1
|
Li J, Hodson ME, Brown CD, Bottoms MJ, Ashauer R, Alvarez T. Earthworm lipid content and size help account for differences in pesticide bioconcentration between species. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133744. [PMID: 38367437 DOI: 10.1016/j.jhazmat.2024.133744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
The uptake and elimination kinetics of pesticides from soil to earthworms are important in characterising the risk of pesticides to soil organisms and the risk from secondary poisoning. However, the understanding of the relative importance of chemical, soil, and species differences in determining pesticide bioconcentration into earthworms is limited. Furthermore, there is insufficient independent data in the literature to fully evaluate existing predictive bioconcentration models. We conducted kinetic uptake and elimination experiments for three contrasting earthworm species (Lumbricus terrestris, Aporrectodea caliginosa, Eisenia fetida) in five soils using a mixture of five pesticides (log Kow 1.69 - 6.63). Bioconcentration increased with pesticide hydrophobicity and decreased with soil organic matter. Bioconcentration factors were comparable between earthworm species for hydrophilic pesticides due to the similar water content of earthworm species. Inter-species variations in bioconcentration of hydrophobic pesticides were primarily accounted for by earthworm lipid content and specific surface area (SSA). Existing bioconcentration models either failed to perform well across earthworm species and for more hydrophilic compounds (log Kow < 2) or were not parameterised for a wide range of compounds and earthworm species. Refined models should incorporate earthworm properties (lipid content and SSA) to account for inter-species differences in pesticide uptake from soil.
Collapse
Affiliation(s)
- Jun Li
- Department of Environment and Geography, University of York, York, YO10 5NG, UK.
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Colin D Brown
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Melanie J Bottoms
- Syngenta Ltd, Jealotts Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK
| | - Roman Ashauer
- Department of Environment and Geography, University of York, York, YO10 5NG, UK; Syngenta Crop Protection AG Rosentalstr. 67 4058 Basel Switzerland
| | - Tania Alvarez
- Syngenta Ltd, Jealotts Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK
| |
Collapse
|
2
|
Zhang J, He M, Liu Y, Zhang L, Jiang H, Lin D. Chlorine substitution-dependent toxicities of polychlorinated biphenyls to the earthworm Eisenia fetida in soil. J Environ Sci (China) 2023; 128:171-180. [PMID: 36801033 DOI: 10.1016/j.jes.2022.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 06/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) with different chlorine substitution patterns often coexist in e-waste-processing sites. However, the single and combined toxicity of PCBs to soil organisms and the influence of chlorine substitution patterns remain largely unknown. Herein, we evaluated the distinct in vivo toxicity of PCB28 (a trichlorinated PCB), PCB52 (a tetrachlorinated PCB), PCB101 (a pentachlorinated PCB), and their mixture to earthworm Eisenia fetida in soil, and looked into the underlining mechanisms in an in vitro test using coelomocytes. After a 28-days exposure, all PCBs (up to 10 mg/kg) were not fatal to earthworms, but could induce intestinal histopathological changes and microbial community alterations in the drilosphere system, along with a significant weight loss. Notably, pentachlorinated PCBs with a low bioaccumulation ability showed greater inhibitory effects on the growth of earthworm than lowly chlorinated PCBs, suggesting that bioaccumulation was not the main determinant of chlorine substitution-dependent toxicity. Furthermore, in vitro assays showed that the highly chlorinated PCBs induced a high-percentage apoptosis of eleocytes in the coelomocytes and significantly activated antioxidant enzymes, indicating that the distinct cellular vulnerability to lowly/highly chlorinated PCBs was the main contributor to the PCBs toxicity. These findings emphasize the specific advantage of using earthworms in the control of lowly chlorinated PCBs in soil due to their high tolerance and accumulation ability.
Collapse
Affiliation(s)
- Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Mengyang He
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Institute of Environmental Health, Zhejiang University, Hangzhou 310058, China; China Energy Science and Technology Research Institute Co. Ltd., Nanjing 210023, China
| | - Lei Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, Hangzhou 310058, China
| | - Haojie Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhao W, Teng M, Zhang J, Wang K, Zhang J, Xu Y, Wang C. Insights into the mechanisms of organic pollutant toxicity to earthworms: Advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119120. [PMID: 35283202 DOI: 10.1016/j.envpol.2022.119120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Earthworms play positive ecological roles in soil formation, structure, and fertility, environmental protection, and terrestrial food chains. For this review, we searched the Web of Science database for articles published from 2011 to 2021 using the keywords "toxic" and "earthworm" and retrieved 632 publications. From the perspective of bibliometric analysis, we conducted a co-occurrence network analysis using the keywords "toxic" and "earthworm" to identify the most and least reported topics. "Eisenia fetida," "bioaccumulation," "heavy metals," "oxidative stress," and "pesticides" were the most common terms, and "microbial community," "bacteria," "PFOS," "bioaugmentation," "potentially toxic elements," "celomic fluid," "neurotoxicity," "joint toxicity," "apoptosis," and "nanoparticles" were uncommon terms. Additionally, in this review we highlight the main routes of organic pollutant entry into soil, and discuss the adverse effects on the soil ecosystem. We then systematically review the mechanisms underlying organic pollutant toxicity to earthworms, including oxidative stress, energy and lipid metabolism disturbances, neurological toxicity, intestinal inflammation and injury, gut microbiota dysbiosis, and reproductive toxicity. We conclude by discussing future research perspectives, focusing on environmentally relevant concentrations and conditions, novel data processing approaches, technologies, and detoxification and mitigation methods. This review has implications for soil management in the context of environmental pollution.
Collapse
Affiliation(s)
- Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Kai Wang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, People's Republic Of China
| | - Jialu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Šmídová K, Svobodová M, Hofman J. Toxicokinetics of hydrophobic organic compounds in oligochaeta: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117743. [PMID: 34392100 DOI: 10.1016/j.envpol.2021.117743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Toxicokinetic studies appertain to the fundamental research of soil bioavailability. However, the research outcomes of aspects influencing uptake and elimination of hydrophobic organic compounds have not been summarized so far. In our review, a recapitulation of available toxicokinetic data (i.e. experimental conditions, if the steady state was reached, uptake and elimination rate constants, and bioaccumulation factors) is presented in well-arranged tables. Further, toxicokinetic models are overviewed in the schematic form. In the review, the required information could be quickly found and/or the experimental gaps easily identified. Generally a little is known about the effects of soil properties other than soil organic matter. Limited or no data are available about soil treatment, food supply during laboratory exposure, and metabolization in oligochaeta. The impact of these factors might be important especially for arable soils with typically low organic matter content but high consequences on humans. Besides these circumstances, other uncertainties between published studies have been found. Firstly, the scientific results are provided in heterogenous units: bioaccumulation factors as well as the rate constants are reported in dry or wet weight of soil and earthworms. The steady state is another critical factor because the time to reach the equilibrium is influenced not only by soil and compound characteristics but for example also by aging. Nevertheless, toxicokinetic studies bring irreplaceable information about the real situation in soil and our review help to define missing knowledge and estimate the scientific priorities.
Collapse
Affiliation(s)
- Klára Šmídová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Markéta Svobodová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Jakub Hofman
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Brno, CZ-62500, Czech Republic.
| |
Collapse
|
5
|
Lotufo GR, Boyd RE, Harmon AR, Bednar AJ, Smith JC, Simini M, Sunahara GI, Hawari J, Kuperman RG. Accumulation of Insensitive Munition Compounds in the Earthworm Eisenia andrei from Amended Soil: Methodological Considerations for Determination of Bioaccumulation Factors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1713-1725. [PMID: 33646621 DOI: 10.1002/etc.5028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The present study investigates the bioaccumulation of the insensitive munition compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), developed for future weapons systems to replace current munitions containing sensitive explosives. The earthworm Eisenia andrei was exposed to sublethal concentrations of DNAN or NTO amended in Sassafras sandy loam. Chemical analysis indicated that 2- and 4-amino-nitroanisole (2-ANAN and 4-ANAN, respectively) were formed in DNAN-amended soils. The SumDNAN (sum of DNAN, 2-ANAN, and 4-ANAN concentrations) in soil decreased by 40% during the 14-d exposure period. The SumDNAN in the earthworm body residue increased until day 3 and decreased thereafter. Between days 3 and 14, there was a 73% decrease in tissue uptake that was greater than the 23% decrease in the soil concentration, suggesting that the bioavailable fraction may have decreased over time. By day 14, the DNAN concentration accounted for only 45% of the SumDNAN soil concentration, indicating substantial DNAN transformation in the presence of earthworms. The highest bioaccumulation factor (BAF; the tissue-to-soil concentration ratio) was 6.2 ± 1.0 kg/kg (dry wt) on day 3 and decreased to 3.8 ± 0.8 kg/kg by day 14. Kinetic studies indicated a BAF of 2.3 kg/kg, based on the earthworm DNAN uptake rate of 2.0 ± 0.24 kg/kg/d, compared with the SumDNAN elimination rate of 0.87 d-1 (half-life = 0.79 d). The compound DNAN has a similar potential to bioaccumulate from soil compared with trinitrotoluene. The NTO concentration in amended soil decreased by 57% from the initial concentration (837 mg NTO/kg dry soil) during 14 d, likely due to the formation of unknown transformation products. The bioaccumulation of NTO was negligible (BAF ≤ 0.018 kg/kg dry wt). Environ Toxicol Chem 2021;40:1713-1725. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- G R Lotufo
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - R E Boyd
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - A R Harmon
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - A J Bednar
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - J C Smith
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - M Simini
- US Army Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - G I Sunahara
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - J Hawari
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - R G Kuperman
- US Army Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
6
|
Cheng Q, Lu C, Shen H, Yang Y, Chen H. The dual beneficial effects of vermiremediation: Reducing soil bioavailability of cadmium (Cd) and improving soil fertility by earthworm (Eisenia fetida) modified by seasonality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142631. [PMID: 33065505 DOI: 10.1016/j.scitotenv.2020.142631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to assess earthworm's capability of reducing the bioavailability of cadmium (Cd) in soil and increasing soil fertility with the modification of seasonal variations of ambient temperatures on the efficacy of vermiremediation. Earthworms were exposed in soil fortified with 0, 5, 10, and 20 mg Cd kg-1, for 7, 14 and 21 days in winter and spring. The bioavailability of Cd in soil, which is represented in the form of diethylenetriaminepentaacetic acid-extractable fraction (DTPA-Cd), were significantly reduced, ranging from 7.9 to 18.3% in winter and 8.8 to 20.8% in spring. Meanwhile, we found earthworm activities could significantly improve the soil fertility as the results of increasing the availability of nitrogen, phosphorous, and potassium in soil, a prominent advantage of vermiremediation in heavy metal-contaminated soil. Although seasonality could increase Cd toxicity in earthworms, higher ambient temperature in spring season also promoted the reduction of Cd bioavailability and the increase of soil fertility, due to significant increase of microbial populations. In conclusion, we reported the dual beneficial effects of vermiremediation in reducing bioavailability of Cd in soil and simultaneously improving soil fertility in which both outcomes were modified by seasonality.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yuhan Yang
- People's Liberation Army Logistical Engineering University, Chongqing, 404000, People's Republic of China
| | - Hong Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
7
|
Svobodová M, Hofman J, Bielská L, Šmídová K. Uptake kinetics of four hydrophobic organic pollutants in the earthworm Eisenia andrei in aged laboratory-contaminated natural soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110317. [PMID: 32061977 DOI: 10.1016/j.ecoenv.2020.110317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Laboratory studies of pollutant uptake kinetics commonly start shortly after experimental soil contamination when it is not clear if the processes between soil and chemicals are equilibrated and stabilized. For instance, when the concentration in soil quickly decreases due to initial biodegradation, bioaccumulation may show a peak-shape accumulation curve instead of conventional first order kinetics with a plateau at the end. The results of such experiments with soil freshly contaminated in the laboratory are then hardly comparable to bioaccumulation observed in soils from historically contaminated sites. Therefore, our study focused on the uptake kinetics of four hydrophobic organic compounds (pyrene, lindane, p,p'-DDT and PCB 153) in two laboratory-contaminated natural soils with different soil properties (e.g. total organic carbon content of 1.6 and 9.3%) aged for 203 days to mimic long-term contamination. For pyrene, the results surprisingly showed peak-shape accumulation curves despite long aging. It seems compound biodegradation might be significant in aged soils when the conditions change (e.g. by distribution to the experimental vessels) and this should be also considered when testing historically contaminated soils. For lindane, longer aging seems to guarantee stability of the soil-compound-earthworm system and the steady state was reached after 5 days of exposure. Furthermore, although concentrations of p,p'-DDT and PCB 153 in earthworms after 11-15-day exposure did not statistically differ, which is a commonly-used indicator that a steady state was reached, they continuously increased until the end of the exposure. Therefore, despite the aging, longer exposure was probably needed to reach the true equilibrium between concentrations in earthworms and soil. In summary, aging does not warranty the conventional first order kinetic curve with the equilibrium at the end of the exposure but may have diverse effects for compounds with different environmental properties and should be taken into account in the bioaccumulation factor calculation and the risk assessment.
Collapse
Affiliation(s)
- Markéta Svobodová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Lucie Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Klára Šmídová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic.
| |
Collapse
|
8
|
Zhao S, Wang B, Zhu L, Liang T, Chen M, Yang L, Lv J, Liu L. Uptake, elimination and biotransformation of N-ethyl perfluorooctane sulfonamide (N-EtFOSA) by the earthworms (Eisenia fetida) after in vivo and in vitro exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:19-25. [PMID: 29793104 DOI: 10.1016/j.envpol.2018.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is commonly known as the active ingredient of sulfluramid. It can be degraded to perfluorooctane sulfonic acid (PFOS) in biota and environment. Earthworms (Eisenia fetida) were exposed with N-EtFOSA to examine the bioaccumulation, elimination and metabolism of N-EtFOSA by the earthworms after in vivo and in vitro exposure. N-EtFOSA could be biodegraded in quartz sands to perfluorooctane sulfonamide (FOSA) and PFOS. In the in vivo tests, in addition to parent N-EtFOSA, three metabolites, including perfluorooctane sulfonamide acetate (FOSAA), FOSA and PFOS also accumulated in earthworms as a result of N-EtFOSA biotransformation, with FOSA as the predominant metabolite. The bioaccumulation factor (BAF) and uptake rate coefficient (ku) of N-EtFOSA from sand were 20.4 and 2.41·d-1, respectively. The elimination rate constants (ke) decreased in the order FOSAA (0.130·d-1) > N-EtFOSA (0.118·d-1) > FOSA (0.073·d-1) > PFOS (0.051·d-1). The biotransformation of N-EtFOSA in earthworm was further confirmed by the in vitro test involving incubation of earthworm homogenates with N-EtFOSA. This work provides evidence on the accumulation and transformation of N-EtFOSA in terrestrial invertebrates and will be helpful to explore the indirect sources of FOSA and PFOS in environmental biota.
Collapse
Affiliation(s)
- Shuyan Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China.
| | - Bohui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Tiankun Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Jingping Lv
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| |
Collapse
|
9
|
Yang G, Chen C, Yu Y, Zhao H, Wang W, Wang Y, Cai L, He Y, Wang X. Combined effects of four pesticides and heavy metal chromium (Ⅵ) on the earthworm using avoidance behavior as an endpoint. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:191-200. [PMID: 29621711 DOI: 10.1016/j.ecoenv.2018.03.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
In natural ecosystems, organisms are commonly exposed to chemical mixtures rather than individual compounds. However, environmental risk is traditionally assessed based on data of individual compounds. In the present study, we aimed to investigate the individual and combined effects of four pesticides [fenobucarb (FEN), chlorpyrifos (CPF), clothianidin (CLO), acetochlor (ACE)] and one heavy metal chromium [Cr(Ⅵ)] on the earthworm (Eisenia fetida) using avoidance behavior as an endpoint. Our results indicated that CLO had the highest toxicity to E. fetida, followed by Cr(Ⅵ), while FEN showed the least toxicity. Two mixtures of CPF+CLO and Cr(Ⅵ)+CPF+CLO+ACE exhibited synergistic effects on the earthworms. The other two quaternary mixtures of CLO+FEN+ACE+Cr(Ⅵ) and Cr(Ⅵ)+FEN+CPF+ACE at low concentrations also displayed synergistic effects on the earthworms. In contrast, the mixture of Cr(Ⅵ)+FEN had the strongest antagonistic effects on E. fetida. Besides, the quinquenary mixture of Cr(Ⅵ)+FEN+CPF+CLO+ACE also exerted antagonistic effects. These findings highlighted the importance to evaluate chemical mixtures. Moreover, our data strongly pointed out that the avoidance tests could be used to assess the effects of combined effects.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture / Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yijun Yu
- Administration for Farmland Quality and Fertilizer of Zhejiang Province, Hangzhou 310020, China
| | - Huiyu Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanhua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leiming Cai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yueping He
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinquan Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control / Lab (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|