1
|
Sun RX, Pan CG, Peng FJ, Yu ZL, Shao HY, Yang BZ, Chen ZB, Mai BX. Evidence of polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs) in wild fish species from the remote tropical marine environment, south China sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124885. [PMID: 39233271 DOI: 10.1016/j.envpol.2024.124885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their alternatives (e.g., dechlorane plus (DPs) and decabromodiphenyl ethane (DBDPE)) are ubiquitous in various environmental media. However, limited data is available on these chemicals in edible fish species from the wide-open South China Sea (SCS). In the present study, ten legacy PBDEs and three substitutions (DBDPE and two DPs) were analyzed in 16 wild fish species sampled from the open SCS to investigate their spatial and species-specific variations. The results showed that the total concentrations of PBDEs, DBDPE, and DPs in fish samples were in the range of 1.69-47.6, not detected (nd) to 21.0, and nd to 3.80 ng/g lipid weight (lw), respectively. BDEs 47, 209 and 100 were the dominant target PBDE congeners, representing 49.2%, 17.2% and 9.93% of the total PBDE concentrations, respectively. Higher concentrations of PBDEs, DBDPE, and DPs were found in fish species from the Wanshan Archipelago compared to those from the Mischief Reef and the Yongxing Island, suggesting the significant influence of anthropogenic activities. Species-specific differences in levels of PBDEs were observed, with the order of bathydemersal > demersal > pelagic ≈ reef-associated > benthopelagic species. The average fanti value of all fish samples was 0.68, suggesting commercial DP products as a contamination source. The levels of PBDEs, DPs, and DBDPE in fish samples were relatively low compared with those from other locations around the globe. Finally, the health risks concerning the ingestion of BDEs 47, 99, 153 and 209 via fish consumption collected from the SCS are negligible.
Collapse
Affiliation(s)
- Run-Xia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zi-Ling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hai-Yang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Bing-Zhong Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhong-Biao Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
2
|
Guan KL, Luo XJ, Zhu CH, Chen X, Chen PP, Guo J, Hu KQ, Zeng YH, Mai BX. Tissue-Specific Distribution and Maternal Transfer of Persistent Organic Halogenated Pollutants in Frogs. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1557-1568. [PMID: 38695729 DOI: 10.1002/etc.5882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 06/27/2024]
Abstract
Persistent organic pollutants pose a great threat to amphibian populations, but information on the bioaccumulation of contaminants in amphibians remains scarce. To examine the tissue distribution and maternal transfer of organic halogenated pollutants (OHPs) in frogs, seven types of tissues from black-spotted frog (muscle, liver, kidney, stomach, intestine, heart, and egg) were collected from an e-waste-polluted area in South China. Among the seven frog tissues, median total OHP concentrations of 2.3 to 9.7 μg/g lipid weight were found (in 31 polychlorinated biphenyl [PCB] individuals and 15 polybrominated diphenyl ether [PBDE], dechlorane plus [syn-DP and anti-DP], bexabromobenzene [HBB], polybrominated biphenyl] PBB153 and -209], and decabromodiphenyl ethane [DBDPE] individuals). Sex-specific differences in contaminant concentration and compound compositions were observed among the frog tissues, and eggs had a significantly higher contaminant burden on the whole body of female frogs. In addition, a significant sex difference in the concentration ratios of other tissues to the liver was observed in most tissues except for muscle. These results suggest that egg production may involve the mobilization of other maternal tissues besides muscle, which resulted in the sex-specific distribution. Different parental tissues had similar maternal transfer mechanisms; factors other than lipophilicity (e.g., molecular size and proteinophilic characteristics) could influence the maternal transfer of OHPs in frogs. Environ Toxicol Chem 2024;43:1557-1568. © 2024 SETAC.
Collapse
Affiliation(s)
- Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Chu-Hong Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Guo
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Ke-Qi Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Chang R, Wang Q, Ban X, Zhang H, Li J, Yuan GL. Aging affects isomer-specific occurrence of dechlorane plus in soil profiles: A case study in a geographically isolated landfill from the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163119. [PMID: 36996972 DOI: 10.1016/j.scitotenv.2023.163119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Two major structural isomers in commercial dechlorane plus (DP) mixtures, anti-DP and syn-DP, generally displayed varied desorption and partitioning efficiencies in soils, which may be linked to their different aging rates. However, the molecular parameters that govern the degree of aging and its associated effects on the occurrence of DP isomers have not been comprehensively investigated. In this study, the relative abundance of rapid desorption concentration (Rrapid) was measured for anti-DP, syn-DP, anti-Cl11-DP, anti-Cl10-DP, Dechlorane-604 (Dec-604), and Dechlorane-602 (Dec-602) at a geographically isolated landfill area in the Tibetan Plateau. The Rrapid values were used as an indicator of aging degree, exhibiting a close correlation with the three-dimension conformation of the molecules for the dechlorane series compounds. This observation suggested that planar molecules may have a greater tendency to accumulate in the condensed phase of organic matter and undergo more rapid aging. The fractional abundances and dechlorinated products of anti-DP were found to be predominantly controlled by the aging degree of DP isomers. The multiple nonlinear regression model indicated that differences in aging between anti-CP and syn-DP were primarily driven by the total desorption concentration and soil organic matter content. Aging plays a significant role in both the transport processes and metabolism of DP isomers and should be taken into account to refine the assessment of their environmental behaviors.
Collapse
Affiliation(s)
- Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qi Wang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xiyu Ban
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - He Zhang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Guo-Li Yuan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Qiu XW, Pei J, Wu CC, Song L, Bao LJ, Zeng EY. Determination of low-density polyethylene-water partition coefficients for novel halogenated flame retardants with the large volume model and co-solvent model. CHEMOSPHERE 2021; 277:130235. [PMID: 33794435 DOI: 10.1016/j.chemosphere.2021.130235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The partition coefficient (Kpew) of an analyte between low-density polyethylene (LDPE) film and water is a critical parameter for measuring freely dissolved concentrations of the analyte with PE passive sampling devices. Measuring log Kpew for super hydrophobic organic chemicals (HOCs) have been proven extremely difficult. The present study developed a large volume model for measuring log Kpew of super HOCs, i.e., novel halogenated flame retardants (NHFRs). Results showed that the measured log Kpew values of selected PAHs and PCBs obtained by the large volume model were in line with those from the co-solvent model and the literature data within less 0.3 log units of difference, while those of NHFRs (6.27-7.34) except for hexachlorocyclopentadienyldibromocyclooctane (HCDBCO) and Decabromodiphenyl ethane (DBDPE) were significantly lower than those (6.51-8.89) from the co-solvent model. A curvilinear relationship was observed between log Kpew and log Kow of all target compounds, with the turning point at log Kow = ∼8.0 in the large volume model, but that was not found for the co-solvent model. These can be attributed to the large molecular volumes (> 450 Å3) for NHFRs, which require high Gibbs free energy to penetrate into the inside structures of LDPE in the large volume model. However, the solvent swelling effects in the co-solvent model needs to be investigated. Therefore, the large volume model is robust to determine the Kpew values of super HOCs for facilitating the application of aquatic passive sampling techniques.
Collapse
Affiliation(s)
- Xia-Wen Qiu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Jie Pei
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Lin Song
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| |
Collapse
|
5
|
Niu S, Tao W, Chen R, Hageman KJ, Zhu C, Zheng R, Dong L. Using Polychlorinated Naphthalene Concentrations in the Soil from a Southeast China E-Waste Recycling Area in a Novel Screening-Level Multipathway Human Cancer Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6773-6782. [PMID: 33900727 DOI: 10.1021/acs.est.1c00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polychlorinated naphthalene (PCN) concentrations in the soil at an e-waste recycling area in Guiyu, China, were measured and the associated human cancer risk due to e-waste-related exposures was investigated. We quantified PCNs in the agricultural soil and used these concentrations with predictive equations to calculate theoretical concentrations in outdoor air. We then calculated theoretical concentrations in indoor air using an attenuation factor and in the local diet using previously published models for contaminant uptake in plants and fruits. Potential human cancer risks of PCNs were assessed for multiple exposure pathways, including soil ingestion, inhalation, dermal contact, and dietary ingestion. Our calculations indicated that local residents had a high cancer risk from exposure to PCNs and that the diet was the primary pathway of PCN exposure, followed by dermal contact as the secondary pathway. We next repeated the risk assessment using concentrations for other carcinogenic contaminants reported in the literature at the same site. We found that polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and PCNs caused the highest potential cancer risks to the residents, followed by polychlorinated biphenyls (PCBs). The relative importance of different exposure pathways depended on the physicochemical properties of specific chemicals.
Collapse
Affiliation(s)
- Shan Niu
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan 84322, United States
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Wuqun Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiwen Chen
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan 84322, United States
| | - Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan 84322, United States
| | - Chaofei Zhu
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Ran Zheng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102202, China
| | - Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| |
Collapse
|
6
|
Zhang J, Wu X, Guo H, Zheng X, Mai B. Pollution of plastic debris and halogenated flame retardants (HFRs) in soil from an abandoned e-waste recycling site: Do plastics contribute to (HFRs) in soil? JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124649. [PMID: 33261975 DOI: 10.1016/j.jhazmat.2020.124649] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Electronic waste (e-waste) recycling site may be a "hotspot" for pollution of plastic debris, which has not been well studied. Eighteen halogenated flame retardants (HFRs) were measured in plastics and soil separated from twenty soil samples, respectively, from an abandoned e-waste recycling site. Abundances and concentrations of plastic debris ranged from 600 to 14,200 particles/kg and 0.24-153 mg/g, respectively, which were at the high end in literature. Blue, black, and red were main plastic colors, and acrylonitrile-butadiene-styrene (ABS) was the main type of plastics. Polybrominated diphenyl ether (PBDE) 209 was the main chemical, with median concentrations of 6.22-40.6 μg/g in soil and 28.1-47.2 μg/g in plastics, respectively. Contributions of HFRs in plastics were less than 10% in total HFR masses in bulk soil samples. Exposure values to HFRs from plastics via soil ingestion and dermal contact with soil were generally two orders of magnitude lower than those from soil. The results indicate that plastics in soil have little contribution to total HFR burden in soil and human exposure risks to HFRs in this study. However, ecological risks of plastics to terrestrial wildlife in e-waste sites should be paid attention.
Collapse
Affiliation(s)
- Jiecong Zhang
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodan Wu
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huiying Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Kriging Method-Based Return Prediction of Waste Electrical and Electronic Equipment in Reverse Logistics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In reverse logistics, the accurate prediction of waste electrical and electronic equipment (WEEE) return amount is of great significance to guide electronic enterprises to formulate a reasonable recycling plan, remanufacturing production plan and inventory plan. However, due to the uncertainty of WEEE return, it is a challenge to accurately predict the WEEE return amount of recycling sites. Differently from the existing research methods aiming at the spatial correlation of the recycling amount of recycling sites, a spatial mathematical model based on Kriging method is proposed by this paper to predict the return amount of WEEE in reverse logistics. Based on the second-order randomness of the return amount, the spatial structure of the return amount of the recycling network is analyzed. According to the principle of unbiased prediction and minimum variance, the Kriging space mathematical model of WEEE return amount is derived, and the calculation process of three variograms is given. The results of Monte Carlo simulation and the case study on J company in Shanghai show that it is effective to utilize the Kriging method-based spatial mathematical model to predict the WEEE return of reverse logistics and analyze the spatial correlation structure of each recycling site. The proposed model can accurately predict the WEEE return amounts of unknown sites as well as those of the whole area through the known site data, which provides a novel analysis method and theoretical basis for the prediction of reverse logistics return amount.
Collapse
|
8
|
Zhang Z, Tong X, Xing Y, Ma J, Jiang R, Sun Y, Li J, Li X, Wu T, Xie W. Polybrominated diphenyl ethers, decabromodiphenyl ethane and dechlorane plus in aquatic products from the Yellow River Delta, China. MARINE POLLUTION BULLETIN 2020; 161:111733. [PMID: 33068787 DOI: 10.1016/j.marpolbul.2020.111733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Aquatic biota including fish, shrimp and bivalves were collected from the Yellow River Delta (YRD), China to investigate the levels, composition profile and dietary exposure of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and dechlorane plus (DP). The concentrations of PBDEs, DBDPE and DP in the organisms ranged from 5.3 to 149, not detected (nd) - 49, and 0.5-29 ng/g lipid weight, respectively. Higher levels of PBDEs and DP were found in mullet (Liza haematocheila).PBDEs were the major pollutants and BDE 209 was the predominant congener of PBDEs suggesting the great production and application of deca-BDE in YRD. The average fanti values for different species were similar to or a little lower than that of the commercial DP, suggesting syn-DP might be selectively accumulated by the organisms. The estimated daily intake values of HFRs suggested consuming fish was the main pathway for the exposure of halogenated flame retardants.
Collapse
Affiliation(s)
- Zaiwang Zhang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Xue Tong
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Yan Xing
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Jinyan Ma
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Rongjuan Jiang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Yuxin Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jialiang Li
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Xueping Li
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Tao Wu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Wenjun Xie
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China.
| |
Collapse
|
9
|
Chai B, Li X, Liu H, Lu G, Dang Z, Yin H. Bacterial communities on soil microplastic at Guiyu, an E-Waste dismantling zone of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110521. [PMID: 32222597 DOI: 10.1016/j.ecoenv.2020.110521] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Recent studies of microplastic have focused on aquatic environment, but its impacts on soil ecosystems were poorly understood, particularly on bacterial communities. In this study, the bacterial taxon and functional composition of soil microplastic-attached communities at Guiyu, a notorious e-waste dismantling area in Guangdong Province, China, were investigated by means of high-throughput sequencing. The results revealed that fundamental difference in bacterial communities existed among microplastics selected from three plots with different dismantling methods and their surroundings, suggesting that microplastic surface created a new ecological niche in soil environment, and the bacteria adapted well to the surface-related lifestyle. The formation of microplastic-attached bacteria depended not only on various dismantled plastic materials, but also on disassembly methods that caused different soil physicochemical characters which might also influence the bacterial communities. As the hydrocarbon degraders, the family Hyphomonadaceae were also found on soil microplastic, further confirming that microorganisms played a role in biodegrading microplastic in e-waste zone. The analysis of functional profiles speculated that microplastic-attached bacteria had the potential to degrade pollutants. This study provides a new perspective for exploring microplastic-associated bacteria and increasing our understanding of microplastic pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Bingwen Chai
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xin Li
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Hui Liu
- Department of Resources and Information, Zhejiang Forestry Survey and Planning Company Limited, Hangzhou, 310016, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Ge X, Ma S, Zhang X, Yang Y, Li G, Yu Y. Halogenated and organophosphorous flame retardants in surface soils from an e-waste dismantling park and its surrounding area: Distributions, sources, and human health risks. ENVIRONMENT INTERNATIONAL 2020; 139:105741. [PMID: 32305741 DOI: 10.1016/j.envint.2020.105741] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 05/17/2023]
Abstract
Electronic waste (e-waste) dismantling is an important source of flame retardant emissions, and may have potentially adverse effects on surrounding area. This study investigated their influence on the surrounding area and the human health risks after an industrial park was built in 2015 and environmentally friendly technologies were introduced at an e-waste dismantling site in South China. The concentrations of flame retardants, including polybrominated diphenyl ethers (PBDEs), polybromobenzenes (PBBzs), Dechlorane plus (DP), and organophosphate esters (OPEs), in the soils were measured. The results showed that soil contamination was greater in the industrial park than in the surrounding area. The PBDE concentrations were the highest with BDE209, a daca-BDE, being the dominant congener, followed by OPEs, where triphenyl phosphate levels were the highest. Furthermore, triphenyl phosphate can be used as an indicator of flame retardant emissions during e-waste dismantling in this region. The fanti value of DP was stable at around 0.75. The principal component analysis showed that direct emission was the major source of pollutants in the industrial park. The direct emission proportion decreased in the surrounding area, but migration and transformation increased. None of the chemicals posed a non-carcinogenic risks to children and adults via oral uptake or dermal contact when the absorption factors of the chemicals were included in the estimation. However, the total hazard quotients for children were close to a unit in the industrial park, of which, the PBDE and OPE proportions accounted for 84.2% and 15.8% of the total, respectively. However, the PBBz and DP percentages were negligible. Therefore, PBDEs and OPEs should be given more attention in the future.
Collapse
Affiliation(s)
- Xiang Ge
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Li B, Chen J, Du Q, Wang B, Qu Y, Chang Z. Toxic effects of dechlorane plus on the common carp (Cyprinus carpio) embryonic development. CHEMOSPHERE 2020; 249:126481. [PMID: 32209501 DOI: 10.1016/j.chemosphere.2020.126481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Dechlorane Plus (DP) is a widely used chlorinated flame retardant, which has been extensively detected in the environment. Although DP content in the surface water is low, it can pose a continuous exposure risk to aquatic organisms due to its strong bioaccumulation. Considering that the related studies on the toxicity mechanism of DP exposure are limited, the effect of DP on carp embryo development was evaluated. In the present work, carp embryos were exposed to different concentrations (0, 30, 60, and 120 μg/L) of DP at 3 h post-fertilization (hpf). The expression levels of neural and skeletal development-associated genes, such as sox2, sox19a, Mef2c and BMP4, were detected with quantitative PCR, and the changes in different developmental toxicity endpoints were observed. Our results demonstrated that the expression levels of sox2, sox19a, Mef2c and BMP4 were significantly altered and several developmental abnormalities were found in DP-exposed carp embryos, such as DNA damage, increased mortality rate, delayed hatching time, reduced hatching rate, decreased body length, and increased morphological deformities. In addition, the activities of reactive oxygen species and malondialdehyde were remarkably higher in 60 and 120 μg/L DP exposure groups than in control group. These results suggest that DP can exhibit a unique modes of action, which lead to aberration occurrence in the early development stage of common carps, which may be related to some gene damage and oxidative stress. Besides, the parameters evaluated here can be used as tools to access the environmental risk for biota and humans exposed to DP.
Collapse
Affiliation(s)
- Baohua Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Beibei Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Ying Qu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
12
|
Tao W, Zhou Z, Shen L, Zhu C, Zhang W, Xu L, Guo Z, Xu T, Xie HQ, Zhao B. Determination of polyhalogenated carbazoles in soil using gas chromatography-triple quadrupole tandem mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135524. [PMID: 31784154 DOI: 10.1016/j.scitotenv.2019.135524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging environmental contaminants that have caused wide concerns due to their dioxin-like toxicity and environmental persistence. It would be desirable to determine all of these chemicals using a simple analytical method. Within this study, a simple and sensitive method combining accelerated solvent extraction (ASE) with gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS) was established to simultaneously analyze eleven frequently detected PHCZs in soil, including CCZ-3, CCZ-36, CCZ-1368, CCZ-2367, BCZ-3, BCZ-27, BCZ-36, BCZ-136, BCZ-1368, 1-B-36-CCZ, 18-B-36-CCZ. The calibration curves of the target analytes showed good linearity (R2 > 0.99, level = 6), and method detection limits (MDLs) ranging from 1.5 to 14.6 pg g-1. The average recoveries of the analytes in soil samples ranged from 64% to 126% with the RSD ranging from 2.0% to 10%. The developed method was successfully used for determination of these eleven PHCZs in soil samples from a tie-dye area in southwest China. Total concentrations of these eleven PHCZs ranging up to 46.3 ng g-1 dw. CCZ-36, BCZ-3, CCZ-3, 1-B-36-CCZ, 18-B-36-CCZ, and BCZ-1368 were the most abundant compounds in soil.
Collapse
Affiliation(s)
- Wuqun Tao
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Li Shen
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, Ontario M9P 3V6, Canada
| | - Chaofei Zhu
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Wanglong Zhang
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhingling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tong Xu
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Ekpe OD, Choo G, Barceló D, Oh JE. Introduction of emerging halogenated flame retardants in the environment. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/bs.coac.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Tao W, Tian J, Xu T, Xu L, Xie HQ, Zhou Z, Guo Z, Fu H, Yin X, Chen Y, Xu H, Zhang S, Zhang W, Ma C, Ji F, Yang J, Zhao B. Metabolic profiling study on potential toxicity in male mice treated with Dechlorane 602 using UHPLC-ESI-IT-TOF-MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:141-147. [PMID: 30537652 DOI: 10.1016/j.envpol.2018.11.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Dechlorane 602 (Dec 602), a chlorinated flame retardant, has been widely detected in different environmental matrices and biota. However, toxicity data for Dec 602 seldom have been reported. A metabolomics study based on ultra-high performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry was employed to study the urine and sera metabolic profiles of mice administered with Dec 602 (0, 0.001, 0.1, and 10 mg/kg body weight per day) for 7 days. A significant difference in metabolic profiling was observed between the Dec 602 treated group and the control group by multivariate analysis, which directly reflected the metabolic perturbations caused by Dec 602. The metabolomics analyses of urine from Dec 602-exposed animals exhibited an increase in the levels of thymidine and tryptophan as well as a decrease in the levels of tyrosine, 12,13-dihydroxy-9Z-octadecenoic acid, 2-hydroxyhexadecanoic acid and cuminaldehyde. The metabolomics analyses of sera showed a decrease in the levels of kynurenic acid, daidzein, adenosine, xanthurenic acid and hypoxanthine from Dec 602-exposed animals. These findings indicated Dec 602 induced disturbance in phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism, tyrosine metabolism, pyrimidine metabolism, purine metabolism, ubiquinone and other terpenoid-quinone biosynthesis; phenylalanine metabolism and aminoacyl-tRNA biosynthesis. Significant alterations of immune and neurotransmitter-related metabolites (tyrosine, tryptophan, kynurenic acid, and xanthurenic acid) suggest that the toxic effects of Dec 602 may contribute to its interactions with the immune and neuronal systems. This study demonstrated that the UHPLC-ESI-IT-TOF-MS-based metabolomic approach can obtain more specific insights into the potential toxic effects of Dec 602 at molecular level.
Collapse
Affiliation(s)
- Wuqun Tao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jijing Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tuan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Heidi Qunhui Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing, 100029, China
| | - Zhiling Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hualing Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuejiao Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haiming Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Songyan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wanglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chao Ma
- Shimadzu (China) Co.,Ltd, China
| | - Feng Ji
- Shimadzu (China) Co.,Ltd, China
| | - Jun Yang
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Bin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Gu F, Ma B, Guo J, Summers PA, Hall P. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:434-448. [PMID: 28757222 DOI: 10.1016/j.wasman.2017.07.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Management of Waste Electrical and Electronic Equipment (WEEE) is a vital part in solid waste management, there are still some difficult issues require attentionss. This paper investigates the potential of applying Internet of Things (IoT) and Big Data as the solutions to the WEEE management problems. The massive data generated during the production, consumption and disposal of Electrical and Electronic Equipment (EEE) fits the characteristics of Big Data. Through using the state-of-the-art communication technologies, the IoT derives the WEEE "Big Data" from the life cycle of EEE, and the Big Data technologies process the WEEE "Big Data" for supporting decision making in WEEE management. The framework of implementing the IoT and the Big Data technologies is proposed, with its multiple layers are illustrated. Case studies with the potential application scenarios of the framework are presented and discussed. As an unprecedented exploration, the combined application of the IoT and the Big Data technologies in WEEE management brings a series of opportunities as well as new challenges. This study provides insights and visions for stakeholders in solving the WEEE management problems under the context of IoT and Big Data.
Collapse
Affiliation(s)
- Fu Gu
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| | - Buqing Ma
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianfeng Guo
- Center of Energy and Environmental Policy Research, Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China.
| | - Peter A Summers
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| | - Philip Hall
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| |
Collapse
|
16
|
Xu P, Tao B, Zhou Z, Fan S, Zhang T, Liu A, Dong S, Yuan J, Li H, Chen J, Huang Y. Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in the soils of Guiyu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:61-71. [PMID: 28511039 DOI: 10.1016/j.envpol.2017.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Guiyu, China, is well-known for the crude disposal of electronic waste (EW) and severe persistent organic pollutants (POPs). Therefore, in this study, the occurrence, composition, and source of polybrominated diphenyl ethers (PBDEs), 2,2',4,4',5,5'-hexabromobiphenyl (BB153), some novel brominated flame retardants (NBFRs), Dechlorane Plus (DP) and polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) in farmland soils covering Guiyu were studied. In EW disposal area soils, PBDEs were the most abundant FRs, with concentrations of 13-1014 ng g-1. The primary PBDE sources were technical Penta- and Deca-BDE mixtures in northern and southern Guiyu, respectively. The levels of BB153 were relatively low, possibly because it has been banned in the 1970s. The concentrations of hexabromobenzene (HBB) were 0.048-3.3 ng g-1, while pentabromoethylbenzene (PBEB) was almost not detected in the soils. Two alternatives to commercial PBDEs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), were the primary NBFRs, with concentrations of 1.8-153 ng g-1 and 0.43-15 ng g-1, respectively. DP was another primary FR, with concentrations of 0.57-146 ng g-1. Moreover, syn-DP and anti-DP isomers were not stereoselectively decomposed during the EW disposal process and were therefore present in their original fractions in the soils. The levels of PBDD/Fs in EW disposal area soils were 2.5-17 pg TEQ g-1. 1,2,3,4,6,7,8-HpBDF and OBDF were the dominant congeners, mainly derived from processing, pyrolysis and combustion of BFRs. The regional distribution of pollutants was shown to be related to the disposal manner of EW, with their open thermal disposal tending to release more highly brominated compounds such as BDE209, DBDPE, and 1,2,3,4,6,7,8-HpBDF. Additionally, some riverbank sites were heavily polluted because of nearby point sources, downwind Simapu (SMP) town without EW disposal activity was also contaminated by these pollutants.
Collapse
Affiliation(s)
- Pengjun Xu
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Shahekou District, Dalian 116023, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China; Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, China
| | - Bu Tao
- Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Zhiguang Zhou
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Shuang Fan
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Ting Zhang
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Aimin Liu
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Shuping Dong
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Jingli Yuan
- Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, China
| | - Hong Li
- Beijing Chaoyang District Environmental Protection Monitoring Center, 5 South Nongzhan Road, Chaoyang District, Beijing 100125, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Shahekou District, Dalian 116023, China.
| | - Yeru Huang
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
17
|
Wang G, Peng J, Hao T, Liu Y, Zhang D, Li X. Distribution and region-specific sources of Dechlorane Plus in marine sediments from the coastal East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:389-396. [PMID: 27572532 DOI: 10.1016/j.scitotenv.2016.08.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/13/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Dechlorane Plus (DP) is a highly chlorinated flame retardant and found to be ubiquitously present in the environment. We reported here the first record of DP in sediments from the coastal East China Sea (ECS). DP was detected in most of the surface sediments, and the concentrations ranged from 14.8 to 198pg/g dry weight (dw) with a mean value of 64.4pg/g dw. Overall, DP levels exhibited a seaward decreasing trend from the inshore toward outer sea. The fractional abundance of anti-DP (fanti) showed regional discrepancies, attributing to different environmental behaviors of DP isomers. Depth profiles of DP in a sediment core from estuarine environment showed distinct fluctuation, and the core in open sea had stable deposition environment with two peak values of DP in ~1978 and 2000. The fanti exhibited downward decreasing trend prior to mid-1950s, indicating a preferential degradation of anti-DP and/or a greater adsorption capacity of syn-DP after its burial. Lignin and lipid biomarkers (∑C27+C29+C31n-alkanes) of terrestrial organic matters were introduced to identify region-specific sources of DP, and the results showed that DP in the northern inner shelf, southern inner shelf of 29 °N and mud area southwest of Cheju Island was mainly come from Yangtze River (YR) input, surface runoffs after discharge of local sources close to the Taizhou-Wenzhou Region and the atmospheric deposition from the North China and East Asia, respectively. The coastal ECS was an important reservoir of DP in the world, with mass inventory of approximately 310.7kg in the surface sediments (0-5cm).
Collapse
Affiliation(s)
- Guoguang Wang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Jialin Peng
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Ting Hao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Yao Liu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
18
|
Khan MU, Li J, Zhang G, Malik RN. New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:662-674. [PMID: 27346442 DOI: 10.1016/j.envpol.2016.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 05/21/2023]
Abstract
This is the first robust study designed to probe selected flame retardants (FRs) in the indoor and outdoor dust of industrial, rural and background zones of Pakistan with special emphasis upon their occurrence, distribution and associated health risk. For this purpose, we analyzed FRs such as polybrominated diphenylethers (PBDEs), dechlorane plus (DP), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) in the total of 82 dust samples (indoor and outdoor) collected three from each zone: industrial, rural and background. We found higher concentrations of FRs (PBDEs, DP, NBFRs and OPFRs) in industrial zones as compared to the rural and background zones. Our results reveal that the concentrations of studied FRs are relatively higher in the indoor dust samples being compared with the outdoor dust and they are ranked as: ∑OPFRs > ∑NBFRs > ∑PBDEs > ∑DP. A significant correlation in the FRs levels between the indoor and outdoor dust suggest the potential intermixing of these compounds between them. The principal component analysis/multiple linear regression predicts the percent contribution of FRs from different consumer products in the indoor and outdoor dust of industrial, rural and background zones to trace their source origin. The FRs detected in the background zones reveal the dust-bound FRs suspended in the air might be shifted from different warmer zones or consumers products available/used in the same zones. Hazard quotient (HQ) for FRs via indoor and outdoor dust intake at mean and high dust scenarios to the exposed populations (adults and toddlers) are found free of risk (HQ < 1) in the target zones. Furthermore, our nascent results will provide a baseline record of FRs (PBDEs, DP, NBFRs and OPFRs) concentrations in the indoor and outdoor dust of Pakistan.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan.
| |
Collapse
|
19
|
Awasthi AK, Zeng X, Li J. Relationship between e-waste recycling and human health risk in India: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11509-32. [PMID: 26880523 DOI: 10.1007/s11356-016-6085-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/08/2016] [Indexed: 05/07/2023]
Abstract
Informal recycling of waste (including e-waste) is an emerging source of environmental pollution in India. Polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PBDEs), and heavy metals, among other substances, are a major health concern for workers engaged in waste disposal and processing, and for residents living near these facilities, and are also a detriment to the natural environment. The main objective of this review article was to evaluate the status of these impacts. The review found that, huge quantity of e-waste/waste generated, only a small amount is treated formally; the remainder is processed through the informal sector. We also evaluated the exposure pathways, both direct and indirect, and the human body load markers (e.g., serum, blood, breast milk, urine, and hair), and assessed the evidence for the association between these markers and e-waste exposure. Our results indicated that the open dumping and informal e-waste recycling systems should be replaced by the best available technology and environmental practices, with proper monitoring and regular awareness programs for workers and residents. Further and more detailed investigation in this area is also recommended.
Collapse
Affiliation(s)
- Abhishek Kumar Awasthi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China
| | - Xianlai Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Rm. 805, Sino-Italian Environment and Energy Efficient Building, Beijing, 100084, China.
| |
Collapse
|