1
|
Rowley JJL, Symons A, Doyle C, Hall J, Rose K, Stapp L, Lettoof DC. Broad-scale pesticide screening finds anticoagulant rodenticide and legacy pesticides in Australian frogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172526. [PMID: 38636866 DOI: 10.1016/j.scitotenv.2024.172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Pesticide contamination poses a significant threat to non-target wildlife, including amphibians, many of which are already highly threatened. This study assessed the extent of pesticide exposure in dead frogs collected during a mass mortality event across eastern New South Wales, Australia between July 2021 and March 2022. Liver tissue from 77 individual frogs of six species were analysed for >600 legacy and contemporary pesticides, including rodenticides. More than a third (36 %) of the liver samples contained at least one of the following pesticides: brodifacoum, dieldrin, DDE, heptachlor/heptachlor epoxide, fipronil sulfone, and 2-methyl-4-chlorophenoxyacetic acid (MCPA). Brodifacoum, a second-generation anticoagulant rodenticide, was found in four of the six frog species analysed: the eastern banjo frog (Limnodynastes dumerilii), cane toad (Rhinella marina), green tree frog (Litoria caerulea) and Peron's tree frog (Litoria peronii). This is the first report of anticoagulant rodenticide detected in wild amphibians, raising concerns about potential impacts on frogs and extending the list of taxa shown to accumulate rodenticides. Dieldrin, a banned legacy pesticide, was also detected in two species: striped marsh frog (Limnodynastes peronii) and green tree frog (Litoria caerulea). The toxicological effects of these pesticides on frogs are difficult to infer due to limited comparable studies; however, due to the low frequency of detection the presence of these pesticides was not considered a major contributing factor to the mass mortality event. Additional research is needed to investigate the effects of pesticide exposure on amphibians, particularly regarding the impacts of second-generation anticoagulant rodenticides. There is also need for continued monitoring and improved conservation management strategies for the mitigation of the potential threat of pesticide exposure and accumulation in amphibian populations.
Collapse
Affiliation(s)
- Jodi J L Rowley
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales 2010, Australia; Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences (BEES), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew Symons
- New South Wales Department of Climate Change, Energy, the Environment and Water, Environment Protection Science Branch, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - Christopher Doyle
- New South Wales Department of Climate Change, Energy, the Environment and Water, Environment Protection Science Branch, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradley's Head Road, Mosman, NSW 2088, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradley's Head Road, Mosman, NSW 2088, Australia
| | - Laura Stapp
- New South Wales Department of Climate Change, Energy, the Environment and Water, Environment Protection Science Branch, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - Damian C Lettoof
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Centre for Environment and Life Sciences, Floreat, Western Australia 6014, Australia; School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, Western Australia 6102, Australia
| |
Collapse
|
2
|
Ruthsatz K, Rico-Millan R, Eterovick PC, Gomez-Mestre I. Exploring water-borne corticosterone collection as a non-invasive tool in amphibian conservation physiology: benefits, limitations and future perspectives. CONSERVATION PHYSIOLOGY 2023; 11:coad070. [PMID: 37663928 PMCID: PMC10472495 DOI: 10.1093/conphys/coad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Global change exposes wildlife to a variety of environmental stressors and is affecting biodiversity worldwide, with amphibian population declines being at the forefront of the global biodiversity crisis. The use of non-invasive methods to determine the physiological state in response to environmental stressors is therefore an important advance in the field of conservation physiology. The glucocorticoid hormone corticosterone (CORT) is one useful biomarker to assess physiological stress in amphibians, and sampling water-borne (WB) CORT is a novel, non-invasive collection technique. Here, we tested whether WB CORT can serve as a valid proxy of organismal levels of CORT in larvae of the common frog (Rana temporaria). We evaluated the association between tissue and WB CORT levels sampled from the same individuals across ontogenetic stages, ranging from newly hatched larvae to froglets at 10 days after metamorphosis. We also investigated how both tissue and WB CORT change throughout ontogeny. We found that WB CORT is a valid method in pro-metamorphic larvae as values for both methods were highly correlated. In contrast, there was no correlation between tissue and WB CORT in newly hatched, pre-metamorphic larvae, metamorphs or post-metamorphic froglets probably due to ontogenetic changes in respiratory and skin morphology and physiology affecting the transdermal CORT release. Both collection methods consistently revealed a non-linear pattern of ontogenetic change in CORT with a peak at metamorphic climax. Thus, our results indicate that WB CORT sampling is a promising, non-invasive conservation tool for studies on late-stage amphibian larvae. However, we suggest considering that different contexts might affect the reliability of WB CORT and consequently urge future studies to validate this method whenever it is used in new approaches. We conclude proposing some recommendations and perspectives on the use of WB CORT that will aid in broadening its application as a non-invasive tool in amphibian conservation physiology.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Rafael Rico-Millan
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| | - Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
3
|
Méndez-Rivera M, Mena F, Pinnock-Branford M, Ruepert C, Barquero MD, Jiménez RR, Alvarado G. Effects of the insecticide β-endosulfan on tadpoles of Isthmohyla pseudopuma (Anura: Hylidae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106231. [PMID: 35939882 DOI: 10.1016/j.aquatox.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Conventional agriculture uses pesticides intensively. Once pesticides are released into the environment, they can be toxic to non-target organisms. Exposure of amphibians to pesticides can be lethal and affect their growth, development and behavior. β-endosulfan is a persistent organochlorine that has been detected in environmental samples within protected sites in Costa Rica, far from agricultural areas. The aim of this study was to evaluate the lethal and sublethal effects, as well as changes in three biomarkers (Cholinesterase activity [ChE], glutathione S-transferase activity [GST] and lipid peroxidation [LPO]) in tadpoles of Isthmohyla pseudopuma exposed to β-endosulfan. A 96-h acute test (20, 40, 60, 80, 100 and 200 µg/L) was performed in order to calculate the median lethal concentration (LC50), while effects on growth and development were assessed during a 4-weeks chronic test (10, 20, 30 and 50 µg/L). In addition, we measured the aforementioned biomarkers in tadpoles exposed to concentrations below the LC50. The 96-h LC50 for this species was 123.6 µg/L. We found no evidence of β-endosulfan influencing any of the three biomarkers evaluated. At 50 µg/L, both length and total weight of tadpoles decreased with respect to the control. Also, at 30 and 50 µg/L we observed that individuals showed a slower development. Therefore, we demonstrated that at sublethal concentrations, β-endosulfan negatively affects I. pseudopuma at early stages causing tadpoles to develop slower and smaller than normal.
Collapse
Affiliation(s)
- Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José 2060, Costa Rica.
| | - Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Margaret Pinnock-Branford
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Clemens Ruepert
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Marco D Barquero
- Sede del Caribe, Universidad de Costa Rica, Limón 2060, Costa Rica
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian National Zoological Park, Conservation Biology Institute, Washington, DC, United States
| | - Gilbert Alvarado
- Laboratorio de Patología Experimental y Comparada (LAPECOM), Escuela de Biología, Universidad de Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
4
|
Larras F, Charles S, Chaumot A, Pelosi C, Le Gall M, Mamy L, Beaudouin R. A critical review of effect modeling for ecological risk assessment of plant protection products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43448-43500. [PMID: 35391640 DOI: 10.1007/s11356-022-19111-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).
Collapse
Affiliation(s)
- Floriane Larras
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris, 75338, France
| | - Sandrine Charles
- University of Lyon, University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex, 69622, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology laboratory, Villeurbanne, F-69625, France
| | - Céline Pelosi
- Avignon University, INRAE, UMR EMMAH, Avignon, 84000, France
| | - Morgane Le Gall
- Ifremer, Information Scientifique et Technique, Bibliothèque La Pérouse, Plouzané, 29280, France
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Thiverval-Grignon, 78850, France
| | - Rémy Beaudouin
- Ineris, Experimental Toxicology and Modelling Unit, UMR-I 02 SEBIO, Verneuil en Halatte, 65550, France.
| |
Collapse
|
5
|
Sinai N, Glos J, Mohan AV, Lyra ML, Riepe M, Thöle E, Zummach C, Ruthsatz K. Developmental plasticity in amphibian larvae across the world: Investigating the roles of temperature and latitude. J Therm Biol 2022; 106:103233. [DOI: 10.1016/j.jtherbio.2022.103233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/23/2022] [Accepted: 03/26/2022] [Indexed: 01/04/2023]
|
6
|
Investigating the Joint Effects of Pesticides and Ultraviolet B Radiation in Xenopus laevis and Other Amphibians. Methods Mol Biol 2021. [PMID: 34097261 DOI: 10.1007/978-1-0716-1514-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Exposure to multiple stressors often results in higher toxicity than one stressor alone. Examining joint effects of multiple stressors could provide more realistic exposure scenarios and a better understanding of the combined effects. In amphibian toxicology, simultaneous exposure to some pesticides and ultraviolet B (UVB) radiation has been suggested to be detrimental and more harmful in amphibian early-life stages than either stressor alone. Therefore, it is important to investigate the joint effects of these two stressors and provide data that could lead to more informed risk assessment. Here we describe how to set up a co-exposure to pesticides and ultraviolet B radiation to examine their joint toxicity in amphibian embryos and larvae, focusing on Xenopus laevis with notes on other amphibian species. With modifications, the methods may be applied to other types of chemicals or other aquatic organisms of interest.
Collapse
|
7
|
Delnat V, Swaegers J, Asselman J, Stoks R. Reduced stress defence responses contribute to the higher toxicity of a pesticide under warming. Mol Ecol 2020; 29:4735-4748. [PMID: 33006234 DOI: 10.1111/mec.15667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022]
Abstract
There is a pressing need to identify the molecular mechanisms underlying the, often magnifying, interactive effects between contaminants and natural stressors. Here we test our hypothesis that lower general stress defence responses contribute to synergistic interactions between stressors. We focus on the widespread pattern that many contaminants are more toxic at higher temperatures. Specifically, we tested the effects of an environmentally realistic low-effect and high-effect concentration of the pesticide chlorpyrifos under warming at the gene expression level in the northern house mosquito Culex pipiens molestus (Forskal, 1775). By applying the independent action model for combined stressors on RNA-sequencing data, we identified interactive gene expression patterns under combined exposure to chlorpyrifos and warming for general stress defence responses: protection of macromolecules, antioxidant processes, detoxification and energy metabolism/allocation. Most of these general stress defence response genes showed upregulated antagonistic interactions (i.e., were less upregulated than expected under the independent action model). This indicates that when pesticide exposure was combined with warming, the general stress defence responses were no longer buffering increased stress levels, which may contribute to a higher sensitivity to toxicants under warming. These upregulated antagonistic interactions were stronger for the high-effect chlorpyrifos concentration, indicating that exposure to this concentration under warming was most stressful. Our results highlight that quantitative analysis of the frequency and strength of the interaction types of general stress defence response genes, specifically focusing on antagonistic upregulations and synergistic downregulations, may advance our understanding of how natural stressors modify the toxicity of contaminants.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Adeyemi JA, Olise CC, Bamidele OS, Akinola BK. Effects of ultraviolet photooxidation of cypermethrin on the activities of phosphatases and digestive enzymes, and intestinal histopathology in African catfish, Clarias gariepinus (Burchell, 1822). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:543-549. [PMID: 32543117 DOI: 10.1002/jez.2392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/10/2022]
Abstract
The possibility of ultraviolet (UV) photooxidation of cypermethrin generating more toxic intermediates or isomers demands that studies that look at the effects of cypermethrin and UV irradiation under a coexposure scenario be carried out. In this study, juvenile African catfish (Clarias gariepinus) were exposed to 50 µg/L cypermethrin, 100 µg/L cypermethrin, UV, 50 µg/L cypermethrin + UV or 100 µg/L cypermethrin + UV, in a static renewal for 3 weeks. The control fish were maintained in uncontaminated water, and not exposed to UV radiation. After the exposure duration, the fish were killed, and the activities of acid phosphatase, alkaline phosphatase, amylase, protease, and lipase were determined in the liver or intestinal homogenates. Also, the histopathology of some sections of the intestine was performed. The results showed that the activities of the enzymes decreased significantly following exposure to cypermethrin while there was no change in the activities of the enzymes due to UV irradiation alone. The histopathological analyses indicated that exposure to cypermethrin caused alterations in the histoarchitecture of the fish such as severe erosion of the mucosa layer, faded lamina propria, and disintegration of the muscle layer. The exposure of fish to both cypermethrin and UV irradiation caused significant decrease in the activities of the enzymes. This could be an indication that UV irradiation has the tendency to potentiate cypermethrin-induced toxicity in fish.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Christian C Olise
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Olufemi Samuel Bamidele
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Busuyi K Akinola
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
9
|
Aronzon CM, Peluso J, Coll CP. Mixture toxicity of copper and nonylphenol on the embryo-larval development of Rhinella arenarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13985-13994. [PMID: 32036534 DOI: 10.1007/s11356-020-07857-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Copper and nonylphenol are two commonly found chemicals in the aquatic environment, particularly in the distribution area of the amphibian Rhinella arenarum. The current work evaluated the lethal toxicity of equitoxic and non-equitoxic binary mixtures of copper and nonylphenol on embryos and larvae of the South America toad by means of the standardized test, AMPHITOX. Joint toxicity of mixtures was assessed in several proportions of these compounds at different exposure times and was analyzed at different level of mortality effect (LC10, LC50 and LC90). Considering the LC50, the equitoxic mixture was always antagonistic independently of the exposure time and the developmental stage. Joint toxicity showed mainly an antagonistic pattern; nonetheless, some time-dependent additive interactions were observed. Regarding the LC10, synergistic interactions were found in embryos and larvae exposed to two different mixture proportions at several exposure times. This highlights the possible synergism of these chemicals at environmentally relevant concentrations. These results point out the relevance of assessing joint toxicity of environmental pollutants for environmental risk assessment.
Collapse
Affiliation(s)
- Carolina Mariel Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, Universidad Nacional de San Martín, CONICET, 3iA, Campus Miguelete, 25 de mayo y Francia (1650), San Martin, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, Universidad Nacional de San Martín, CONICET, 3iA, Campus Miguelete, 25 de mayo y Francia (1650), San Martin, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, Universidad Nacional de San Martín, CONICET, 3iA, Campus Miguelete, 25 de mayo y Francia (1650), San Martin, Provincia de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Wolmarans NJ, Bervoets L, Meire P, Wepener V. Current Status and Future Prognosis of Malaria Vector Control Pesticide Ecotoxicology and Xenopus sp. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:131-171. [PMID: 31463624 DOI: 10.1007/398_2019_35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anurans from the genus Xenopus have long been used as standard testing organisms and occur naturally in tropical and sub-tropical areas where malaria vector control pesticides are actively used. However, literature on the toxic effects of these pesticides is limited. This review analyses the available data pertaining to both Xenopus and the pesticides used for malaria vector control in order to determine the pesticides that have the greatest potential to influence amphibian health while also identifying gaps in literature that need to be addressed. Amphibian diversity has shown the fastest decline of any group, yet there are still voids in our understanding of how this is happening. The lack of basic toxicity data on amphibians with regard to pesticides is an issue that needs to be addressed in order to improve effectiveness of amphibian conservation strategies. Meta-analyses performed in this review show that, at current usage, with the available acute toxicity literature, the pyrethroid pesticide group could hold the highest potential to cause acute toxicity to Xenopus sp. in relation to the other MVCPs discussed, but the lack of data cripples the efficacy with which meta-analyses can be performed and conclusions made from such analyses. Several studies have shown that DDT accumulates in Xenopus sp. from malaria vector control areas, but accumulation of other MVCPs in frogs is still largely unknown. Through this review we hope to encourage future research into the field of amphibian ecotoxicology and to promote the use of the Xenopus standard model in order to build comprehensive datasets that may be used in amphibian conservation.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Lieven Bervoets
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Patrick Meire
- Ecosystem Management Research Group (Ecobe), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Delnat V, Janssens L, Stoks R. Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:38-45. [PMID: 30921756 DOI: 10.1016/j.aquatox.2019.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
How global warming changes the toxicity of contaminants is a research priority at the intersection of global change biology and ecotoxicology. While many pesticides are more toxic at higher temperatures this is not always detected. We studied whether deviations from this general pattern can be explained by concentration-dependent interaction effects and by testing the interaction against the inappropriate null model. We exposed larvae of the mosquito Culex pipiens to three concentrations of the pesticide chlorpyrifos (absence, low and high) in the absence and presence of 4 °C warming. Both the low and high chlorpyrifos concentration were lethal and generated negative sublethal effects: activity of acetylcholinesterase (AChE) and total fat content decreased, and oxidative damage to lipids increased, yet growth rate increased. Warming was slightly lethal, yet had positive sublethal effects: growth rate, total fat content and metabolic rate increased, and oxidative damage decreased. For four out of seven response variables the independent action model identified the expected synergistic interaction between chlorpyrifos and warming. Notably, for three variables (survival, AChE and fat content) this was strongly dependent on the chlorpyrifos concentration, and for two of these (AChE and fat content) not associated with a significant interaction in the general(ized) linear models. For survival and fat content, warming only potentiated chlorpyrifos (CPF) toxicity at the low CPF concentration, while the opposite was true for AChE. Our results highlight that taking into account concentration-dependence and appropriate null model testing is crucial to improve our understanding of the toxicity of contaminants in a warming world.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
12
|
Varga JFA, Bui-Marinos MP, Katzenback BA. Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Front Immunol 2019; 9:3128. [PMID: 30692997 PMCID: PMC6339944 DOI: 10.3389/fimmu.2018.03128] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 01/26/2023] Open
Abstract
Amphibian skin is a mucosal surface in direct and continuous contact with a microbially diverse and laden aquatic and/or terrestrial environment. As such, frog skin is an important innate immune organ and first line of defence against pathogens in the environment. Critical to the innate immune functions of frog skin are the maintenance of physical, chemical, cellular, and microbiological barriers and the complex network of interactions that occur across all the barriers. Despite the global decline in amphibian populations, largely as a result of emerging infectious diseases, we understand little regarding the cellular and molecular mechanisms that underlie the innate immune function of amphibian skin and defence against pathogens. In this review, we discuss the structure, cell composition and cellular junctions that contribute to the skin physical barrier, the antimicrobial peptide arsenal that, in part, comprises the chemical barrier, the pattern recognition receptors involved in recognizing pathogens and initiating innate immune responses in the skin, and the contribution of commensal microbes on the skin to pathogen defence. We briefly discuss the influence of environmental abiotic factors (natural and anthropogenic) and pathogens on the immunocompetency of frog skin defences. Although some aspects of frog innate immunity, such as antimicrobial peptides are well-studied; other components and how they contribute to the skin innate immune barrier, are lacking. Elucidating the complex network of interactions occurring at the interface of the frog's external and internal environments will yield insight into the crucial role amphibian skin plays in host defence and the environmental factors leading to compromised barrier integrity, disease, and host mortality.
Collapse
Affiliation(s)
- Joseph F A Varga
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
13
|
Jones-Costa M, Franco-Belussi L, Vidal FAP, Gongora NP, Castanho LM, Dos Santos Carvalho C, Silva-Zacarin ECM, Abdalla FC, Duarte ICS, Oliveira CD, de Oliveira CR, Salla RF. Cardiac biomarkers as sensitive tools to evaluate the impact of xenobiotics on amphibians: the effects of anionic surfactant linear alkylbenzene sulfonate (LAS). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:184-190. [PMID: 29351853 DOI: 10.1016/j.ecoenv.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Amphibian populations have been experiencing a drastic decline worldwide. Aquatic contaminants are among the main factors responsible for this decline, especially in the aquatic environment. The linear alkylbenzene sulfonate (LAS) is of particular concern, since it represents 84% of the anionic surfactants' trade. In Brazil, the maximal LAS concentration allowed in fresh waters is 0.5mgL-1, but its potential harmful effects in amphibians remain unknown. Therefore, this study aimed to analyze the effects of a sublethal concentration of LAS (0.5mgL-1) for 96h on sensitive cardiac biomarkers of bullfrog tadpoles, Lithobates catesbeianus (Shaw, 1802). For this, we measured the activity level (AL - % of animals), in situ heart rate (fH - bpm), relative ventricular mass (RVM - % of body mass), in vitro myocardial contractility and cardiac histology of the ventricles. Tadpoles' AL and fH decreased in LAS group. In contrast, the RVM increased, as a result of a hypertrophy of the myocardium, which was corroborated by the enlargement of the nuclear measures and the increase of myocytes' diameters. These cellular effects resulted in an elevation of the in vitro contractile force of ventricle strips. Acceleration in the contraction (TPT - ms) also occurred, although no alterations in the time to relaxation (THR -ms) were observed. Therefore, it can be concluded that even when exposed to an environmentally safe concentration, this surfactant promotes several alterations in the cardiac function of bullfrog tadpoles that can impair their development, making them more susceptible to predators and less competitive in terms of reproduction success. Thus, LAS concentrations that are considered safe by Brazilian by regulatory agencies must be revised in order to minimize a drastic impact over amphibian populations. This study demonstrates the relevance of employing cardiac biomarkers at different levels (e.g., morphological, physiological and cellular) to evaluate effects of xenobiotics in tadpoles.
Collapse
Affiliation(s)
- Monica Jones-Costa
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Lilian Franco-Belussi
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil; Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil; Departamento de Biologia, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Felipe Augusto Pinto Vidal
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil; Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Nathália Penteado Gongora
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Luciano Mendes Castanho
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Cleoni Dos Santos Carvalho
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Elaine Cristina Mathias Silva-Zacarin
- Núcleo de Pesquisa em Ecotoxicologia de Abelhas, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Fabio Camargo Abdalla
- Laboratório de Biologia Estrutural e Funcional, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Iolanda Cristina Silveira Duarte
- Laboratório de Microbiologia Ambiental (LaMA), Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Classius De Oliveira
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Cristiane Ronchi de Oliveira
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Raquel Fernanda Salla
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil.
| |
Collapse
|
14
|
Nam TH, Kim L, Jeon HJ, Kim K, Ok YS, Choi SD, Lee SE. Biomarkers indicate mixture toxicities of fluorene and phenanthrene with endosulfan toward earthworm (Eisenia fetida). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:307-317. [PMID: 27696228 DOI: 10.1007/s10653-016-9876-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
α-Endosulfan and some polycyclic aromatic compounds (PAHs) are persistent in the environment and can reach crop products via contaminated agricultural soils. They may even be present as mixtures in the soil and induce mixture toxicity in soil organisms such as earthworms. In this study, the combined toxicities of PAHs with α-endosulfan were determined in Eisenia fetida adults using an artificial soil system. α-Endosulfan and five PAHs were tested for their acute toxicity toward E. fetida in artificial soils. Only α-endosulfan, fluorene, and phenanthrene showed acute toxicities, with LC50 values of 9.7, 133.2, and 86.2 mg kg-1, respectively. A mixture toxicity assay was conducted using α-endosulfan at LC10 and fluorene or phenanthrene at LC50 in the artificial soils. Upon exposure to the mixture of fluorene and α-endosulfan, earthworms were killed in increasing numbers owing to their synergistic effects, while no other mixture showed any additional toxicity toward the earthworms. Along with the acute toxicity results, the biochemical and molecular changes in the fluorene- and phenanthrene-treated earthworms with or without α-endosulfan treatment demonstrated that enhancement of glutathione S-transferase activity was dependent on the addition of PAH chemicals, and the HSP70 gene expression increased with the addition of α-endosulfan. Taken together, these findings contribute toward understanding the adverse effects of pollutants when present separately or in combination with other types of chemicals.
Collapse
Affiliation(s)
- Tae-Hoon Nam
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Leesun Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Yong-Sik Ok
- Department of Biological Environment, Korea Biochar Research Center, Kangwon National University, Chuncheon, 200-701, Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea.
| |
Collapse
|