattikuti
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Padmanava Dash
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zikri Arslan
- U.S. Geological Survey, MS 973, Federal Center, Denver, CO, 80225, USA
| |
Collapse
|
17
|
Distinct Dispersion of As, Cd, Pb, and Zn in Farmland Soils near Abandoned Mine Tailings: Field Observation Results in South Korea. J CHEM-NY 2020. [DOI: 10.1155/2020/9671871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated the characteristics of metal(loid) transport and dispersion in agricultural soils near an abandoned metal mine. Topsoil samples were collected from 162 sampling sites in the study area, including 1 in the mine tailing dumps, to analyze the total concentrations of As, Pb, Cd, and Zn. Subsequently, the metal(loid) transport and dispersion characteristics were investigated using geographic information system (GIS) technology. The results of this study clearly demonstrated the variation in the dispersal of As, Cd, Pb, and Zn from the mine tailing dumps to nearby agricultural soils and the element-specific spatial variability in their respective transport and dispersion characteristics. These findings suggested that compared with the migration behavior of Cd, Pb, and Zn, that of As has a farther-reaching impact on agricultural soils owing to its geochemical cycling in the soil and groundwater environment. This impact differed significantly in magnitude from that of the other investigated metals. Therefore, special consideration must be given to the migration behavior of As.
Collapse
|
18
|
Vennam S, Georgoulas S, Khawaja A, Chua S, Strouthidis NG, Foster PJ. Heavy metal toxicity and the aetiology of glaucoma. Eye (Lond) 2020; 34:129-137. [PMID: 31745328 PMCID: PMC7002597 DOI: 10.1038/s41433-019-0672-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 11/09/2022] Open
Abstract
Despite recent advances, our understanding of the aetiological mechanisms underlying glaucoma remains incomplete. Heavy metals toxicity has been linked to the development of neurodegenerative diseases and various ocular pathologies. Given the similarities in pathophysiology between glaucoma and some neurodegenerative disorders, it is plausible that heavy metal toxicity may play a role in the development of glaucoma. Heavy metal exposure may be occupational, or through water or dietary contamination. In this report, we review mechanisms for systemic and neurotoxicity for arsenic, cadmium, chromium, cobalt, lead, mercury, and manganese, and weigh the evidence for an association between glaucoma and the accumulation of heavy metals either in ocular tissues or in the central nervous system.
Collapse
Affiliation(s)
- Sarath Vennam
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
| | - Stelios Georgoulas
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Anthony Khawaja
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Sharon Chua
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
| | - Nicholas G Strouthidis
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Paul J Foster
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9E, UK.
- Glaucoma Service, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK.
| |
Collapse
|
19
|
Wang L, Zhang W, Wang J, Zhu L, Wang J, Yan S, Ahmad Z. Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2593-2606. [PMID: 31073945 DOI: 10.1007/s10653-019-00307-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics and heavy metals have long-term potential toxicity to the environment, and their residuals in agricultural soils are receiving more and more attention. To evaluate the ecotoxicological effects of enrofloxacin and cadmium on soil enzymatic activities and microbial community structure, soil samples were exposed to individual and combined contaminants over 28 days. The results indicated that the toxic effects of enrofloxacin alone on soil enzymatic activities were relatively small and showed no concentration dependence. In contrast, significant inhibition of soil enzymatic activities was observed upon cadmium contamination by itself. Overall, the combination of two contaminants also has toxic effect on enzymatic activities; an antagonism between enrofloxacin and cadmium was observed. On 14 and 21 days, individual enrofloxacin and cadmium reduced average well color development (AWCD), Shannon, McIntosh, Simpson indices, and substrate utilization, except for Shannon, McIntosh, Simpson indices of the cadmium 0.4 mmol/kg treatment were higher than the control on 21 days. In general, combined treatments led to higher value of these microbial diversity indicators than those found under separate contamination, although there were some exceptions. With the increase in enrofloxacin concentration, the utilization of any carbon source by the microorganisms gradually decreased. In addition, the AWCD value and substrate utilization decreased as time increased. In the separate and combined contaminant treatments, the order of substrate utilization by soil microorganisms was aliphatics > amino acids > saccharides > metabolites. Thus, enrofloxacin and cadmium had a variable but generally negative influence on soil enzymatic activities and microbial community structure.
Collapse
Affiliation(s)
- Lanjun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Saihong Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Water Hydropower Engineering Science, Wuhan University, Hubei, 430072, People's Republic of China
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| |
Collapse
|
20
|
Kanu AS, Ashraf U, Mo Z, Sabir SUR, Baggie I, Charley CS, Tang X. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24748-24757. [PMID: 31240656 DOI: 10.1007/s11356-019-05779-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 04/16/2023]
Abstract
Cadmium (Cd) toxicity has detrimental effects on plant metabolism and yield formation. This study examined the effects of Cd stress in rice and the possible role of calcium (Ca) in mitigating oxidative damage caused by Cd in two fragrant rice cultivars, i.e., Guixiangzhan and Meixiangzhan 2. The experimental treatments were composed of various Ca and Cd levels as individual, i.e., Ca at 2.5 and 5.0 mg/kg soil (Ca1 and Ca2, respectively), Cd at 50 and 100 mg/kg soil (Cd50 and Cd100, respectively), and combined, i.e., Ca1+Cd50, Ca1+Cd100, Ca2+Cd50, and Ca2+Cd100. Plants without Ca and Cd application were taken as control (CK). Results showed that Cd stress led to a substantial decline in the photosynthetic pigments, i.e., Chl a, Chl b, and carotenoids, while enhanced oxidative damage in terms of increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and electrolyte leakage (EL) in both rice cultivars. Moreover, Cd stress hampered the activities of enzymatic antioxidants, i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with lowest antioxidant activities were recorded at Cd100. The overall trend (lowest to highest) for antioxidant activities across treatments was recorded as Cd100 < Ca2+Cd100 < Cd50 < Ca1+Cd100 < CK < Ca1 < Ca1+Cd50 < Ca2+Cd50 < Ca2. Similarly, Ca amendment improved the proline, soluble protein, and soluble sugar contents in both rice cultivars under Cd stress condition. Comparing Ca2 with CK, the yield and related components, i.e., number of panicles, spikelets per panicle, seed setting rate, 1000 grain weight, and grain yield, were found to increase by 13.08, 2.39, 4.03, 5.86, and 27.53% for Guixiangzhan and 16.48, 5.19, 6.87, 15.44, and 51.16% for Meixiangzhan, respectively. Furthermore, Cd contents in roots, stems, leaves, and grains increased with increased Cd concentration applied and reduced with Ca amendment. The Cd contents in grains for all Ca+Cd levels are statistically at par with each other and significantly lower (P < 0.05) than those for individual Cd application. Hence, Ca amendment can be an appropriate approach to ameliorate the toxic effects of Cd in crops grown under Cd-contaminated soils.
Collapse
Affiliation(s)
- Adam Sheka Kanu
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Sierra Leone Agricultural Research Institute (SLARI)-Rokupr Agricultural Research Centre (RARC), PMB 1313, Freetown, Sierra Leone
| | - Umair Ashraf
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Department of Botany, University of Education (Lahore), Faisalabad-Campus, Faisalabad, Punjab, 38000, Pakistan.
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Sabeeh-Ur-Rasool Sabir
- State Key Laboratory of Grassland Agroecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Idris Baggie
- Sierra Leone Agricultural Research Institute (SLARI)-Rokupr Agricultural Research Centre (RARC), PMB 1313, Freetown, Sierra Leone
| | - Christen Shaka Charley
- Sierra Leone Agricultural Research Institute (SLARI)-Rokupr Agricultural Research Centre (RARC), PMB 1313, Freetown, Sierra Leone
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Matraszek-Gawron R, Hawrylak-Nowak B. Sulfur nutrition level modifies the growth, micronutrient status, and cadmium distribution in cadmium-exposed spring wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:421-432. [PMID: 30956425 PMCID: PMC6419703 DOI: 10.1007/s12298-018-00635-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 05/06/2023]
Abstract
The effect of S nutrition level (standard-2 and intensive-6 or 9 mmol S L-1) on the growth, micronutrient status, and Cd concentration of Cd-exposed (0, 0.0002, 0.02, and 0.04 mmol Cd L-1) Triticum aestivum L. 'Zebra' was examined. The hypothesis that Cd-induced micronutrient imbalance in this species is alleviated by enhanced S-sulfate (S-SO4) nutrition was tested. The intensive S nutrition, especially the dose of 6 mmol L-1, to some extent alleviated Cd-induced stress by improving the adverse changes in micronutrient status and increase of the biomass. The root and shoot Fe, Cu, Mn, and Zn concentrations of Cd-exposed wheat rose at 6 and remained unaltered at 9 mmol S L-1. Particularly noteworthy is the substantial increase of Fe bioconcentration found in Cd-stressed plants at 6 mmol S L-1. The root Cu concentration increased at 6 and decreased at 9 mmol S L-1, but did not change in shoots. Simultaneously, both the high S levels elevated the shoot Cl concentration but had no effect on the root Cl concentration. There were no substantial changes in the Mo concentration. The intensive S nutrition of the Cd-treated wheat did not affect the translocation factor (TF) of Fe and B. In turn, root-to-shoot translocation of Mo and Zn was enhanced at 6 and remained unchanged at 9 mmol S L-1. The changes in TF of Cl, Cu, and Mn varied greatly, depending on the S and Cd concentrations. Intensive S nutrition of Cd-stressed wheat, as a rule, dropped the root and increased the shoot Cd concentration as well as reduced Cd bioconcentration/bioaccumulation factor enhancing root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- Renata Matraszek-Gawron
- Department of Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Barbara Hawrylak-Nowak
- Department of Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| |
Collapse
|
22
|
Le Bars M, Legros S, Levard C, Chaurand P, Tella M, Rovezzi M, Browne P, Rose J, Doelsch E. Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12987-12996. [PMID: 30339368 DOI: 10.1021/acs.est.8b02697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Zinc (Zn) is a potentially toxic trace element that is present in large amounts in organic wastes (OWs) spread on agricultural lands as fertilizer. Zn speciation in OW is a crucial parameter to understand its fate in soil after spreading and to assess the risk associated with agricultural recycling of OW. Here, we investigated changes in Zn speciation from raw OWs up to digestates and/or composts for a large series of organic wastes sampled in full-scale plants. Using extended X-ray absorption fine structure, we show that nanosized Zn sulfide (nano-ZnS) is a major Zn species in raw liquid OWs and a minor species in raw solid OWs. Whatever the characteristics of the raw OW, anaerobic digestion always favors the formation of nano-ZnS (>70% of zinc in digestates). However, after 1 to 3 months of composting of OWs, nano-ZnS becomes a minor species (<10% of zinc). In composts, Zn is mostly present as amorphous Zn phosphate and Zn sorbed to ferrihydrite. These results highlight (i) the influence of OW treatment on Zn speciation and (ii) the chemical instability of nano-ZnS formed in OW in anaerobic conditions.
Collapse
Affiliation(s)
- Maureen Le Bars
- CIRAD , UPR Recyclage et Risque , F-34398 Montpellier , France , Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
- Aix Marseille Univ , CNRS, IRD, INRA, Coll France, CEREGE , Aix-en-Provence , France
| | - Samuel Legros
- CIRAD , UPR Recyclage et Risque , 18524 Dakar , Senegal , Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Clément Levard
- Aix Marseille Univ , CNRS, IRD, INRA, Coll France, CEREGE , Aix-en-Provence , France
| | - Perrine Chaurand
- Aix Marseille Univ , CNRS, IRD, INRA, Coll France, CEREGE , Aix-en-Provence , France
| | - Marie Tella
- CIRAD , US Analyse , F-34398 Montpellier , France , Analyse, Univ Montpellier, CIRAD, Montpellier, France
| | - Mauro Rovezzi
- Univ Grenoble Alpes , CNRS, IRD, Irstea, Météo France, OSUG, FAME , 38000 Grenoble , France
| | | | - Jérôme Rose
- Aix Marseille Univ , CNRS, IRD, INRA, Coll France, CEREGE , Aix-en-Provence , France
| | - Emmanuel Doelsch
- CIRAD , UPR Recyclage et Risque , F-34398 Montpellier , France , Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
23
|
Du F, Yang Z, Liu P, Wang L. Accumulation, translocation, and assessment of heavy metals in the soil-rice systems near a mine-impacted region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32221-32230. [PMID: 30225688 DOI: 10.1007/s11356-018-3184-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Paddy rice is considered as a main source for human exposure to heavy metal contamination due to its efficient accumulation of heavy metals especially when cultivated in contaminated fields. In the current study, rice grains, straws, roots, and rhizosphere paddy soils were collected from Changsha, a non-ferrous mine-impacted area in China. Heavy metals including Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Ba, and Pb in the samples were determined using ICP-MS. The heavy metal concentrations were found in the ascending order of grain < straw < root < paddy soil except As and Cd. Rice root is a main organ to retain As and Cd through chelation and adsorption. The translocation behaviors of the heavy metals in the soil-rice system were investigated through bioaccumulation factor (BF) and translocation factor (TF). Similar variation tendencies to decrease BFp-r (translocation from paddy soil to root) and TFs-g (translocation from straw to grain) associated with TFr-s (translocation from root to straw) increasing were observed for most of the heavy metals due to heavy metal detoxification and stress tolerance in rice. The potential adverse effects caused by long-term exposure to heavy metals from rice consumption were evaluated via the target hazard quotient. The results indicated potential health risk to human from exposure to Mn, As, and Cd.
Collapse
Affiliation(s)
- Fan Du
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Center for Environment and Water Resources, Central South University, Changsha, 410083, China
| | - Peng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
24
|
Jarošíková A, Ettler V, Mihaljevič M, Penížek V, Matoušek T, Culka A, Drahota P. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:83-92. [PMID: 29477118 DOI: 10.1016/j.envpol.2018.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As2O3) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg-1). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb5(AsO4)3(Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As.
Collapse
Affiliation(s)
- Alice Jarošíková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Vít Penížek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6 - Suchdol, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| |
Collapse
|
25
|
Sofuoglu SC, Sofuoglu A. An exposure-risk assessment for potentially toxic elements in rice and bulgur. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:987-998. [PMID: 28397064 DOI: 10.1007/s10653-017-9954-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Rice and wheat are rich sources of essential elements. However, they may also accumulate potentially toxic elements (PTE). Bulgur, the popular alternative to rice in the eastern Mediterranean, is produced by processing wheat, during which PTE content may change. This study determined PTE concentrations in rice and bulgur collected from 50 participant households in the city of Izmir, Turkey, estimated ingestion exposure, and associated chronic-toxic and carcinogenic human health risks. Comparison of the determined concentrations to the available standard levels and the levels reported in the literature revealed that Cd, Co, and Pb in rice might be of concern. The estimated health risks of individual participants supported this result with exceedance of respective threshold or acceptable risk levels at the 95th percentile. Population risk estimates indicated that the proportion with higher than the threshold or acceptable risk is about 10, 24, and 12% for Cd, Co, and Pb in rice, respectively. Results of this study showed that health risks associated with PTE exposure through bulgur consumption are lower than those of rice, and below the threshold or acceptable risk levels.
Collapse
Affiliation(s)
- Sait C Sofuoglu
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey.
- Department of Environmental Engineering, Izmir Institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey.
| | - Aysun Sofuoglu
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey
| |
Collapse
|
26
|
Bravo D, Pardo‐Díaz S, Benavides‐Erazo J, Rengifo‐Estrada G, Braissant O, Leon‐Moreno C. Cadmium and cadmium‐tolerant soil bacteria in cacao crops from northeastern Colombia. J Appl Microbiol 2018; 124:1175-1194. [DOI: 10.1111/jam.13698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022]
Affiliation(s)
- D. Bravo
- Laboratory of Soil Microbiology and Calorimetry Corporación Colombiana de Investigación Agropecuaria – Corpoica Centro de Investigación Tibaitatá – kilómetro 14 vía Mosquera‐Bogotá Cundinamarca Colombia
| | - S. Pardo‐Díaz
- Laboratory of Soil Microbiology and Calorimetry Corporación Colombiana de Investigación Agropecuaria – Corpoica Centro de Investigación Tibaitatá – kilómetro 14 vía Mosquera‐Bogotá Cundinamarca Colombia
| | | | - G. Rengifo‐Estrada
- Corporación Colombiana de Investigación Agropecuaria – Corpoica, Centro de Investigación La Suiza – kilómetro 32 vía al mar vereda Galápagos Rionegro Santander Colombia
| | - O. Braissant
- Center of Biomechanics & Calorimetry Basel (COB) University of Basel Basel Switzerland
| | - C. Leon‐Moreno
- Corporación Colombiana de Investigación Agropecuaria – Corpoica, Centro de Investigación La Suiza – kilómetro 32 vía al mar vereda Galápagos Rionegro Santander Colombia
| |
Collapse
|
27
|
Akimbekov N, Yernazarova A, Tastambek K, Abdieva G, Ualieva P, Kaiyrmanova G, Djansugurova L, Zhubanova A. Microbial Load as Ecotoxicological Assessment of Heavy Metals Presence in Soil Samples from the Kazakhstan Part of the Caspian Sea. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2017. [DOI: 10.18321/ectj681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Soil as a natural resource and a powerful regulator of matter flow, plays crucial role in providing habitat for proper structuring and functioning soil microbial communities. Under the influence of unregulated industrial activities with social-economic co-development, soil and water involved a whole range of changes leading to soil erosion-degradation and pollution of aquatic ecosystems. One of the most promising techniques for determining the total effect of exposure to heavy metals on environmental media is bio-indication (bio-testing), which is based on rapid, robust and cost-effective methods. Acquaintance, with the microbial background of soil is essential to assess the degree of soil pollution with heavy metals. In this study, an eco-toxicological assessment using microbial community characteristics on heavy metals in soil samples from the urban ecosystems of the Kazakhstan part of the Caspian Sea (Atyrau and Mangystau regions) has been discussed. According to the results of the soil toxicity, it has been established that the soil of these residential areas are exposed to increased levels of heavy metals, such as Cr, Co, Ni, Pb, etc. Comparative analysis of bio-indicative systems and chemical techniques for assessing the quality of soils indicated a remarkable similarity of the results and the priority (high speed, cheapness) of the microbiological load assessment of the soil quality.
Collapse
|
28
|
Liu J, Zhang X, Mo L, Yao S, Wang Y. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn. CHEMOSPHERE 2017; 181:382-389. [PMID: 28458213 DOI: 10.1016/j.chemosphere.2017.04.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The effect of decapitation on enhancing plant growth and Cd accumulation in Celosia argentea Linn. was evaluated using a pot experiment. Decapitation significantly enhanced the growth of C. argentea. The numbers of branch and leaf in the decapitated plants (DP) were significantly higher than those in undecapitated plants (UDP, p < 0.05). Decapitation increased the biomass by 75%-105% for roots, 108%-152% for stems, and 80%-107% for leaves. Although the transpiration and photosynthesis rates were not significantly different between DP and UPD, decapitation significantly increased the total leaf area and total transpiration per plant (p < 0.05). The higher total transpiration per plant resulted in a higher leaf Cd concentration in DP. DP accumulated Cd in shoots (197, 275, and 425 μg plant-1) that were 2.5-2.8 times higher than UDP (78, 108, and 152 μg plant-1), with the soils containing 1, 5, and 10 mg kg-1 Cd. Results suggested that decapitation is a novel and convenient method to improve the phytoextraction efficiency of C. argentea in Cd contaminated soils.
Collapse
Affiliation(s)
- Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Lingyun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Shiyin Yao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yixuan Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
29
|
Yang W, Zhang T, Lin S, Ni W. Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14234-14248. [PMID: 28421524 DOI: 10.1007/s11356-017-9007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.
Collapse
Affiliation(s)
- Wenhao Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- College of Environmental and Resource Sciences, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Taoxiang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Sen Lin
- College of Environmental and Resource Sciences, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
30
|
Accumulation and tolerance to cadmium heavy metal ions and induction of 14-3-3 gene expression in response to cadmium exposure in Coprinus atramentarius. Microbiol Res 2017; 196:1-6. [DOI: 10.1016/j.micres.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/05/2016] [Accepted: 11/12/2016] [Indexed: 11/22/2022]
|
31
|
Rehman ZU, Khan S, Brusseau ML, Shah MT. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. CHEMOSPHERE 2017; 168:1589-1596. [PMID: 27939659 PMCID: PMC5322861 DOI: 10.1016/j.chemosphere.2016.11.152] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 05/22/2023]
Abstract
Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg-1) set by State Environmental Protection Administration of China (SEPA), for soils in China, while Cd concentrations in the soils were exceeded the MAL (61.7-73.7% and 4.39-34.3%) set by SEPA (0.6 mg kg-), and European Union, (1.5 mg kg-1) respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8 to 11 mg kg-1. The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg-1) for leafy vegetables and the 0.1 mg kg-1 MAL for fruity and rooty/tuber vegetables set by FAO/WHO-CODEX. Likewise, all vegetables except Pisum sativum (0.12 mg kg-1) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were <1 for both adults and children for most of the vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers.
Collapse
Affiliation(s)
- Zahir Ur Rehman
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan; School of Earth and Environmental Sciences, University of Arizona, USA
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| | - Mark L Brusseau
- School of Earth and Environmental Sciences, University of Arizona, USA
| | - Mohammad Tahir Shah
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
32
|
Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Le VN, Han Y, Wang Y, Xing B, Liu L, Cao W. Jointed toxicity of TiO 2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:82-93. [PMID: 27193349 DOI: 10.1016/j.plaphy.2016.05.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 05/07/2023]
Abstract
Previous studies have reported that nanoparticles (NPs) and heavy metals are toxic to the environment. However, the jointed toxicity is not yet well understood. This study was aimed to investigate the combined toxicity of TiO2 NPs and the heavy metal cadmium (Cd) to plants. Rice (Oryzasativa L.) was selected as the target plant. The rice seedlings were randomly separated into 12 groups and treated with CdCl2 (0, 10 and 20 mg/L) and TiO2 NPs (0, 10, 100 and 1000 mg/L). The plant height, biomass and root length indicated significant toxicity of Cd to the growth, but TiO2 NPs exhibited the potential ability to alleviate the Cd toxicity. Transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) confirmed the existence of TiO2 NPs in plants. Elemental analysis of Ti and Cd suggested that the presences of Cd significantly decreased the Ti accumulation in the rice roots in the co-exposure treatments. Interestingly, TiO2 NPs could lower the Cd uptake and distribution in rice roots and leaves. The results of antioxidant enzyme activity, lipid peroxide as well as phytohormones varied in the different treatments. Comparing with the Cd alone treatment, the net photosynthetic rate and chlorophyll content were significantly increased in the co-exposure treatments, suggesting that TiO2 NPs could tremendously reduce the Cd toxicity.
Collapse
Affiliation(s)
- Ye Ji
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Zhou
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanxin Ma
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Yan Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Hao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Wenhao Wu
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Xin Gui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Van Nhan Le
- Center for Training, Consultancy and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi City, Viet Nam
| | - Yaning Han
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yingcai Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Liming Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
33
|
Zhang Y, Chen T, Liao Y, Reid BJ, Chi H, Hou Y, Cai C. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.): A field study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:819-825. [PMID: 27368131 DOI: 10.1016/j.envpol.2016.06.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Much research has considered the influence of biochars on the availability and phytoaccumulation of potentially toxic elements (PTEs) from soil. However, the vast majority of these studies use, what are arguably, unrealistic and unpractical amounts of biochar (10, 50 and even up to 100 t/ha). To offer a more realistic insight into the influence of biochar on PTE partitioning and phytoaccumulation, a field study, using modest rates of biochar application (1.5, 3.0 t/ha), was undertaken. Specifically, the research investigated the influence of sewage sludge biochar (SSBC) on the accumulation of Cd into rice (Oryza sativa L.) grown in Cd contaminated (0.82 ± 0.07 mg/kg) paddy soil. Results indicated, Cd concentrations in rice grains to significantly (p < 0.05) decrease from 1.35 ± 0.09 mg/kg in the control to 0.82 ± 0.07 mg/kg and 0.80 ± 0.21 mg/kg in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Accordingly, the hazardous quotient (HQ) indices for Cd, associated with rice grain consumption, were also reduced by ∼40%. SSBC amendment significantly (p < 0.05) increased grain yields from 1.90 ± 0.08 g/plant in the control to 2.17 ± 0.30 g/plant and 3.40 ± 0.27 g/plant in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Thus, the amendment of SSBC to contaminated paddy soils, even at low application rates, could be an effective approach to mitigate Cd accumulation into rice plants, to improve rice grain yields, and to thereby improve food security and protect public health.
Collapse
Affiliation(s)
- Youchi Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tingting Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yongkai Liao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Brian J Reid
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Haifeng Chi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yanwei Hou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
34
|
Karak T, Paul RK, Das S, Das DK, Dutta AK, Boruah RK. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:713. [PMID: 26514796 DOI: 10.1007/s10661-015-4923-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.
Collapse
Affiliation(s)
- Tanmoy Karak
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam, 786101, India.
| | - Ranjit Kumar Paul
- Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Sampa Das
- Dibrugarh Polytechnic, Lahowal, Dibrugarh, Assam, 786010, India
| | - Dilip K Das
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Amrit Kumar Dutta
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam, 786101, India
| | - Romesh K Boruah
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam, 786101, India
| |
Collapse
|
35
|
Zayneb C, Bassem K, Zeineb K, Grubb CD, Noureddine D, Hafedh M, Amine E. Physiological responses of fenugreek seedlings and plants treated with cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10679-10689. [PMID: 25752634 DOI: 10.1007/s11356-015-4270-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
The bioaccumulation efficiency of cadmium (Cd) by fenugreek (Trigonella foenum-graecum) was examined using different concentrations of CdCl2. The germination rate was similar to control except at 10 mM Cd. However, early seedling growth was quite sensitive to the metal from the lowest Cd level. Accordingly, amylase activity was reduced substantially on treatment of seeds with 0.5, 1, and 10 mM Cd. Cadmium also affected various other plant growth parameters. Its accumulation was markedly lower in shoots as compared to roots, reducing root biomass by almost 50 %. Plants treated with 1 and 5 mM Cd presented chlorosis due to a significant reduction in chlorophyll b especially. Furthermore, at Cd concentrations greater than 0.1 mM, plants showed several signs of oxidative stress; an enhancement in root hydrogen peroxide (H2O2) level and in shoot malondialdehyde (MDA) content was observed. Conversely, antioxidant enzyme activities (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) increased in various plant parts. Likewise, total phenolic and flavonoid contents reached their highest values in the 0.5 mM Cd treatment, consistent with their roles in quenching low concentrations of reactive oxygen species (ROS). Consequently, maintaining oxidant and antioxidant balance may permit fenugreek to hyperaccumulate Cd and allow it to be employed in extremely Cd polluted soils for detoxification purposes.
Collapse
Affiliation(s)
- Chaâbene Zayneb
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
36
|
Afzali D, Fathirad F, Afzali Z, Majdzadeh-Kermani SMJ. Evaluation of cadmium in greenhouse soils and agricultural products of Jiroft (Iran) using microwave digestion prior to atomic absorption spectrometry determination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:128. [PMID: 25697307 DOI: 10.1007/s10661-015-4342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
This study determines total levels of potentially toxic trace element, Cd (II) in Jiroft (Kerman, Iran) greenhouse soil and agricultural products that are grown in these greenhouses (tomatoes and cucumbers), and the comparison with soil outside of greenhouse using microwave digestion prior to flame atomic absorption spectrometry determination. The results show that the cadmium concentration in greenhouse soil is 0.9-1.9 mg kg(-1) and out of greenhouse is 0.4-1.0 mg kg(-1). Also, cadmium concentration range in tomatoes and cucumbers is about 0.07-0.40 mg kg(-1). The obtained results show that the concentration of this metal in greenhouse soil is higher than outside soil samples and is below the safe limit.
Collapse
Affiliation(s)
- Daryoush Afzali
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran,
| | | | | | | |
Collapse
|
37
|
Liu Y, Xiao T, Baveye PC, Zhu J, Ning Z, Li H. Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:122-31. [PMID: 25463862 DOI: 10.1016/j.ecoenv.2014.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/15/2014] [Accepted: 10/19/2014] [Indexed: 05/04/2023]
Abstract
In various parts of the world, high cadmium (Cd) concentrations in environment are not related to anthropogenic contamination but have natural origins. Less is known about health risks that arise under these conditions. This study aimed to discuss the pollution of Cd with natural sources, and to investigate the concentration of Cd in food crops and the urine of inhabitants in an area of southwestern China. The results showed that the arable soils are moderately contaminated by Cd (I(geo)=1.51) relative to the local background, with a high ecological risk (Er=218). The chemical fractions of Cd in soils with natural sources are probably controlled by parent materials and mostly in residual phase. The average Cd concentrations were 0.68 mg kg(-1) (fresh weight) in local vegetables, 0.04 mg kg(-1) in rice, and 0.14 μg L(-1) in water. Leafy vegetable tends to accumulate more Cd than the other crops. The calculated Target Hazard Quotient (THQ) had a much higher value (4.33) for Cd, suggesting that Cd represents a significant potential risk to the local population. The urinary Cd concentrations (mean at 3.92 μg L(-1) for male and 4.85 μg L(-1) for female) of inhabitants in the study area were significantly higher (p<0.05) than those from the control area (mean at 0.8 μg L(-1) for male and 0.42 μg L(-1) for female). Male and female test subjects had similar urinary Cd levels (p>0.05), but age seemed to lead to an increase in Cd in the urine. These findings show that naturally-occurring Cd in local soils is taken up appreciably by local food crops, and that dietary exposure of Cd through vegetable ingestion is a major exposure pathway for local populations, and a potential risk to public health in the study area.
Collapse
Affiliation(s)
- Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangfu Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Philippe C Baveye
- Soil and Water Laboratory, Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jianming Zhu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Huajun Li
- Health Bureau of Wushan County, Chongqing 404700, China
| |
Collapse
|
38
|
Abstract
CadR is a metal-binding protein first isolated from rhizobacteriumPseudomonas putida.
Collapse
Affiliation(s)
- Q. Liu
- Key Laboratory of Chemical Genomics
- School of Chemical Biology & Biotechnology
- Peking University
- Shenzhen Graduate School
- 518055 Shenzhen
| | - F. Yuan
- Key Laboratory of Chemical Genomics
- School of Chemical Biology & Biotechnology
- Peking University
- Shenzhen Graduate School
- 518055 Shenzhen
| | - Y. Liang
- Key Laboratory of Chemical Genomics
- School of Chemical Biology & Biotechnology
- Peking University
- Shenzhen Graduate School
- 518055 Shenzhen
| | - Z. Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology & Biotechnology
- Peking University
- Shenzhen Graduate School
- 518055 Shenzhen
| |
Collapse
|
39
|
Vaněk A, Grösslová Z, Mihaljevič M, Ettler V, Chrastný V, Komárek M, Tejnecký V, Drábek O, Penížek V, Galušková I, Vaněčková B, Pavlů L, Ash C. Thallium contamination of soils/vegetation as affected by sphalerite weathering: a model rhizospheric experiment. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:148-156. [PMID: 25265594 DOI: 10.1016/j.jhazmat.2014.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/28/2023]
Abstract
The environmental stability of Tl-rich sphalerite in two contrasting soils was studied. Rhizospheric conditions were simulated to assess the risk associated with sulfide microparticles entering agricultural (top)soils. The data presented here clearly demonstrate a significant effect of 500 μM citric acid, a model rhizospheric solution, on ZnS alteration followed by enhanced Tl and Zn release. The relative ZnS mass loss after 28 days of citrate incubation reached 0.05 and 0.03 wt.% in Cambisol and Leptosol samples respectively, and was up to 4 times higher, compared to H2O treatments. Incongruent (i.e., substantially increased) mobilization of Tl from ZnS was observed during the incubation time. Generally higher (long-term) stability of ZnS with lower Tl release is predicted for soils enriched in carbonates. Furthermore, the important role of silicates (mainly illite) in the stabilization of mobilized Tl, linked with structural (inter)layer Tl-K exchange, is suggested. Thallium was highly bioavailable, as indicated by its uptake by white mustard; maximum Tl amounts were detected in biomass grown on the acidic Cambisol. Despite the fact that sulfides are thought as relatively stable phases in soil environments, enhanced sulfide dissolution and Tl/trace element release (and bioaccumulation) can be assumed in rhizosphere systems.
Collapse
Affiliation(s)
- Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic.
| | - Zuzana Grösslová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Václav Tejnecký
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Vít Penížek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Ivana Galušková
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Barbora Vaněčková
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Lenka Pavlů
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Christopher Ash
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| |
Collapse
|