1
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
2
|
Gojkovic Z, Simansky S, Sanabria A, Márová I, Garbayo I, Vílchez C. Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health. Microorganisms 2023; 11:2034. [PMID: 37630594 PMCID: PMC10458190 DOI: 10.3390/microorganisms11082034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios.
Collapse
Affiliation(s)
- Zivan Gojkovic
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Samuel Simansky
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Alain Sanabria
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Inés Garbayo
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Carlos Vílchez
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| |
Collapse
|
3
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
4
|
Zhang J, Li C, Tang W, Wu M, Chen M, He H, Lei P, Zhong H. Mercury in wetlands over 60 years: Research progress and emerging trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161862. [PMID: 36716881 DOI: 10.1016/j.scitotenv.2023.161862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Wetlands are considered the hotspots for mercury (Hg) biogeochemistry, garnering global attention. Therefore, it is important to review the research progress in this field and predict future frontiers. To achieve that, we conducted a literature analysis by collecting 15,813 publications about Hg in wetlands from the Web of Science Core Collection. The focus of wetland Hg research has changed dramatically over time: 1) In the initial stage (i.e., 1959-1990), research mainly focused on investigating the sources and contents of Hg in wetland environments and fish. 2) For the next 20 years (i.e., 1991-2010), Hg transformation (e.g., Hg reduction and methylation) and environmental factors that affect Hg bioaccumulation have attracted extensive attention. 3) In the recent years of 2011-2022, hot topics in Hg study include microbial Hg methylators, Hg bioavailability, methylmercury (MeHg) demethylation, Hg stable isotope, and Hg cycling in paddy fields. Finally, we put forward future research priorities, i.e., 1) clarifying the primary factors controlling MeHg production, 2) uncovering the MeHg demethylation process, 3) elucidating MeHg bioaccumulation process to better predict its risk, and 4) recognizing the role of wetlands in Hg circulation. This research shows a comprehensive knowledge map for wetland Hg research and suggests avenues for future studies.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
5
|
Yin X, Wang L, Liang X, Zhang L, Zhao J, Gu B. Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128835. [PMID: 35398798 DOI: 10.1016/j.jhazmat.2022.128835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a pervasive environmental pollutant and poses serious health concerns as inorganic Hg(II) can be converted to the neurotoxin methylmercury (MeHg), which bioaccumulates and biomagnifies in food webs. Phytoplankton, representing the base of aquatic food webs, can take up Hg(II) and influence MeHg production, but currently little is known about how and to what extent phytoplankton may impact Hg(II) methylation by itself or by methylating bacteria it harbors. This study investigated whether some species of phytoplankton could produce MeHg and how the live or dead phytoplankton cells and excreted algal organic matter (AOM) impact Hg(II) methylation by several known methylators, including iron-reducing bacteria (FeRB), Geobacter anodireducens SD-1 and Geobacter sulfurreducens PCA, and the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans ND132 (or Pseudodesulfovibrio mercurii). Our results indicate that, among the 4 phytoplankton species studied, none were capable of methylating Hg(II). However, the presence of phytoplankton cells (either live or dead) from Chlorella vulgaris (CV) generally inhibited Hg(II) methylation by FeRB but substantially enhanced methylation by SRB D. desulfuricans ND132. Enhanced methylation was attributed in part to CV-excreted AOM, which increased Hg(II) complexation and methylation by ND132 cells. In contrast, inhibition of methylation by FeRB was attributed to these bacteria incapable of competing with phytoplankton for Hg(II) binding and uptake. These observations suggest that phytoplankton could play different roles in affecting Hg(II) methylation by the two groups of anaerobic bacteria, FeRB and SRB, and thus shed additional light on how phytoplankton blooms may modulate MeHg production and bioaccumulation in the aquatic environment.
Collapse
Affiliation(s)
- Xixiang Yin
- Shandong Jinan Eco-environmental Monitoring Center, Jinan 250014, China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Lihong Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Jiating Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Ten 37996, United States.
| |
Collapse
|
6
|
Li Y, Li D, Song B, Li Y. The potential of mercury methylation and demethylation by 15 species of marine microalgae. WATER RESEARCH 2022; 215:118266. [PMID: 35290869 DOI: 10.1016/j.watres.2022.118266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and its compounds are a kind of worldwide concerned persistent toxic pollutants. As the major primary producer in the ocean, microalgae are expected to play an important role in the cycling and accumulation of Hg in marine ecosystems by either uptake Hg species from seawater or involving in the transformations of Hg species. However, there is still lack of clear knowledge on whether microalgae can induce the methylation and demethylation of Hg in aquatic environments. In this study, Hg isotope dilution and isotope addition techniques were utilized to determine the methylation and demethylation potential of Hg at concentrations comparable to that in natural environments by 15 common marine microalgae (8 species of Diatoms, 4 species of Dinoflagellates, 2 species of Chlorophyta and 1 species of Chrysophyte). Methylation of inorganic Hg was found to be negligible in the culture of all tested marine microalgae, while 6 species could significantly induce the demethylation of methylmercury (MeHg). The rates of microalgae mediated MeHg demethylation were at the same order of magnitude as that of photodemethylation, indicating that marine microalgae may play an important role in the degradation of MeHg in marine environments. Further studies suggest that the demethylation of MeHg by the microalgae may be mainly caused by their extracellular secretions (via photo-induce demethylation) and associated bacteria, rather than the direct demethylation of MeHg by microalgae cells. In addition, it was found that thiol groups may be the major component in microalgal extracellular secretions that lead to the photo-demethylation of MeHg.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Beibei Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
7
|
Cossart T, Garcia-Calleja J, Worms IAM, Tessier E, Kavanagh K, Pedrero Z, Amouroux D, Slaveykova VI. Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117771. [PMID: 34271517 DOI: 10.1016/j.envpol.2021.117771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm. Species-specific enriched isotope mixture of 199iHg and 201MMHg was used to explore the accumulation, the subcellular distribution and transformations occurring in natural pico-nanoplankton sampled at 2 different depths (6.6 m and 8.3 m). Cyanobacteria, diatoms, cryptophyta, green algae and heterotrophic microorganisms were identified as the major groups of pico-nanoplankton with diatoms prevailing at deeper samples. Results showed that pico-nanoplankton accumulated both iHg and MMHg preferentially in the cell membrane/organelles, despite observed losses. The ratios between the iHg and MMHg concentrations measured in the membrane/organelles and cytosol were comparable for iHg and MMHg. Pico-nanoplankton demethylate added 201MMHg (~4 and 12% per day depending on cellular compartment), although the involved pathways are to further explore. Comparison of the concentrations of 201iHg formed from 201MMHg demethylation in whole system, medium and whole cells showed that 82% of the demethylation was biologically mediated by pico-nanoplankton. No significant methylation of iHg by pico-nanoplankton was observed. The accumulation of iHg and MMHg and the percentage of demethylated MMHg correlated positively with the relative abundance of diatoms and heterotrophic microorganisms in the pico-nanoplankton, the concentrations of TN, Mg2+, NO3-, NO2-, NH4+ and negatively with the concentrations of DOC, K+, Na+, Ca2+, SO42-. Taken together the results of the present field study confirm the role of pico-nanoplankton in Hg bioaccumulation and demethylation, however further research is needed to better understand the underlying mechanisms and interconnection between heterotrophic and autotrophic microorganisms.
Collapse
Affiliation(s)
- Thibaut Cossart
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Javier Garcia-Calleja
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Killian Kavanagh
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
8
|
Garcia-Calleja J, Cossart T, Pedrero Z, Santos JP, Ouerdane L, Tessier E, Slaveykova VI, Amouroux D. Determination of the Intracellular Complexation of Inorganic and Methylmercury in Cyanobacterium Synechocystis sp. PCC 6803. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13971-13979. [PMID: 34591446 DOI: 10.1021/acs.est.1c01732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Understanding of mercury (Hg) complexation with low molecular weight (LMW) bioligands will help elucidate its speciation. In natural waters, the rate of this complexation is governed by physicochemical, geochemical, and biochemical parameters. However, the role of bioligands involved in Hg intracellular handling by aquatic microorganisms is not well documented. Here, we combine the use of isotopically labeled Hg species (inorganic and monomethylmercury, iHg and MeHg) with gas or liquid chromatography coupling to elemental and molecular mass spectrometry to explore the role of intracellular biogenic ligands involved in iHg and MeHg speciation in cyanobacterium Synechocystis sp. PCC 6803, a representative phytoplankton species. This approach allowed to track resulting metabolic and newly found intracellular Hg biocomplexes (e.g., organic thiols) in Synechocystis sp. PCC 6803 finding different intracellular Hg species binding affinities with both high and low molecular weight (HMW and LMW) bioligands in the exponential and stationary phase. Furthermore, the parallel detection with both elemental and molecular ionization sources allowed the sensitive detection and molecular identification of glutathione (GSH) as the main low molecular weight binding ligand to iHg ((GS)2-Hg) and MeHg (GS-MeHg) in the cytosolic fraction. Such a novel experimental approach expands our knowledge on the role of biogenic ligands involved in iHg and MeHg intracellular handling in cyanobacteria.
Collapse
Affiliation(s)
- Javier Garcia-Calleja
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau 64000, France
| | - Thibaut Cossart
- Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl Vogt, 1205 Geneva, Switzerland
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau 64000, France
| | - João P Santos
- Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl Vogt, 1205 Geneva, Switzerland
| | - Laurent Ouerdane
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau 64000, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau 64000, France
| | - Vera I Slaveykova
- Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl Vogt, 1205 Geneva, Switzerland
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau 64000, France
| |
Collapse
|
9
|
Liu H, Guo Y, Wang Y, Zhang H, Ma X, Wen S, Jin J, Song W, Zhao B, Ozaki Y. A nanozyme-based enhanced system for total removal of organic mercury and SERS sensing. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124642. [PMID: 33301972 DOI: 10.1016/j.jhazmat.2020.124642] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Total removal of organic mercury in industrial wastewater is a crucially important task facing environmental pollution in the current world. Herein, we demonstrate the fabrication of Au-NiFe layered double hydroxide (LDH)/rGO nanocomposite as not only an efficient nanozyme with oxidase-like activity but also an efficient surface-enhanced Raman spectroscopy (SERS) substrate to determine organic mercury, with the minimum detection concentration as low as 1 × 10-8 M. According to the binding energy of X-Ray photoelectron spectrometer (XPS) and the free radicals of electron paramagnetic resonance (EPR) spectra, the mechanism of catalytic enhanced degradation is the production of Au-amalgam on Au surface, accelerating the electron transfer and the generation of O2•- radicals from oxygen molecules and •CH3 radicals from the methyl group in MeHg to participate the oxidase-like reaction. Furthermore, the Au-NiFe LDH/rGO nanocomposite is able to degrade and remove 99.9% of organic mercury in two hours without the secondary pollution by Hg2+. In addition, the material can be used for the multiple degradation-regeneration cycles in actual applications, which is significant in terms of the environmental and economic point of view. This work may open a new horizon for both highly sensitive detection and thorough degradation of organic mercury in environmental science and technology.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yue Guo
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yunxin Wang
- Jilin Provincial Center for Disease Control and Prevention, 3145 Jingyang Street, Changchun 130062, PR China
| | - Huidan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaowei Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Jin
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 660-1337, Japan; Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
10
|
Quiroga-Flores R, Guédron S, Achá D. High methylmercury uptake by green algae in Lake Titicaca: Potential implications for remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111256. [PMID: 32920312 DOI: 10.1016/j.ecoenv.2020.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic pressure in the high altitude lakes such as Titicaca and Uru (Bolivia) may favor the production of methylmercury (MeHg) known to accumulate in trophic chains. Periphyton associated with emerged aquatic plants (totoras) from the lake shores accumulates and demethylates MeHg providing a potential cost-effective water treatment technique. In this laboratory study, we measured the MeHg uptake kinetics of a consortium of green algae isolated from Lake Titicaca totora's periphyton. The most abundant algal consortium, composed of Oedogonium spp., Chlorella spp., Scenedesmus spp., was exposed to rising MeHg concentrations (from 5 to 200 ng·L-1) to assess their maximum potential capacity for MeHg accumulation. Various algal biomass concentrations were tested to choose the optimal one. Results provided a net MeHg uptake rate by this algal consortium of 2.38 amol ng-1·h-1·nM-1 (the total uptake was 2863 ng MeHg·g-1) for an initial concentration of 200 ng MeHg·L-1 with an algal biomass concentration of 0.02 g·L-1. This initial MeHg concentration is 1000 times higher than the one measured in the eutrophic Cohana Bay of Lake Titicaca, which shows the high accumulation potential of these green algae. Our data suggest that periphyton has a high potential for the treatment of Hg contaminated waters in constructing wetlands in the Andean Altiplano.
Collapse
Affiliation(s)
- Roxana Quiroga-Flores
- Instituto de Investigaciones Fármaco Bioquímicas, Universidad Mayor de San Andrés, La Paz, Bolivia; Division of Biotechnology, Department of Chemistry, P.O. Box 124, Lund University, SE-223 62, Lund, Sweden.
| | - Stéphane Guédron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000, Grenoble, France
| | - Dario Achá
- Laboratorio de Calidad Ambiental, Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla, 3161, La Paz, Bolivia
| |
Collapse
|
11
|
Beauvais-Flück R, Slaveykova VI, Skyllberg U, Cosio C. Molecular Effects, Speciation, and Competition of Inorganic and Methyl Mercury in the Aquatic Plant Elodea nuttallii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8876-8884. [PMID: 29984984 DOI: 10.1021/acs.est.8b02124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) remains hazardous in aquatic environments because of its biomagnification in food webs. Nonetheless, Hg uptake and impact in primary producers is still poorly understood. Here, we compared the cellular toxicity of inorganic and methyl Hg (IHg and MeHg, respectively) in the aquatic plant Elodea nuttallii. IHg and MeHg regulated contigs involved in similar categories (e.g., energy metabolism, development, transport, secondary metabolism), but MeHg regulated more contigs, supporting a higher molecular impact than IHg. At the organism level, MeHg induced antioxidants, while IHg decreased chlorophyll content. The uptake of Hg and expression of a subset of contigs was subsequently studied in complex media. Measured uptake pointed to a contrasted impact of cell walls and copper (Cu) on IHg and MeHg. Using a speciation modeling, differences in uptake were attributed to the differences in affinities of IHg and MeHg to organic matter in relation to Cu speciation. We also identified a distinct gene expression signature for IHg, MeHg, and Cu, further supporting different molecular toxicity of these trace elements. Our data provided fundamental knowledge on IHg and MeHg uptake in a key aquatic primary producer and confirmed the potential of transcriptomics to assess Hg exposure in environmentally realistic systems.
Collapse
Affiliation(s)
- Rébecca Beauvais-Flück
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| | - Ulf Skyllberg
- Department of Forest Ecology and Management , Swedish University of Agricultural Sciences , 901 83 Umeå , Sweden
| | - Claudia Cosio
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|
12
|
Dranguet P, Le Faucheur S, Slaveykova VI. Mercury bioavailability, transformations, and effects on freshwater biofilms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3194-3205. [PMID: 28771825 DOI: 10.1002/etc.3934] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/10/2016] [Accepted: 08/01/2017] [Indexed: 05/16/2023]
Abstract
Mercury (Hg) compounds represent an important risk to aquatic ecosystems because of their persistence, bioaccumulation, and biomagnification potential. In the present review, we critically examine state-of-the-art studies on the interactions of Hg compounds with freshwater biofilms, with an emphasis on Hg accumulation, transformations, and effects. Freshwater biofilms contain both primary producers (e.g., algae) and decomposers (e.g., bacteria and fungi), which contribute to both aquatic food webs and the microbial loop. Hence they play a central role in shallow water and streams, and also contribute to Hg trophic transfer through their consumption. Both inorganic and methylated mercury compounds accumulate in biofilms, which could transform them mainly by methylation, demethylation, and reduction. Accumulated Hg compounds could induce diverse metabolic and physiological perturbations in the microorganisms embedded in the biofilm matrix and affect their community composition. The bioavailability of Hg compounds, their transformations, and their effects depend on their concentrations and speciation, ambient water characteristics, biofilm matrix composition, and microorganism-specific characteristics. The basic processes governing the interactions of Hg compounds with biofilm constituents are understudied. The development of novel conceptual and methodological approaches allowing an understanding of the chemo- and biodynamic aspects is necessary to improve the knowledge on Hg cycling in shallow water as well as to enable improved use of freshwater biofilms as potential indicators of water quality and to support better informed risk assessment. Environ Toxicol Chem 2017;36:3194-3205. © 2017 SETAC.
Collapse
Affiliation(s)
- Perrine Dranguet
- Faculty of Sciences, School of Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, University of Geneva, Geneva, Switzerland
| | - Séverine Le Faucheur
- Faculty of Sciences, School of Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, University of Geneva, Geneva, Switzerland
| | - Vera I Slaveykova
- Faculty of Sciences, School of Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Dranguet P, Cosio C, Le Faucheur S, Beauvais-Flück R, Freiburghaus A, Worms IAM, Petit B, Civic N, Docquier M, Slaveykova VI. Transcriptomic approach for assessment of the impact on microalga and macrophyte of in-situ exposure in river sites contaminated by chlor-alkali plant effluents. WATER RESEARCH 2017; 121:86-94. [PMID: 28521238 DOI: 10.1016/j.watres.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Water quality degradation is a worldwide problem, but risk evaluation of chronic pollution in-situ is still a challenge. The present study aimed to evaluate the potential of transcriptomic analyses in representative aquatic primary producers to assess the impact of environmental pollution in-situ: the microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii were exposed 2 h in the Babeni Reservoir of the Olt River impacted by chlor-alkali plant effluent release resulting in increased concentrations of Hg and NaCl in receiving water. The response at the transcriptomic level was strong, resulting in up to 5485, and 8700 dysregulated genes (DG) for the microalga and for the macrophyte exposed in the most contaminated site, respectively. Transcriptomic response was congruent with the concentrations of Hg and NaCl in the water of the impacted reservoir. Genes involved in development, energy metabolism, lipid metabolism, nutrition, and RedOx homeostasis were dysregulated during in-situ exposure of both organisms. In addition, genes involved in the cell motility of C. reinhardtii and development of the cell wall of E. nuttallii were affected. DG were in line with adverse outcome pathways and transcriptomic studies reported after exposure to high concentrations of Hg and NaCl under controlled conditions in the laboratory. Transcriptomic response provided a sensitive measurement of the exposure as well as hints on the tolerance mechanisms of environmental pollution, and is thus promising as an early-warning tool to assess water quality degradation.
Collapse
Affiliation(s)
- Perrine Dranguet
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland.
| | - Séverine Le Faucheur
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Rebecca Beauvais-Flück
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Aline Freiburghaus
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Brice Petit
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Natacha Civic
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland.
| |
Collapse
|
14
|
Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci Rep 2017; 7:8034. [PMID: 28808314 PMCID: PMC5556115 DOI: 10.1038/s41598-017-08515-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
Contamination by mercury (Hg) is a worldwide concern because of Hg toxicity and biomagnification in aquatic food webs. Nevertheless, bioavailability and cellular toxicity pathways of inorganic (IHg) and methyl-Hg (MeHg) remain poorly understood. We analyzed the uptake, transcriptomic, and physiological responses in the microalga Chlamydomonas reinhardtii exposed to IHg or MeHg. Bioavailability of MeHg was up to 27× higher than for IHg. Genes involved in cell processes, energy metabolism and transport were dysregulated by both Hg species. Physiological analysis revealed an impact on photosynthesis and reduction–oxidation reaction metabolism. Nevertheless, MeHg dysregulated a larger number of genes and with a stronger fold-change than IHg at equivalent intracellular concentration. Analysis of the perturbations of the cell’s functions helped to derive a detailed mechanistic understanding of differences in cellular handling of IHg and MeHg resulting in MeHg having a stronger impact. This knowledge is central for the prediction of impact of toxicants on organisms.
Collapse
|
15
|
Song B, He H, Chen L, Yang S, Yongguang Y, Li Y. Speciation of Mercury in Microalgae by Isotope Dilution-inductively Coupled Plasma Mass Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1269119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Beibei Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Huijun He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lufeng Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Shifeng Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yin Yongguang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
16
|
Lanza WG, Achá D, Point D, Masbou J, Alanoca L, Amouroux D, Lazzaro X. Association of a Specific Algal Group with Methylmercury Accumulation in Periphyton of a Tropical High-Altitude Andean Lake. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:1-10. [PMID: 27822581 DOI: 10.1007/s00244-016-0324-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Periphyton relevance for methylmercury (MeHg) production and accumulation are now well known in aquatic ecosystems. Sulfate-reducing bacteria and other microbial groups were identified as the main MeHg producers, but the effect of periphyton algae on the accumulation and transfer of MeHg to the food web remains little studied. Here we investigated the role of specific groups of algae on MeHg accumulation in the periphyton of Schoenoplectus californicus ssp. (Totora) and Myriophyllum sp. in Uru Uru, a tropical high-altitude Bolivian lake with substantial fishing and mining activities accruing around it. MeHg concentrations were most strongly related to the cell abundance of the Chlorophyte genus Oedogonium (r 2 = 0.783, p = 0.0126) and to no other specific genus despite the presence of other 34 genera identified. MeHg was also related to total chlorophyll-a (total algae) (r 2 = 0.675, p = 0.0459), but relations were more significant with chlorophyte cell numbers, chlorophyll-b (chlorophytes), and chlorophyll-c (diatoms and dinoflagellates) (r 2 = 0.72, p = 0.028, r 2 = 0.744, p = 0.0214, and r 2 = 0.766, p = 0.0161 respectively). However, Oedogonium explains most variability of chlorophytes and chlorophyll-c (r 2 = 0.856, p = < 0.001 and r 2 = 0.619, p = 0.002, respectively), suggesting it is the most influential group for MeHg accumulation and periphyton algae composition at this particular location and given time.
Collapse
Affiliation(s)
- William G Lanza
- Carrera de Biología, Unidad de Calidad Ambiental, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Darío Achá
- Carrera de Biología, Unidad de Calidad Ambiental, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia.
| | - David Point
- Institut de Recherche pour le Dev́eloppement, Université de Toulouse III, CNRS, IRD, 31400, Toulouse, France
| | - Jeremy Masbou
- Institut de Recherche pour le Dev́eloppement, Université de Toulouse III, CNRS, IRD, 31400, Toulouse, France
| | - Lucia Alanoca
- Institut de Recherche pour le Dev́eloppement, Université de Toulouse III, CNRS, IRD, 31400, Toulouse, France
- LCABIE-IPREM, UMR 5254 - CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - David Amouroux
- Institut de Recherche pour le Dev́eloppement, Université de Toulouse III, CNRS, IRD, 31400, Toulouse, France
- LCABIE-IPREM, UMR 5254 - CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - Xavier Lazzaro
- Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 7208), Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement-207; CP53, 61 rue Buffon, 75005, Paris, France
| |
Collapse
|
17
|
Beauvais-Flück R, Chaumot A, Gimbert F, Quéau H, Geffard O, Slaveykova VI, Cosio C. Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:401-407. [PMID: 27585272 DOI: 10.1016/j.jhazmat.2016.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) represents an important risk for human health through the food webs contamination. Macrophytes bioaccumulate Hg and play a role in Hg transfer to food webs in shallow aquatic ecosystems. Nevertheless, the compartmentalization of Hg within macrophytes, notably major accumulation in the cell wall and its impact on trophic transfer to primary consumers are overlooked. The present work focusses on the trophic transfer of inorganic Hg (IHg) and monomethyl-Hg (MMHg) from the intracellular and cell wall compartments of the macrophyte Elodea nuttallii - considered a good candidate for phytoremediation - to the crustacean Gammarus fossarum. The results demonstrated that Hg accumulated in both compartments was trophically bioavailable to gammarids. Besides IHg from both compartments were similarly transferred to G. fossarum, while for MMHg, uptake rates were ∼2.5-fold higher in G. fossarum fed with the cell wall vs the intracellular compartment. During the depuration phase, Hg concentrations in G. fossarum varied insignificantly suggesting that both IHg and MMHg were strongly bound to biological ligands in the crustacean. Our data imply that cell walls have to be considered as an important source of Hg to consumers in freshwater food webs when developing procedures for enhancing aquatic environment protection during phytoremediation programs.
Collapse
Affiliation(s)
- Rebecca Beauvais-Flück
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1205 Geneva, Switzerland.
| | - Arnaud Chaumot
- Irstea, UR MALY Milieux Aquatiques, ÿcologie et Pollutions, Centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| | - Frédéric Gimbert
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR UFC/CNRS 6249 USC INRA, 16 route de Gray, F-25030 Besançon Cedex, France.
| | - Hervé Quéau
- Irstea, UR MALY Milieux Aquatiques, ÿcologie et Pollutions, Centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| | - Olivier Geffard
- Irstea, UR MALY Milieux Aquatiques, ÿcologie et Pollutions, Centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1205 Geneva, Switzerland.
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1205 Geneva, Switzerland.
| |
Collapse
|
18
|
Jiang P, Li Y, Liu G, Yang G, Lagos L, Yin Y, Gu B, Jiang G, Cai Y. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:466-475. [PMID: 27322904 DOI: 10.1016/j.jhazmat.2016.05.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/11/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA
| | - Guidi Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Leonel Lagos
- Applied Research Center, Florida International University, Miami, FL 33199, USA
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
19
|
Beauvais-Flück R, Slaveykova VI, Cosio C. Transcriptomic and Physiological Responses of the Green Microalga Chlamydomonas reinhardtii during Short-Term Exposure to Subnanomolar Methylmercury Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7126-7134. [PMID: 27254783 DOI: 10.1021/acs.est.6b00403] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of short-term exposure to subnanomolar methyl-mercury (MeHg) concentrations, representative of contaminated environments, on the microalga Chlamydomonas reinhardtii were assessed using both physiological end points and gene expression analysis. MeHg bioaccumulated and induced significant increase of the photosynthesis efficiency, while the algal growth, oxidative stress, and chlorophyll fluorescence were unaffected. At the molecular level, MeHg significantly dysregulated the expression of genes involved in motility, energy metabolism, lipid metabolism, metal transport, and antioxidant enzymes. Data suggest that the cells were able to cope with subnanomolar MeHg exposure, but this tolerance resulted in a significant cost to the cell energy and reserve metabolism as well as ample changes in the nutrition and motility of C. reinhardtii. The present results allowed gaining new insights on the effects and uptake mechanisms of MeHg at subnanomolar concentrations in aquatic primary producers.
Collapse
Affiliation(s)
- Rebecca Beauvais-Flück
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva , 66, boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Vera I Slaveykova
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva , 66, boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Claudia Cosio
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva , 66, boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| |
Collapse
|