1
|
Luter HM, Laffy P, Flores F, Brinkman DL, Fisher R, Negri AP. Molecular responses of sponge larvae exposed to partially weathered condensate oil. MARINE POLLUTION BULLETIN 2024; 199:115928. [PMID: 38141581 DOI: 10.1016/j.marpolbul.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens. A no significant effect concentration (N(S)EC) of 2.1 % WAF was obtained for larval settlement, while gene-specific (N(S)EC) thresholds ranged from 3.4 % to 8.8 % WAF. Significant shifts in global gene expression were identified at WAF treatments ≥20 %, with larvae exposed to 100 % WAF most responsive. Results from this study provide an example on the incorporation of non-conventional molecular and microbiological responses into ecotoxicological studies on petroleum hydrocarbons.
Collapse
Affiliation(s)
- Heidi M Luter
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University, Townsville 4811, QLD, Australia.
| | - Patrick Laffy
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University, Townsville 4811, QLD, Australia
| | - Florita Flores
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science, Crawley 6009, WA, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
2
|
Scarlett AG, Spilsbury FD, Rowland SJ, Gagnon MM, Grice K. Do distributions of diamondoid hydrocarbons accumulated in oil-contaminated fish tissues help to identify the sources of oil? MARINE POLLUTION BULLETIN 2024; 198:115836. [PMID: 38007871 DOI: 10.1016/j.marpolbul.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Identifying the sources of environmental oil contamination can be challenging, especially for oil in motile organisms such as fish. Lipophilic hydrocarbons from oil can bioaccumulate in fish adipose tissue and potentially provide a forensic "fingerprint" of the original oil. Herein, diamondoid hydrocarbon distributions were employed to provide such fingerprints. Indices produced from diamondoids were used to compare extracts from fish adipose tissues and the crude and fuel oils to which the fish were exposed under laboratory conditions. A suite of 20 diamondoids was found to have bioaccumulated in the dietary-exposed fish. Cross-plots of indices between fish and exposure oils were close to the ideal 1:1 relationship. Comparisons with diamondoid distributions of non-exposure oils produced overall, but not exclusively, weaker correlations. Linear Discriminatory Analysis on a combined set of 15 diamondoid and bicyclane molecular ratios was able to identify the exposure oils, so a use of both compound classes is preferable.
Collapse
Affiliation(s)
- Alan G Scarlett
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Australia Kent Street, Bentley, Western Australia 6102, Australia.
| | - Francis D Spilsbury
- School of Molecular and Life Sciences, Curtin University, Australia Kent Street, Bentley, Western Australia 6102, Australia
| | - Steven J Rowland
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Marthe Monique Gagnon
- School of Molecular and Life Sciences, Curtin University, Australia Kent Street, Bentley, Western Australia 6102, Australia
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Australia Kent Street, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
3
|
Behera D, Krishnakumar S, Anoop A. Occurrence, distribution and sources of petroleum contamination in reef-associated sediments of the Gulf of Mannar, India. MARINE POLLUTION BULLETIN 2023; 196:115576. [PMID: 37813061 DOI: 10.1016/j.marpolbul.2023.115576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
The distribution of saturated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) was assessed in superficial sediment samples collected from Mandapam island groups, Gulf of Mannar, India. The hydrocarbon distribution pattern and the n-alkane indices (e.g., carbon preference index (CPI) and natural n-alkanes ratio (NAR)) were deployed to differentiate between the biogenic and anthropogenic sources. Petroleum pollution was indicated by the pristane/phytane ratio close to 1. Presence of a prominent unresolved complex mixture (UCM) as well as hopane concentrations further supported this assertion. The evaluation of petrogenic sources of contamination were also comprehended by various diagnostic ratios of PAHs. The sites associated with shipping activities, tourism, and located near the mainland and accessible portions of the islands exhibited high petroleum contamination. Correlation analysis underlines the significance of combining petroleum-specific marker compounds and diagnostic ratios to improve the assessment of human influence on marine ecosystems.
Collapse
Affiliation(s)
- Diptimayee Behera
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector-81, Mohali 140306, Punjab, India
| | - S Krishnakumar
- Department of Geology, Malankara Catholic college, Mariyagiri, Kaliakkavilai, Kanyakumari 629153, Tamil Nadu, India
| | - Ambili Anoop
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
4
|
Liu Z, An M, Geng X, Wu Z, Cai W, Tang J, Zhang K, Zhou Z. The scleractinian coral Pocillopora damicornis relies on neuroendocrine regulation to cope with polycyclic aromatic hydrocarbons under heat stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120565. [PMID: 36332711 DOI: 10.1016/j.envpol.2022.120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic environmental pollutants and are threatening scleractinian corals. In this study, PAHs treatment did not induce significant physiological responses of the coral Pocillopora damicornis and its algal symbionts, but biological processes including response to toxin, drug metabolic, and oxidation reduction were triggered at the mRNA level. These results implied that PAHs could be a group of slow-acting environmental toxicants, whose effects were moderate but persistent. Besides, it was interesting to find that PAHs activated the neuroendocrine system in the coral by triggering the expression of monoaminergic and acetylcholinergic system related genes, indicating that PAHs might function as environmental hormones. Moreover, the combined treatments of PAHs and heat caused a much obvious effect on the coral and its algal symbionts by elevating antioxidant activity and suppressing photosynthesis in the symbionts. Results from the transcriptome data further indicated that corals might perform stress responses upon PAHs and heat challenges through the TNF and apoptosis pathways, which perhaps was modulated by the neuroendocrine system of corals. Collectively, our survey demonstrates that the PAHs can function as environmental hormones and activate the neuroendocrine regulation in scleractinian corals, which may contribute to the stress responses of symbiotic association by modulating photosynthesis, antioxidation, and apoptosis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Xinxing Geng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China; Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Spilsbury FD, Scarlett AG, Rowland SJ, Nelson RK, Spaak G, Grice K, Gagnon MM. Fish Fingerprinting: Identifying Crude Oil Pollutants using Bicyclic Sesquiterpanes (Bicyclanes) in the Tissues of Exposed Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:7-18. [PMID: 36165563 PMCID: PMC10098758 DOI: 10.1002/etc.5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In the present study, we investigated the possibility of identifying the source oils of exposed fish using ratios of bicyclic sesquiterpane (bicyclane) chemical biomarkers. In the event of an oil spill, identification of source oil(s) for assessment, or for litigation purposes, typically uses diagnostic ratios of chemical biomarkers to produce characteristic oil "fingerprints." Although this has been applied in identifying oil residues in sediments, water, and sessile filtering organisms, so far as we are aware this has never been successfully demonstrated for oil-exposed fish. In a 35-day laboratory trial, juvenile Lates calcarifer (barramundi or Asian seabass) were exposed, via the diet (1% w/w), to either a heavy fuel oil or to Montara, an Australian medium crude oil. Two-dimensional gas chromatography with high-resolution mass spectrometry and gas chromatography-mass spectrometry were then used to measure selected ratios of the bicyclanes to examine whether the ratios were statistically reproducibly conserved in the fish tissues. Six diagnostic bicyclane ratios showed high correlation (r2 > 0.98) with those of each of the two source oils. A linear discriminatory analysis model showed that nine different petroleum products could be reproducibly discriminated using these bicyclane ratios. The model was then used to correctly identify the bicyclane profiles of each of the two exposure oils in the adipose tissue extracts of each of the 18 fish fed oil-enriched diets. From our initial study, bicyclane biomarkers appear to show good potential for providing reliable forensic fingerprints of the sources of oil contamination of exposed fish. Further research is needed to investigate the minimum exposure times required for bicyclane bioaccumulation to achieve detectable concentrations in fish adipose tissues and to determine bicyclane depuration rates once exposure to oil has ceased. Environ Toxicol Chem 2023;42:7-18. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Francis D. Spilsbury
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
- Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
| | - Alan G. Scarlett
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Steven J. Rowland
- School of Geography, Earth & Environmental SciencesUniversity of PlymouthPlymouthUK
| | - Robert K. Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic InstitutionFalmouthMassachusettsUSA
| | - Gemma Spaak
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
- Shell Global Solutions International B.V.AmsterdamThe Netherlands
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Marthe Monique Gagnon
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
6
|
Ma X, Yang H, Li S, Huang C, Huang T, Wan H. Trends in the impact of socioeconomic developments on polycyclic aromatic hydrocarbon concentrations in Dianchi Lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2954-2964. [PMID: 34382168 DOI: 10.1007/s11356-021-15690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
An analysis of the correlation between polycyclic aromatic hydrocarbons (PAHs) and economic parameters demonstrates that the total population, gross domestic product, coal consumption, petroleum, temperature, and day consumption significantly affect PAH concentrations in Dianchi Lake, Yunnan province, China. An artificial neural network (ANN) model was developed to predict the trend in PAH concentrations in the sediments of Dianchi Lake over the next 10 years based on current indicators of economic development. The ANN model estimated the concentration of PAHs from 1980 to 2014. The model was evaluated using available observations for the historical trends; concentrations of PAHs in the sediments of Dianchi Lake are calculated to be at 2128.1 ng/g in 2025 and are expected to decline up to 1044.3 ng/g by 2030. These concentrations are considered relatively high because of their impacts on the health of people and aquatic organisms and the development of surrounding industries. We show the importance of the socioeconomic and climate factors in increasing the pollution levels. Our results could support the local government to formulate effective measures to reduce the pollution levels in the lake.
Collapse
Affiliation(s)
- Xiaohua Ma
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Hao Yang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Shuaidong Li
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Changchun Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China.
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China.
| | - Tao Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Hongbin Wan
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
7
|
Negri AP, Brinkman DL, Flores F, van Dam J, Luter HM, Thomas MC, Fisher R, Stapp LS, Kurtenbach P, Severati A, Parkerton TF, Jones R. Derivation of toxicity thresholds for gas condensate oils protective of tropical species using experimental and modelling approaches. MARINE POLLUTION BULLETIN 2021; 172:112899. [PMID: 34523424 DOI: 10.1016/j.marpolbul.2021.112899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Toxicity thresholds for dissolved oil applied in tropical ocean risk assessments are largely based on the sensitivities of temperate and/or freshwater species. To explore the suitability of these thresholds for tropical habitats we experimentally determined toxicity thresholds for eight tropical species for a partially weathered gas condensate, applied the target lipid model (TLM) to predict toxicity of fresh and weathered condensates and compared sensitivities of the tropical species with model predictions. The experimental condensate-specific hazard concentration (HC5) was 167 μg L-1 total aromatic hydrocarbons (TAH), with the TLM-modelled HC5 (78 μg L-1 TAH) being more conservative, supporting TLM-modelled thresholds for tropical application. Putative species-specific critical target lipid body burdens (CTLBBs) indicated that several of the species tested were among the more sensitive species in the TLM database ranging from 5.1 (coral larvae) to 97 (sponge larvae) μmol g-1 octanol and can be applied in modelling risk for tropical marine ecosystems.
Collapse
Affiliation(s)
- Andrew P Negri
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Florita Flores
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Joost van Dam
- Australian Institute of Marine Science, Casuarina 0811, Northern Territory, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Marie C Thomas
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Laura S Stapp
- Australian Institute of Marine Science, Casuarina 0811, Northern Territory, Australia
| | - Paul Kurtenbach
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Andrea Severati
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | | | - Ross Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| |
Collapse
|
8
|
Spilsbury F, Scarlett A, Grice K, Gagnon MM. Discriminating source of oil contamination in teleost fish, Lates calcarifer, using multivariate analysis of a suite of physiological and behavioral biomarkers. MARINE POLLUTION BULLETIN 2021; 172:112898. [PMID: 34482250 DOI: 10.1016/j.marpolbul.2021.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The release of petroleum hydrocarbons into the environment from natural seeps, well blowouts, pipeline leaks, shipping accidents and deliberate tank washing poses an ongoing threat to marine ecosystems. Distinguishing the source of oil contamination in exposed biota can be relatively straightforward if samples of the oil are available but, in their absence, such discrimination in fish poses a major challenge. The use of physiological and behavioral biomarker analysis provides a useful tool to describe sub-lethal effects of toxicant exposure. In this study we describe the responses of 12 biomarkers in Lates calcarifer (Asian seabass) following a 33-day dietary exposure (1%w/w) to heavy fuel oil (HFO) and to Montara, a typical Australian medium crude oil (MCO). Principal components analysis was used to differentiate between fish exposed to HFO from those exposed to MCO. Inferences can be made about the composition of an oil from the biomarker profiles produced in exposed fish.
Collapse
Affiliation(s)
- Francis Spilsbury
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia.
| | - Alan Scarlett
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Science, Curtin University, GPO BOX U1987, Perth, WA 6845, Australia
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Science, Curtin University, GPO BOX U1987, Perth, WA 6845, Australia
| | - Marthe Monique Gagnon
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia
| |
Collapse
|
9
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
10
|
Kücük Ş, Hejase CA, Kolesnyk IS, Chew JW, Tarabara VV. Microfiltration of saline crude oil emulsions: Effects of dispersant and salinity. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:124747. [PMID: 33951851 DOI: 10.1016/j.jhazmat.2020.124747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Dispersants reduce oil-water interfacial tension making the separation of oil-water emulsions challenging. In this study, crude oil stabilized by the dispersant, Corexit EC9500A, was emulsified in synthetic sea water using a range of Corexit/crude oil concentration ratios (up to 10% by volume). With an interfacial tension of only 8.0 mJ/m2 at 0.5 mL(Corexit)/L, approximately 50% of the crude was dispersed into droplets <10 µm. Near complete rejection of oil in crossflow separation tests was accompanied by a precipitous flux decline attributable in part to dispersant- and salinity-induced decrease in membrane's oleophobicity (4.2 mJ/m2 decrease in surface energy). Screening of electrostatic interactions prompted oil coalescence that occurred at the membrane surface but not in the bulk of the emulsion. Real-time in situ visualization by Direct Observation Through Membrane gave direct evidence of surface coalescence pointing to both its detrimental effects (spread of contiguous films) and possible advantages (removal of large droplets by crossflow shear).
Collapse
Affiliation(s)
- Şeyma Kücük
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Charifa A Hejase
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Iryna S Kolesnyk
- Department of Chemistry, National University of Kyiv-Mohyla Academy, Kyiv 04070, Ukraine.
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Chen H. Performance of a simple backtracking method for marine oil source searching in a 3D ocean. MARINE POLLUTION BULLETIN 2019; 142:321-334. [PMID: 31232311 DOI: 10.1016/j.marpolbul.2019.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Performance of a simple backtracking method in searching for a potential spill source for offshore detected oil is investigated through a series of idealized numerical experiments, in which either sea surface source in a 2D case or underwater source in a 3D case is considered. Numerical result shows that, generally, backtracking time is an important input for 2D version of the backtracking method, whereas an accurate ocean dynamic background and an accurate field measurement of oil droplet size are crucial for 3D version. Reducing the uncertainty in oil detection site or accurately measuring the oil droplet size can effectively improve the efficiency of method implementation. External information like satellite images, offshore oil facilities and navigation information is helpful for improving the method efficiency.
Collapse
Affiliation(s)
- Haibo Chen
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
12
|
Li Y, Wang C, Zou X, Feng Z, Yao Y, Wang T, Zhang C. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in coral reef fish from the South China Sea. MARINE POLLUTION BULLETIN 2019; 139:339-345. [PMID: 30686436 DOI: 10.1016/j.marpolbul.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Little data are available on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in coral reef fish from the South China Sea (SCS). In this study, we collected 21 coral reef fish species from the Xisha and Nansha Islands in the SCS to investigate the occurrence of 16 US-EPA PAHs. The total PAH concentrations (ΣPAH) in the collected fish ranged from 12.79 to 409.28 ng/g dry weight (dw, Xisha Islands) and from 32.71 to 139.09 ng/g dw (Nansha Islands), respectively. The ΣPAH concentration of Scarus niger collected from the Xisha Islands (237.13 ng/g dw) was about twofold higher than that of Scarus niger collected from the Nansha Islands (139.09 ng/g dw). The dominant compounds were found to be 2-ring and 3-ring PAHs. Based on qualitative and quantitative analyses, the main PAH sources were found to be coal and biomass combustion (50.43%), petroleum sources (25.86%), and vehicular emissions (16.10%).
Collapse
Affiliation(s)
- Yali Li
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Chenglong Wang
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China.
| | - Xinqing Zou
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China.
| | - Ziyue Feng
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Yulong Yao
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Teng Wang
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Chuchu Zhang
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Sweet LE, Revill AT, Strzelecki J, Hook SE, Morris JM, Roberts AP. Photo-induced toxicity following exposure to crude oil and ultraviolet radiation in 2 Australian fishes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1359-1366. [PMID: 29323733 DOI: 10.1002/etc.4083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Some polycyclic aromatic hydrocarbons (PAHs), components of crude oil, are known to cause increased toxicity when organisms are co-exposed with ultraviolet radiation, resulting in photo-induced toxicity. The photodynamic characteristics of some PAHs are of particular concern to places like Australia with high ultraviolet radiation levels. The objective of the present study was to characterize the photo-induced toxicity of an Australian North West Shelf oil to early life stage yellowtail kingfish (Seriola lalandi) and black bream (Acanthopagrus butcheri). The fish were exposed to high-energy water accommodated fractions for 24 to 36 h. During the exposure, the fish were either co-exposed to full-intensity or filtered natural sunlight and then transferred to clean water. At 48 h, survival, cardiac effects, and spinal deformities were assessed. Yellowtail kingfish embryos co-exposed to oil and full-spectrum sunlight exhibited decreased hatching success and a higher incidence of cardiac arrhythmias, compared with filtered sunlight. A significant increase in the incidence of pericardial edema occurred in black bream embryos co-exposed to full-spectrum sunlight. These results highlight the need for more studies investigating the effects of PAHs and photo-induced toxicity under environmental conditions relevant to Australia. Environ Toxicol Chem 2018;37:1359-1366. © 2018 SETAC.
Collapse
Affiliation(s)
- Lauren E Sweet
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| | - Andrew T Revill
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
| | - Joanna Strzelecki
- Indian Ocean Marine Research Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Crawley, Western Australia, Australia
| | - Sharon E Hook
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Lucas Heights, New South Wales, Australia
| | | | - Aaron P Roberts
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| |
Collapse
|
14
|
Dos Santos JJ, Maranho LT. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 210:104-113. [PMID: 29331851 DOI: 10.1016/j.jenvman.2018.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Petroleum is currently the world's main energy source, and its demand is expected to increase in coming years. Its intense exploitation can lead to an increase in the number of environmental accidents, such as spills and leaks, and an increase in the generation of environmental liabilities resulting from refining. Due to its hydrophobic characteristics and slow process of biodegradation, petroleum can remain in the environment for a long time and its toxicity can cause a negative impact on both terrestrial and aquatic ecosystems, with the main negative effects related to its carcinogenic potential for both animals and humans. The objective of the present review is to discuss environmental contamination by oil, conventional treatment techniques and bioremediation an alternative tool for recovery petroleum-contaminated soils, focusing on the rhizodegradation process, plant growth-promoting rhizobacteria (PGPR), a phytoremediation strategy in which the microorganisms that colonize the roots of phytoremediatior plants are responsible for the biodegradation of petroleum. These microorganisms can be selected and tested individually or in the form of consortia to evaluate their potential for oil degradation, or even to measure the use of biosurfactants produced by them to constitute tools for the development of environmental recovery strategies and biotechnological application.
Collapse
Affiliation(s)
- Jéssica Janzen Dos Santos
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), R. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR 81.280-330, Brazil
| | - Leila Teresinha Maranho
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), R. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR 81.280-330, Brazil.
| |
Collapse
|
15
|
Spies RB, Mukhtasor M, Burns KA. The Montara Oil Spill: A 2009 Well Blowout in the Timor Sea. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:55-62. [PMID: 28695257 DOI: 10.1007/s00244-016-0356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/17/2016] [Indexed: 06/07/2023]
Abstract
A well on the Montara platform on the Australian continental shelf blew out in August 2009 and spilled oil into the Timor Sea for 74 days. The oil, estimated at as much as 23.5 million L in total volume, spread over a large area of the shelf and eventually into Indonesian waters. This paper documents, through published literature, reports of both Australian and Indonesian governments and observations of coastal residents and fishermen the spread of the oil and attempts to estimate its impact. The lack of observers on the ocean and baseline, pre-spill data on populations of marine organisms, and delays in deploying scientific surveys after the spill severely limited efforts by the Australian government to determine damage in its territorial waters. Biological survey work was not done in Indonesian waters, but coastal residents attested to relatively severe impacts to algal farms. In addition fish landings declined in one port in southwest Timor Island.
Collapse
Affiliation(s)
- R B Spies
- Applied Marine Sciences, Little River, CA, 95456, USA.
| | - M Mukhtasor
- Institute of Technology Sepuluh Nopember (ITS), Perumahan ITS X/14, Surabaya, 60119, Indonesia
| | - K A Burns
- James Cook University, Box 974, Townsville, Australia
| |
Collapse
|
16
|
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Aliabadian M, Shadmehri Toosi A. Spatial distribution and composition of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and hopanes in superficial sediments of the coral reefs of the Persian Gulf, Iran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:195-223. [PMID: 28216134 DOI: 10.1016/j.envpol.2017.01.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
This study is the first quantitative report on petroleum biomarkers from the coral reefs systems of the Persian Gulf. 120 reef surface sediment samples from ten fragile coral reef ecosystems were collected and analyzed for grain size, biogenic elements, elemental ratios, and petroleum biomarkers (n-alkanes, PAHs1 and Hopanes) to assess the sources and early diagenesis of sedimentary organic matter. The mean grain size of the reef sediments ranged from 13.56 to 37.11% (Clay), 26.92 to 51.73% (Sand) and 35.97 to 43.85% (Silt). TOC2 (3.35-9.72 mg.g-1) and TON3 (0.4-1.10 mg.g-1) were identified as influencing factors on the accumulation of petroleum hydrocarbons, whilst BC4 (1.08-3.28 mg.g-1) and TIN5 (0.13-0.86) did not exhibit any determining effect. Although BC and TIN demonstrated heterogeneous spatial distribution, TOC and TON indicated homogenous distribution with continually upward trend in concentration from the east to west ward of the Gulf. The mean calculated TOC/TN ratios vacillated according to the stations (p < 0.05) from 2.96 at Shidvar Island to 8.64 at Hengam Island. The high TOC/TN ratios were observed in the Hengam (8.64), Kharg (8.04) and Siri (6.29), respectively, suggesting a predominant marine origin. The mean concentrations of ∑C11-35n-alkanes, ∑30 PAHs and ∑9Hopanes were found in the ranges of 385-937 μg.g-1dw, (overall mean:590 μg.g-1dw), 326-793 ng.g-1dw (499 ng.g-1dw), 88 to 568 ng.g-1 d (258 ng.g-1dw), respectively. Higher concentrations of detected petroleum biomarkers in reef sediments were chiefly distributed near main industrial areas, Kharg, Lavan and Siri, whilst the lower concentrations were in Hormoz and Qeshm. In addition, one-way ANOVA6 analysis demonstrated considerably significant differences (p < 0.05) among concentration of detected total petroleum hydrocarbons between most sampling locations. Some sampling sites especially Kharg, Lavan, Siri and Lark indicated higher concentration of n-alkanes due to the higher maintenance of organic matter by high clay content in the sediments. Furthermore, most sediment samples, except for Hormoz, Qeshm and Hengam showed an even carbon preference for n-alkanes which could be correlated to bacterial input. NPMDS7 analysis also demonstrated that among the congeners of petroleum biomarkers, n-C12,n-C14, n-C16,n-C18 and n-C20 for n-alkanes, Phe8 and Naph9 along with their Alkyl homologues for PAHs (2-3 rings accounted for 60%) and C30αβ and C29αβ for Hopanes were discriminated from their other congeners in the whole study area. Our results based on the PCA10 analysis and diagnostic indices of AHs11 and PAHs along with ring classification of PAHs, in addition, the ubiquitous presence of UCM,12 and Hopanes revealed that the main sources of the pollution were petroleum and petroleum combustion mainly from offshore oil exploration and extraction, discharge of pollutants from shipping activities.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, TarbiatModares University(TMU), Noor, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, TarbiatModares University, Noor, Mazandaran, Iran.
| | - Mansour Aliabadian
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad (FUM), Mashhad, Khorasan Razavi, Iran
| | - Amirhossein Shadmehri Toosi
- Department of Civil & Environmental Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Khorasan Razavi, Iran
| |
Collapse
|