1
|
Nguyen HD, Moss AF, Yan F, Romero-Sanchez H, Dao TH. Effects of Feeding Methionine Hydroxyl Analogue Chelated Zinc, Copper, and Manganese on Growth Performance, Nutrient Digestibility, Mineral Excretion, and Welfare Conditions of Broiler Chickens: Part 2: Sustainability and Welfare Aspects. Animals (Basel) 2025; 15:419. [PMID: 39943189 PMCID: PMC11816016 DOI: 10.3390/ani15030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the effects of the dietary supplementation of mineral methionine hydroxyl analogue chelates (MMHACs) zinc (Zn), copper (Cu), and manganese (Mn) on excreta nitrogen and mineral levels, housing conditions, and the welfare status of broilers. Three-hundred eighty-four day-old Ross 308 male chicks were randomly distributed to four dietary treatments, each consisting of eight replicate pens of twelve birds per pen. The treatments were (1) inorganic trace mineral ZnSO4 (110 ppm), CuSO4 (16 ppm), and MnO (120 ppm) (ITM); (2) MMHAC Zn (40 ppm), Cu (10 ppm), and Mn (40 ppm) (M10); (3) inorganic trace mineral ZnSO4 (110 ppm), tribasic copper chloride (125 ppm), and MnO (120 ppm) (T125); and (4) MMHAC Zn (40 ppm), Cu (30 ppm), and Mn (40 ppm) (M30). Three feeding phases including the starter (days 0-10), grower (days 10-21), and finisher (days 21-42) were used. The findings showed that birds offered MMHACs at both levels had significantly lower Zn and Mn levels, and birds offered the T125 diet had higher Cu levels in the excreta compared to those fed the other diets on days 10, 16, 21, 28, and 42 (p < 0.001). The life cycle assessment showed that MMHAC supplementation at 30 ppm can be expected to improve the sustainability of the poultry industry in terms of reduced emissions into the environment, whereas excreta nitrogen and moisture content, litter conditions, levels of air gases (ammonia, carbon dioxide, and methane), and welfare indicators were similar between the dietary treatments. Hence, the supplementation of MMHACs to broiler diets at 30 ppm could maintain litter quality and welfare status while reducing emissions into the environment and the Zn, Mn, and/or Cu excretion of broilers, therefore reducing the environmental impacts of broiler production.
Collapse
Affiliation(s)
- Hoang Duy Nguyen
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (H.D.N.); (A.F.M.)
| | - Amy Fay Moss
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (H.D.N.); (A.F.M.)
| | - Frances Yan
- Novus International, Inc., 20 Research Park Drive, St. Charles, MI 63304, USA; (F.Y.); (H.R.-S.)
| | - Hugo Romero-Sanchez
- Novus International, Inc., 20 Research Park Drive, St. Charles, MI 63304, USA; (F.Y.); (H.R.-S.)
| | - Thi Hiep Dao
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (H.D.N.); (A.F.M.)
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Bist RB, Yang X, Subedi S, Ritz CW, Kim WK, Chai L. Electrostatic particle ionization for suppressing air pollutants in cage-free layer facilities. Poult Sci 2024; 103:103494. [PMID: 38335670 PMCID: PMC10864805 DOI: 10.1016/j.psj.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The increasing demand for cage-free (CF) poultry farming raises concern regarding air pollutant emissions in these housing systems. Previous studies have indicated that air pollutants such as particulate matter (PM) and ammonia (NH3) pose substantial risks to the health of birds and workers. This study aimed to evaluate the efficacy of electrostatic particle ionization (EPI) technology with different lengths of ion precipitators in reducing air pollutants and investigate the relationship between PM reduction and electricity consumption. Four identical CF rooms were utilized, each accommodating 175 hens of 77 wk of age (WOA). A Latin Square Design method was employed, with 4 treatment lengths: T1 = control (0 m), T2 = 12 ft (3.7 m), T3 = 24 ft (7.3 m), and T4 = 36 ft (11.0 m), where room and WOA are considered as blocking factors. Daily PM concentrations, temperature, and humidity measurements were conducted over 24 h, while NH3 levels, litter moisture content (LMC), and ventilation were measured twice a week in each treatment room. Statistical analysis involved ANOVA, and mean comparisons were performed using the Tukey HSD method with a significance level of P ≤ 0.05. This study found that the EPI system with longer wires reduced PM2.5 concentrations (P ≤ 0.01). Treatment T2, T3, and T4 led to reductions in PM2.5 by 12.1%, 19.3%, and 31.7%, respectively, and in small particle concentrations (particle size >0.5 μm) by 18.0%, 21.1%, and 32.4%, respectively. However, no significant differences were observed for PM10 and large particles (particle size >2.5 μm) (P < 0.10), though the data suggests potential reductions in PM10 (32.7%) and large particles (33.3%) by the T4 treatment. Similarly, there was no significant impact of treatment on NH3 reduction (P = 0.712), possibly due to low NH3 concentration (<2 ppm) and low LMC (<13%) among treatment rooms. Electricity consumption was significantly related to the length of the EPI system (P ≤ 0.01), with longer lengths leading to higher consumption rates. Overall, a longer-length EPI corona pipe is recommended for better air pollutant reduction in CF housing. Further research should focus on enhancing EPI technology, assessing cost-effectiveness, and exploring combinations with other PM reduction strategies.
Collapse
Affiliation(s)
- Ramesh Bahadur Bist
- Department of Poultry Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Xiao Yang
- Department of Poultry Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sachin Subedi
- Department of Poultry Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Casey W Ritz
- Department of Poultry Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Lilong Chai
- Department of Poultry Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
de Sousa FC, Tinôco IDFF, Cruz VF, Barbari M, Saraz JAO, da Silva AL, Coelho DJDR, Baptista F. Potential for Ammonia Generation and Emission in Broiler Production Facilities in Brazil. Animals (Basel) 2023; 13:ani13040675. [PMID: 36830464 PMCID: PMC9951733 DOI: 10.3390/ani13040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Air quality is one of the main factors that must be guaranteed in animal production. However, the measurement of pollutants is still a problem in several countries because the available methods are costly and do not always apply to the reality of the constructive typology adopted, as in countries with a hot climate, which adopt predominantly open facilities. Thus, the objective of the present study was to develop predictive models for the potential generation and emission of ammonia in the production of broiler chickens with different types of litter, different reuse cycles and under different climatic conditions. Samples of poultry litter from thirty commercial aviaries submitted to different air temperatures were analyzed. The experiment was conducted and analyzed in a completely randomized design, following a factorial scheme. Models were developed to predict the potential for generation and emission of ammonia, which can be applied in facilities with ambient conditions of air temperature between 25 and 40 °C and with wood shaving bed with up to four reuse cycles and coffee husks bed with up to six reuse cycles. The developed and validated models showed high accuracy indicating that they can be used to estimate the potential for ammonia generation and emission.
Collapse
Affiliation(s)
- Fernanda Campos de Sousa
- Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570-900, Brazil
- Correspondence: ; Tel.: +55-31-3612-4013 (36570–900)
| | | | - Vasco Fitas Cruz
- Departamento de Engenharia Rural, Escola de Ciências e Tecnologia, MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Universidade de Évora, Évora 7000-849, Portugal
| | - Matteo Barbari
- Department of Agriculture, Food, Environment and Forestry (GESAAF), Università degli Studi di Firenze, 13-50145 Firenze, Italy
| | | | - Alex Lopes da Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Diogo José de Rezende Coelho
- Departamento de Engenharia Rural, Escola de Ciências e Tecnologia, MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Universidade de Évora, Évora 7000-849, Portugal
| | - Fatima Baptista
- Departamento de Engenharia Rural, Escola de Ciências e Tecnologia, MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Universidade de Évora, Évora 7000-849, Portugal
| |
Collapse
|
4
|
Bist RB, Subedi S, Chai L, Yang X. Ammonia emissions, impacts, and mitigation strategies for poultry production: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116919. [PMID: 36516703 DOI: 10.1016/j.jenvman.2022.116919] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Confined animal feeding operations (CAFOs) are the main sources of air pollutants such as ammonia (NH3) and greenhouse gases. Among air pollutants, NH3 is one of the most concerned gasses in terms of air quality, environmental impacts, and manure nutrient losses. It is recommended that NH3 concentrations in the poultry house should be controlled below 25 ppm. Otherwise, the poor air quality will impair the health and welfare of animals and their caretakers. After releasing from poultry houses, NH3 contributes to the form of fine particulate matters in the air and acidify soil and water bodies after deposition. Therefore, understanding the emission influential factors and impacts is critical for developing mitigation strategies to protect animals' welfare and health, environment, and ecosystems. This review paper summarized the primary NH3 emission influential factors, such as how poultry housing systems, seasonal changes, feed management, bedding materials, animal densities, and animals' activities can impact indoor air quality and emissions. A higher level of NH3 (e.g., >25 ppm) results in lower production efficiency and poor welfare and health, e.g., respiratory disorder, less feed intake, lower growth rates or egg production, poor feed use efficiency, increased susceptibility to infectious diseases, and mortality. In addition, the egg quality (e.g., albumen height, pH, and condensation) was reduced after laying hens chronically exposed to high NH3 levels. High NH3 levels have detrimental effects on farm workers' health as it is a corrosive substance to eyes, skin, and respiratory tract, and thus may cause blindness, irritation (throat, nose, eyes), and lung illness. For controlling poultry house NH3 levels and emissions, we analyzed various mitigation strategies such as litter additives, biofiltration, acid scrubber, dietary manipulation, and bedding materials. Litter additives were tested with 50% efficiency in broiler houses and 80-90% mitigation efficiency for cage-free hen litter at a higher application rate (0.9 kg m-2). Filtration systems such as multi-stage acid scrubbers have up to 95% efficiency on NH3 mitigation. However, cautions should be paid as mitigation strategies could be cost prohibitive for farmers, which needs assistances or subsidies from governments.
Collapse
Affiliation(s)
- Ramesh Bahadur Bist
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sachin Subedi
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Lilong Chai
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA.
| | - Xiao Yang
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Wang W, Dang G, Khan I, Ye X, Liu L, Zhong R, Chen L, Ma T, Zhang H. Bacterial Community Characteristics Shaped by Artificial Environmental PM2.5 Control in Intensive Broiler Houses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:723. [PMID: 36613044 PMCID: PMC9819255 DOI: 10.3390/ijerph20010723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Multilayer cage-houses for broiler rearing have been widely used in intensive Chinese farming in the last decade. This study investigated the characteristics and influencing factors of bacterial communities in the PM2.5 of broiler cage-houses. The PM2.5 samples and environmental variables were collected inside and outside of three parallel broiler houses at the early, middle, and late rearing stages; broiler manure was also gathered simultaneously. The bacterial 16S rRNA sequencing results indicated that indoor bacterial communities were different from the outdoor atmosphere and manure. Furthermore, the variations in airborne bacterial composition and structure were highly influenced by the environmental control variables at different growth stages. The db-RDA results showed that temperature and wind speed, which were artificially modified according to managing the needs for broiler growth, were the main factors affecting the diversity of dominant taxa. Indoor airborne and manurial samples shared numerous common genera, which contained high abundances of manure-origin bacteria. Additionally, the airborne bacterial community tended to stabilize in the middle and late stages, but the population of potentially pathogenic bacteria grew gradually. Overall, this study enhances the understanding of airborne bacteria variations and highlighted the potential role of environmental control measures in intensive farming.
Collapse
Affiliation(s)
- Wenxing Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Imran Khan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaobin Ye
- Bureau of Agriculture and Rural Affairs of Luanping County, Chengde 068250, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Teng Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Zhang X, Wang A, Chen Y, Bao J, Xing H. Intestinal barrier dysfunction induced by ammonia exposure in pigs in vivo and in vitro: The protective role of L-selenomethionine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114325. [PMID: 36436255 DOI: 10.1016/j.ecoenv.2022.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ammonia has been reported to have a variety of toxicity to aquatic animals, farm animals and humans. However, its potential toxicity on the intestines remains unknown. L-selenomethionine is one of the important organic selenium sources. However, the mitigating effect of L-selenomethionine on ammonia exposure toxicity is still lacking. Therefore, in this study, the mechanism of toxic action of ammonia on intestinal tract and the detoxification effect of L-selenomethionine were examined. We evaluated the intestinal toxicity of ammonia and the alleviating effect of L-selenomethionine in an in vivo model, and then verified it in vitro model by a variety of cutting-edge experimental techniques. Our results showed that ammonia exposure causes oxidative stress, necroptosis, Th1/Th2 imbalance and inflammation in the intestinal tissue and the intestinal cells, and L-selenomethionine had a significant mitigation effect on the changes of these indexes induced by ammonia. In conclusion, ammonia exposure caused oxidative stress and Th1/Th2 imbalance in the porcine small intestine and IPEC-J2 cells, and that excessive ROS accumulation-mediated necroptosis targeted inflammatory responses, resulting in the destruction of tight connections of intestinal cells, thereby causing intestinal barrier dysfunction. L-selenomethionine could effectively reduce the intestinal injury caused by ammonia exposure and antagonize the toxic effect of ammonia.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
7
|
Zhang X, Wang A, Wang X, Zhao Q, Xing H. Evaluation of L-Selenomethionine on Ameliorating Cardiac Injury Induced by Environmental Ammonia. Biol Trace Elem Res 2022; 200:4712-4725. [PMID: 35094233 DOI: 10.1007/s12011-021-03071-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
L-Selenomethionine is one of the important organic selenium sources. The supplementation of L-selenomethionine in diets is significant to improve the health of pigs. Ammonia is a major pollutant in the atmosphere and piggery, posing a threat to human and animal health. Although ammonia exposure can damage the heart, the mechanism of cardiac toxicity by ammonia is still unknown. In this study, we investigated the mechanism of cardiac injury induced by ammonia exposure in pigs and the protective effect of L-selenomethionine on its cardiotoxicity. The results showed that the blood ammonia content of pig increased significantly in ammonia group, the expressions of energy metabolism-related genes (LDHA, PDK4, HK2, and CPTIB) and the oxidative stress indexes were significantly changed (P < 0.05), the AMPK/PPAR-γ/NF-κB signaling pathways were activated, the chromatin edge aggregation and nuclear pyknosis were observed in ultrastructure, the apoptotic cells were significantly increased (P < 0.05), and the mRNA and protein expressions of apoptosis-related genes (Bcl-2, Bax, Cyt-c, caspase-3, and caspase-9) were significantly affected (P < 0.05). The above changes were significantly alleviated in ammonia + L-selenomethionine group, but there were still significant differences compared with the C group (P < 0.05). Our results indicated that ammonia exposure could cause energy metabolism disorder and oxidative stress and induce apoptosis of cardiomyocytes through AMPK/PPAR-γ/NF-κB pathways, which could lead to cardiac injury and affect cardiac function. L-Selenomethionine could effectively alleviate the cardiac damage caused by ammonia and antagonize the cardiotoxicity of ammonia.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinqiao Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
8
|
Fu X, Zhang Y, Zhang YG, Yin YL, Yan SC, Zhao YZ, Shen WZ. Research and application of a new multilevel fuzzy comprehensive evaluation method for cold stress in dairy cows. J Dairy Sci 2022; 105:9137-9161. [PMID: 36153158 DOI: 10.3168/jds.2022-21828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
Effective and comprehensive evaluation of cold stress is critical for healthy dairy cow breeding in the winter. Previous studies on dairy cow cold stress have considered thermal environmental factors but not physiological factors or air quality. Therefore, this study aimed to propose a multilevel fuzzy comprehensive evaluation (FCE) method for cold stress in dairy cows based on the analytic hierarchy process (AHP) and a genetic algorithm (GA). First, the AHP was used to construct an evaluation index system for cold stress in dairy cows from 3 dimensions: thermal environment (temperature, relative humidity, wind speed, and illumination), physiological factors (respiratory rate, body surface temperature), and air quality [NH3, CO2, inhalable particulate matter (PM10)]. Second, the consistency test of the judgment matrix was transformed into a nonlinear constrained optimization problem and solved using the GA. Next, based on fuzzy set theory, the comment set and membership function were established to classify the degree of cold stress into 5 levels: none, mild, moderate, high, and extreme. Then, the degree of cold stress in cows was obtained using multilevel fuzzy comprehensive judgment. To investigate the effect of illumination indicators on cold stress in dairy cows, 24 prelactation cows from the south and north sides were selected for a 117-d comprehensive cold stress evaluation. The results showed that the mean mild cold stress durations were 605.3 h (25.22 d) and 725.5 h (30.23 d) and the moderate cold stress durations were 67.2 h (2.8 d) and 96 h (4.0 d) on the south and north sides, respectively. Simultaneously, generalized linear mixed model showed that there were significant correlations between the daily cold stress duration and milk yield, feeding time, lying time, and active steps in the cows on both sides. This method can reasonably indicate cow cold stress conditions and better guide cold protection practices in actual production.
Collapse
Affiliation(s)
- X Fu
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, PR China
| | - Y Zhang
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, PR China
| | - Y G Zhang
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Y L Yin
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, PR China
| | - S C Yan
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, PR China
| | - Y Z Zhao
- Department of Computer Science, University of California, Irvine 92612
| | - W Z Shen
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Mitigation of Air Pollutants by UV-A Photocatalysis in Livestock and Poultry Farming: A Mini-Review. Catalysts 2022. [DOI: 10.3390/catal12070782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet (UV)-based photocatalysis has been the subject of numerous investigations focused on mitigating undesirable pollutants in the gas phase. Few works report on applications beyond the proof of the concept. Even less is known about the current state of the art of UV photocatalysis in the context of animal agriculture. A growing body of research published over the last 15 years has advanced the knowledge and feasibility of UV-A photocatalysis for swine and poultry farm applications. This review paper summarizes UV-A photocatalysis technology’s effectiveness in mitigating targeted air pollutants in livestock and poultry farms. Specifically, air pollutants include odor, odorous VOCs, NH3, H2S and greenhouse gases (CO2, CH4, N2O). We trace the progression of UV-A photocatalysis applications in animal farming since the mid-2000 and developments from laboratory to farm-scale trials. In addition, this review paper discusses the practical limitations and outlines the research needs for increasing the technology readiness and practical UV application in animal farming.
Collapse
|
10
|
Ni JQ, Erasmus MA, Croney CC, Li C, Li Y. A critical review of advancement in scientific research on food animal welfare-related air pollution. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124468. [PMID: 33218910 DOI: 10.1016/j.jhazmat.2020.124468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Air pollution generates hazardous pollutants that have resulted in safety, health, and other welfare issues of food animals. This paper reviewed scientific research advancement in food animal welfare-related air pollution based on 219 first-hand research publications in refereed journals (referred to as "RPs") over the past nine decades. Scientific studies in this area began in the 1930s. The number of RPs has increased significantly with each decade from the 1960s to the 1980s, then decreased until the 2010s. Twenty-six countries have contributed to this multidisciplinary research. About 52% of the studies were conducted in the U.S. and U.K. Research activities have surged in China since the 2010s. On-farm discoveries in air toxicity that resulted in animal death or injury were all from observational studies. About 75% of the studies were experimental and conducted primarily under laboratory conditions. Ammonia (NH3) was the main pollutant in 59% of the RPs, followed by dust, hydrogen sulfide (H2S), bacteria and endotoxins, carbon dioxide (CO2), carbon monoxide (CO), silo gas, sulfur dioxide (SO2), and odor. Approximately 23% of RPs reported multiple pollutants in the same study. The most intensively studied animal species were poultry (broilers, hens, turkeys, ducks, and eggs and embryos in 44% of the RPs) and pigs (also 44%), followed by cattle, and sheep and goats. Scientific investigations in this area were driven by the research focuses in the areas of animal agriculture and industrial air pollution. Some major research teams played important roles in advancing scientific research. However, research in this area is still relatively limited. There is a great need to overcome some technical challenges and reverse the trend of decreasing research activities in North America and Europe.
Collapse
Affiliation(s)
- Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Marisa A Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Candace C Croney
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Chunmei Li
- Department of Animal Nutrition and Feed Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yansen Li
- Department of Animal Nutrition and Feed Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
11
|
Hwang O, Scoggin K, Andersen D, Ro K, Trabue S. Swine manure dilution with lagoon effluent impact on odor reduction and manure digestion. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:336-349. [PMID: 33415744 DOI: 10.1002/jeq2.20197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Manure management systems have a major impact on odor from swine operations. A study was conducted to compare deep-pit manure management systems to flushing barn manure management systems for odor reduction and organic matter degradation. Bioreactors were used to mimic manure management systems in which manure and lagoon effluent were loaded initially, and subsequent manure was added daily at 5% of its storage capacity (1 L). Final manure-to-lagoon effluent ratios were 10:0 (deep-pit manure management system), 7:3 (Korean flushing systems), 5:5 (enhanced flushing systems), and 2:8 (enhanced flushing systems). At the end of the trial, at 4 (2:8), 10 (5:5), or 14 (10:0, 7:3) d, manure and gas concentrations of odorants were measured, including total solids (TS), total N (TN), and total C (TC) of manure. Odor was evaluated using the odor activity values (OAVs), and regression analysis was used to determine the effects of dilution and TS on manure properties and OAVs. Solids in the manure were positively correlated to TN, TC, straight chain fatty acids (SCFAs), branch chain fatty acids (BCFAs), total phenols, and total indoles and positively correlated to OAV for SCFAs, BCFAs, ammonia, total phenols, and total indoles. Reducing TS by 90% reduced BCFA, ammonia, phenols, and indoles by equal amounts in air. Carbon dioxide was the main C source evolved, averaging over 90%, and CH4 increased with dilution quadratically. Overall, reducing solids in manure by dilution had the biggest impact on reducing odor and increasing organic C degradation.
Collapse
Affiliation(s)
- Okhwa Hwang
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-Ro, Iseo-Myeon, Wanju-Gun, Jeonju, Jeollabuk-Do, 55365, Republic of Korea
| | - Kenwood Scoggin
- National Lab. for Agriculture and the Environment, USDA-ARS, 1015 N. University Blvd., Ames, IA, 50011, USA
| | - Daniel Andersen
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., 3348 Elings Hall, Ames, AI, 50011, USA
| | - Kyoung Ro
- Coastal Plains Soil, Water, and Plant Research Center, USDA-ARS, 2611 West Lucas St., Florence, SC, 29501, USA
| | - Steven Trabue
- National Lab. for Agriculture and the Environment, USDA-ARS, 1015 N. University Blvd., Ames, IA, 50011, USA
| |
Collapse
|
12
|
Trabue SL, Kerr BJ, Scoggin KD, Andersen D, van Weelden M. Swine diets impact manure characteristics and gas emissions: Part I protein level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142528. [PMID: 33045605 DOI: 10.1016/j.scitotenv.2020.142528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Crude protein (CP) is a key nutrient in swine diets supplying essential amino acids, N, and S to animals for growth are fed in excess to maximize growth. Swine diets reduced in CP and supplemented with crystalline amino acids have been shown effective at maintaining animal growth while increasing overall CP use efficiency. A feeding trial study was conducted to determine the effects of reduced dietary CP levels on manure slurry chemical properties and gas emissions. A total of 24 gilts averaging 111 kg BW were fed corn and soybean meal diets formulated with 8.7, 14.8, and 17.6% CP using crystalline amino acid supplementation in the 8.7 and 14.8% CP diets, but only intact protein, soybean meal, in the diet containing 17.6% CP. Diets were fed for 45 d with an average daily feed intake (ADFI) of 2.70 kg across all diets. Animals were fed twice daily with both feces and urine collected during each feeding and added to animal-specific manure storage containers. At the end of the study, manure slurries were monitored for gas emissions and chemical properties. Increasing dietary CP levels increased manure pH, total solids, total N, and total S, including increased levels of ammonia (NH3), volatile fatty acids, and phenolic compounds. Pigs fed lower CP diets had lower emissions of NH3, branched chain fatty acids (BCFA), and phenol compounds which translated into lower emissions in total odor. Emissions of NH3 and odor were reduced by 8.9% and 4.2%, respectively, for each unit percent decline in dietary CP. Hydrogen sulfide was the dominate odorant associated with manure odor emissions. Based on nutrient mass balance, animal retention of dietary N and S increased by 7.0% and 2.4%, respectively, for each unit percent drop in crude protein fed animals, while C retention in the animal declined by 2.1%.
Collapse
Affiliation(s)
- S L Trabue
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America.
| | - B J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - K D Scoggin
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - D Andersen
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| | - M van Weelden
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| |
Collapse
|
13
|
Guo L, Zhao B, Zhao D, Li J, Tong J, Chang Z, Liu X. Evaluation of conifer and broad-leaved barriers in intercepting particulate matters in a wind tunnel. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1314-1323. [PMID: 32703090 DOI: 10.1080/10962247.2020.1799883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Fugitive dust is an important source of particulate matters (PM) emission in the air. Vegetation barriers (VBs) can be an effective way to mitigate PM from fugitive dust sources. It is meaningful to choose appropriate plants to establish VBs that can efficiently capture PM from various sources. This study was conducted to establish comparable and repeatable conditions to evaluate the capability of different VB species in mitigating PM emission from certain fugitive dust source. The airflow around two VBs and their PM interception mechanism was studied in a wind tunnel with simulated PM emission source of animal feeding operations. The species used for the two VBs were conifers represented by Pinus Sylvestris var. mongolica Litv. (PS) and the broad-leaved species represented by Syringa Oblate Lindl. (SOL). The results showed that the interception efficiency of the PS vegetation barrier was only slightly lower than that of SOL vegetation, while the PS had a lower effect on the wind speed at the similar leaf surface area. On the other hand, there were a large number of disordered "ridged" stripes on the microscopic structure of the hydrophilic leaves of SOL and PS, and a large amount of fine particles deposited on the leaves were observed, indicating that the microscopic geometric surface structure increased the deposition efficiency of the particles. These findings help to better understand the potential of tree species to reduce PM in environments. Implications: To evaluate the capability of different VB species in mitigating PM emission from certain fugitive dust source, airflow around the two VBs and their PM interception mechanisms were studied in wind tunnels with comparable and repeatable conditions. The results showed that the interception efficiency of the Pinus Sylvestris var. mongolica Litv. (PS) was only slightly lower than that of the Syringa Oblate Lindl. (SOL) vegetation, while the PS had a lowering effect on the wind speed at the same low leaf surface area. Microscopic analysis of leaves surface indicated that the microscopic characteristics increased the deposition efficiency of the particles.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Bionic Engineering, (Ministry of Education of China, Jilin University , Changchun, People's Republic of China
- College of Biological and Agricultural Engineering, Jilin University , Changchun, People's Republic of China
| | - Bo Zhao
- Key Laboratory of Bionic Engineering, (Ministry of Education of China, Jilin University , Changchun, People's Republic of China
- College of Biological and Agricultural Engineering, Jilin University , Changchun, People's Republic of China
| | - Dongsen Zhao
- Key Laboratory of Bionic Engineering, (Ministry of Education of China, Jilin University , Changchun, People's Republic of China
- College of Biological and Agricultural Engineering, Jilin University , Changchun, People's Republic of China
| | - Jin Li
- College of Biological and Agricultural Engineering, Jilin University , Changchun, People's Republic of China
| | - Jin Tong
- Key Laboratory of Bionic Engineering, (Ministry of Education of China, Jilin University , Changchun, People's Republic of China
- College of Biological and Agricultural Engineering, Jilin University , Changchun, People's Republic of China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, (Ministry of Education of China, Jilin University , Changchun, People's Republic of China
- College of Biological and Agricultural Engineering, Jilin University , Changchun, People's Republic of China
| | - Xin Liu
- Key Laboratory of Bionic Engineering, (Ministry of Education of China, Jilin University , Changchun, People's Republic of China
- College of Biological and Agricultural Engineering, Jilin University , Changchun, People's Republic of China
| |
Collapse
|
14
|
Wang H, Zhang Y, Han Q, Xu Y, Hu G, Xing H. The inflammatory injury of heart caused by ammonia is realized by oxidative stress and abnormal energy metabolism activating inflammatory pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140532. [PMID: 32623172 DOI: 10.1016/j.scitotenv.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Inflammation is an essential biological process for maintaining homeostasis in the body. However, excessive inflammatory response is closely related to many chronic diseases. Ammonia is a known environmental pollutant and a main harmful gas in the environment of livestock house. It causes deterioration of air quality and poses a threat to human and animal health. Chickens are very sensitive to ammonia. In order to assess the toxicity of ammonia to the heart, the pathology, ATPase activities, markers of oxidative stress, inflammatory pathways and inflammation markers were investigated in the hearts of chickens exposed to ammonia. The results showed that the cardiac pathological structure, oxidative stress index, and ATPase activity changed significantly in ammonia-treated chickens. In addition, the inflammation pathways (JAK/STAT and MAPK) were activated in the ammonia group, and the inflammatory markers (COX-2, TNF-α, NF-κB and PPAR-γ) were significantly altered at both mRNA and protein levels. In conclusion, excess ammonia can activate inflammatory pathways through oxidative stress and abnormal energy metabolism, and induce cardiac inflammatory injury. Our findings will provide a new insight for better assessing the toxicity mechanism of ammonia on the heart.
Collapse
Affiliation(s)
- Huan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu Zhang
- Heilongjiang Agricultural and Rural Department, 4-1 Wenfu Street, Harbin 150060, China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guanghui Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
15
|
Xiang R, Zhang A, Lei C, Kong L, Ye X, Zhang X, Zeng J, Wang HN. Spatial variability and evaluation of airborne bacteria concentration in manure belt poultry houses2. Poult Sci 2019; 98:1202-1210. [PMID: 30500949 DOI: 10.3382/ps/pey511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/14/2018] [Indexed: 11/20/2022] Open
Abstract
Manure belt poultry houses were widely used for egg production. However, reliable spatial distribution of airborne bacteria data from long-term on-farm monitoring in manure belt houses are scarce. In this study, the airborne bacteria were collected by the Andersen air microorganism sampler in a 4 tiers and an 8 tiers layer house, respectively. Results revealed that the airborne bacteria concentration range from 565 ± 247 CFU/m3 to 12,118 ± 883 CFU/m3 inside the 4 tiers poultry farmhouse and 459 ± 247 to 12,966 ± 884 CFU/m3 inside 8 tiers poultry farmhouse, respectively. The average airborne bacterial concentrations in the 4 and 8 tiers manure belt houses were 4,527 ± 2,509 and 5,489 ± 2,579 CFU/m3, respectively. Significant spatial variations of airborne bacteria concentration were observed for both houses. Spatial distribution of airborne bacteria concentration along the long axis direction can be divided into 3 regions: the low concentration region (<6,000 CFU/m3), the transition region (6,000-10,000 CFU/m3), and the high concentration region (>10,000 CFU/m3), and airborne bacteria concentration was symmetrically distributed along the short axis direction inside both houses. We used 5 and 3 sampling locations to assess the average and maximum airborne bacterial concentration inside the manure belt houses, respectively. The average airborne bacteria concentration of 3 sampling locations was closest to the maximum concentration of both houses. It is more useful to use 3 sampling locations to monitor the change of the maximum airborne bacterial concentration inside the manure belt houses.
Collapse
Affiliation(s)
- Rong Xiang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Linghan Kong
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xiaolan Ye
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xiuzhong Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Jinxin Zeng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| |
Collapse
|
16
|
Trabue S, Scoggin K, Tyndall J, Sauer T, Hernandez-Ramirez G, Pfeiffer R, Hatfield J. Odorous compounds sources and transport from a swine deep-pit finishing operation: A case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:12-23. [PMID: 30551025 DOI: 10.1016/j.jenvman.2018.10.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Odor emissions from swine finishing operations are an air quality issue that affects residents at the local level. A study was conducted at a commercial swine deep-pit finishing operation in central Iowa to monitor odorous compounds emitted and transported offsite. Gaseous compounds were sampled using either sorbent tubes or canisters with GC/MS analysis, and particulates matter (PM10) were sampled with high volume samplers and thermally extracted onto sorbent tubes for GC/MS analysis. Major odorous chemical classes detected at the swine facility included volatile sulfur compounds (VSC), volatile fatty acids (VFA), phenol and indole compounds. Manure storage was the main source of odorous compounds of which hydrogen sulfide (H2S), methanethiol, 4-methylphenol, and 3-methylindole were key offenders. Only H2S and 4-methylphenol were detected above odor threshold values (OTV) at all locations around the facility and both 4-methylphenol and 3-methylindole were detected above their OTV 1.5 km downwind from the swine facility. Odorous compounds generated during agitation and pumping of the deep pits was mainly H2S. Odorants were mainly transported in the gas phase with less than 0.1% being associated with PM10. Odor mitigation efforts should focus on gaseous compounds emitted from deep-pits and especially during manure agitation and deep-pit pumping.
Collapse
Affiliation(s)
- Steven Trabue
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States.
| | - Kenwood Scoggin
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States
| | - John Tyndall
- Iowa State University, Department of Natural Resources Ecology and Management, 339 Science Hall II, Ames, IA, 50011, United States
| | - Thomas Sauer
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States
| | - Guillermo Hernandez-Ramirez
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States; University of Alberta, Department of Renewable Resources, 420 Earth Science Bld., Edmonton, Alberta, T6G 2H5, Canada
| | - Richard Pfeiffer
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States
| | - Jerry Hatfield
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States
| |
Collapse
|
17
|
Kumar V, Kumar S, Kim KH, Tsang DCW, Lee SS. Metal organic frameworks as potent treatment media for odorants and volatiles in air. ENVIRONMENTAL RESEARCH 2019; 168:336-356. [PMID: 30384228 DOI: 10.1016/j.envres.2018.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The presence of odorants/volatiles in the air exerted various types of negative impacts on the surrounding environment. Their concentrations in indoor/outdoor air, if exceeding the threshold level, may not only affect human health but also deteriorate living standards. To maintain and enhance the quality of life, a better tool for the removal of these molecules is in great demand. Metal-organic frameworks (MOFs) and their associated materials offer an excellent platform for the treatment of odorants/volatiles in air (and water) systems. The diversity of ligands and metal ions in their frame imparts large loading capacities and excellent selectivity for a variety of targetable VOCs and/or odorants. This review discusses the use of MOFs and their composites to treat odorants/volatile molecules in gaseous media, with extensive discussion of their adsorptive uptakes, along with methods for their synthesis and regeneration. Moreover, the progression of odorant/volatile removal by MOFs is considered, with a special note on future directions in this emerging research field.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India
| | - Suresh Kumar
- Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sang-Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
18
|
Szogi AA, Loughrin JH, Vanotti MB. Improved water quality and reduction of odorous compounds in anaerobic lagoon columns receiving pre-treated pig wastewater. ENVIRONMENTAL TECHNOLOGY 2018; 39:2613-2621. [PMID: 28764601 DOI: 10.1080/09593330.2017.1363294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large volumes of wastewater from confined pig production are stored in anaerobic lagoons. Control methods are needed to reduce air pollution by foul odors released from these lagoons. In a pilot-scale experiment, we evaluated the effect of pig wastewater pre-treatment on reducing the concentration of selected malodor compounds in lagoons receiving liquid from: (1) flocculant enhanced solid-liquid separation (SS), and (2) solid-liquid separation plus biological N treatment using nitrification-denitrification (SS+NDN). A conventional anaerobic lagoon was included as a control. Concentrations of five selected malodorous compounds (phenol, p-cresol, 4-ethylphenol, indole, and skatole) and water quality parameters (ammonia-nitrogen and chemical oxygen demand) were determined in lagoon effluents. The SS+NDN pretreatment was more efficient than the SS in reducing odorous compounds in the lagoon liquid. The SS+NDN reduced by about 99% the liquid concentrations of all selected compounds. An odor panel test revealed that SS was ineffective to reduce the human sense of malodor with respect to the control. Whereas the SS+NDN had the significant lowest odor intensity and unpleasantness. These results are supported by the strong correlations found between the sum of odorous compound concentration with odor panel results and concentrations of both ammonium-nitrogen and chemical oxygen demand in lagoon liquid samples.
Collapse
Affiliation(s)
- Ariel A Szogi
- a United States Department of Agriculture - Agricultural Research Service , Coastal Plains, Soil, Water and Plant Research Center , Florence , SC , USA
| | - John H Loughrin
- b United States Department of Agriculture - Agricultural Research Service , Food Animal Environmental Systems Research Unit , Bowling Green , KY , USA
| | - Matias B Vanotti
- a United States Department of Agriculture - Agricultural Research Service , Coastal Plains, Soil, Water and Plant Research Center , Florence , SC , USA
| |
Collapse
|
19
|
Yi B, Chen L, Sa R, Zhong R, Xing H, Zhang H. High concentrations of atmospheric ammonia induce alterations of gene expression in the breast muscle of broilers (Gallus gallus) based on RNA-Seq. BMC Genomics 2016; 17:598. [PMID: 27515403 PMCID: PMC4982197 DOI: 10.1186/s12864-016-2961-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND High concentrations of atmospheric ammonia are one of the key environmental stressors affecting broiler production performance, which causes remarkable economic losses as well as potential welfare problems of the broiler industry. Previous reports demonstrated that high levels of ammonia altered body fat distribution and meat quality of broilers. However, the molecular mechanisms and metabolic pathways in breast muscle altered by high concentrations of ambient ammonia exposure on broilers are still unknown. RESULTS This study utilized RNA-Seq to compare the transcriptomes of breast muscles to identify differentially enriched genes in broilers exposed to high and low concentrations of atmospheric ammonia. A total of 267 promising candidate genes were identified by differential expression analysis, among which 67 genes were up-regulated and 189 genes were down-regulated. Bioinformatics analysis suggested that the up and down-regulation of these genes were involved in the following two categories of cellular pathways and metabolisms: Steroid biosynthesis (gga00100) and peroxisome proliferator-activated receptor (PPAR) signaling pathway (gga03320), which both participated in the lipid metabolism processes. CONCLUSIONS This study suggests that longtime exposure to high concentrations of aerial ammonia can change fat content in breast muscle, meat quality and palatability via altering expression level of genes participating in important lipid metabolism pathways. These findings have provided novel insights into our understanding of molecular mechanisms of breast muscles exposed to ammonia in broilers. This study provides new information that could be used for genetic breeding and nutritional intervention in production practice of broilers industry in the future.
Collapse
Affiliation(s)
- Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Renna Sa
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huan Xing
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
20
|
Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci Rep 2016; 6:27813. [PMID: 27324522 PMCID: PMC4914961 DOI: 10.1038/srep27813] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g−1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures.
Collapse
|