1
|
Godoy JM, Massone CG, Carreira RS, Wagener AR, Carvalho F. Alternatives to 137Cs for 210Pb dating validation in south America and in the Carribean region: Point and diffuse sources. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107489. [PMID: 39013309 DOI: 10.1016/j.jenvrad.2024.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
As today the 137Cs fallout peak, in sediment cores, corresponds only to 25% of its initial concentration, alternatives to the use of 137Cs as a210Pb sediment dating validation tool are proposed. In highly industrialized bays, such as Guanabara Bay in the Rio de Janeiro metropolitan region, several chemical/compounds from the surrounding industry releases may be applied as validation tools. Chromium and copper profiles in a sediment core adequately fit the expected pattern due to the implementation of a chemical plant in 1958, reaching their maximum discharge in 1982 and subsequently decreasing due to the operation of a new wastewater treatment plant. A diffuse source such, as the PCB-based mixture Askarel, was also applied as an alternative validation tool, and the observed concentration profile reproduced the expected behavior, with increasing concentration after the Second World War and a decrease after the ban of this product in 1981. The observed Aroclor 1254 and 1260 mixture chlorination rates fit the most widely distributed PCB-based products in the country.
Collapse
Affiliation(s)
- José Marcus Godoy
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ, Brazil.
| | - Carlos G Massone
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ, Brazil
| | - Renato S Carreira
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ, Brazil
| | - Angela R Wagener
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ, Brazil
| | - Franciane Carvalho
- Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Av. Salvador Allende s/n, CEP 22780-160, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Romero MB, Polizzi PS, Chiodi L, Dolagaratz A, Gerpe M. Legacy and emerging contaminants in marine mammals from Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167561. [PMID: 37802361 DOI: 10.1016/j.scitotenv.2023.167561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Marine mammals are recognized sentinels of ecosystem health. They are susceptible to the accumulation and biomagnification of pollutants, which constitute one of the greatest threats to their survival. Legacy, such as organochlorine pesticides, and emerging contaminants, like microplastics and pharmaceuticals, may have effects on marine mammals' health at individual and population levels. Therefore, the evaluation of the risks associated with pollutants in this group is of great importance. The aim of this review is to provide information on the occurrence of legacy and emerging contaminants in marine mammals that inhabit Argentine waters. Also, to identify knowledge gaps and suggest best practices for future research. Reports of legacy contaminants referring to organochlorine pesticides and polychlorinated biphenyls were found in five species of cetaceans and two of pinnipeds. With respect to emerging pollutants, the presence of plastics was only evaluated in three species. Reported data was from at least a decade ago. Therefore, it is necessary to update existing information and conduct continuous monitoring to assess temporary trends in pollutants. All the studies were carried out in the province of Buenos Aires and Northern Patagonia indicating a knowledge gap in the southern zone of the Argentine Sea. In addition, pollutants of global environmental concern that have not been studied in Argentina are discussed. Future studies should fill these gaps and a greater effort to understand the relationships between pollutants and their effects on marine mammals is suggested. This issue will make it possible to determine thresholds for all the substances and species evaluated in order to carry out more detailed risk assessments and make decisions for the conservation of marine mammals in Argentine waters.
Collapse
Affiliation(s)
- M B Romero
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina.
| | - P S Polizzi
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| | - L Chiodi
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| | - A Dolagaratz
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| | - M Gerpe
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| |
Collapse
|
3
|
Burgos Melo HD, de Souza-Araujo J, Benavides Garzón LG, Macedo JC, Cardoso R, Mancini SD, Harrad S, Rosa AH. Concentrations and legislative aspects of PBDEs in plastic of waste electrical and electronic equipment in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167349. [PMID: 37769718 DOI: 10.1016/j.scitotenv.2023.167349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Brominated flame retardants (BFRs) have been widely used as additives in polymeric products such as electronic and electrical equipment (EEE) to help meet fire safety regulations. However, some BFRs like polybrominated diphenyl ethers (PBDEs), are now listed under the Stockholm Convention on persistent organic pollutants (POPs) and banned in many countries, due to their adverse health impacts, environmental persistence, and capacity for bioaccumulation and long-range atmospheric transport. Despite this, in Brazil, only a few studies exist of the presence of these contaminants in the environment, and even fewer in waste EEE (WEEE). Against this backdrop, this study measured the presence of PBDEs in samples (n = 159) of WEEE in the metropolitan region of Sorocaba, Sao Paulo, Brazil. PBDEs were detected in 149 samples, with concentrations in 18 samples exceeding the European Union's Low POP Content Limit (LPCL) of 1000 mg/kg. Decabromodiphenyl ether (BDE-209) was the congener present at the highest concentration in most samples, with those of other PBDEs such as BDE-47 much lower. In general, samples containing >1000 mg/kg are those categorised as display items and miscellaneous EEE (n = 15.27 %), comprising: parts from cathode ray tube TVs (n = 11), audio systems (n = 2), and LCD TVs (n = 2). In addition, in 5 % (n = 3) of IT and telecommunications equipment samples (computer parts) PBDE concentrations exceeded 1000 mg/kg. Our results show the need for greater control and monitoring of the presence of these pollutants in WEEE before recycling and final disposal, to prevent PBDEs entering the recycling stream.
Collapse
Affiliation(s)
- Hansel David Burgos Melo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Juliana de Souza-Araujo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | | | - João Carlos Macedo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Rafael Cardoso
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Sandro Donnini Mancini
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil.
| |
Collapse
|
4
|
Araujo SCDE, Beneditto APMDI, Gatts CEN, Moreira SC, Domit C, Gama RM, Martins AS, Zappes CA. Local ecological knowledge of fishers from southern and southeastern Brazil about the franciscana dolphin Pontoporia blainvillei: Strategies for conservation. AN ACAD BRAS CIENC 2023; 95:e20201111. [PMID: 37222356 DOI: 10.1590/0001-3765202320201111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/05/2020] [Indexed: 05/25/2023] Open
Abstract
This study compares local ecological knowledge (LEK) of fishers from the Southwest Atlantic Ocean (SWAO), Brazil, related to the franciscana dolphin (Pontoporia blainvillei). We conducted 330 ethnographic interviews in ten fishing communities in southern and southeastern Brazil between 2012 and 2018. Boolean or Classic Logic was used to identify 95 fishers who were able to recognize the franciscana dolphin accordingly to the taxonomic entity P. blainvillei: 23 in northern Espírito Santo state, one in southern Espírito Santo, 20 in northern Rio de Janeiro state, and 51 in northern Paraná state. Among these 95 fishers, 87.4% (n = 83) reported incidental captures in fishing nets. Among these, 52 (54.7%) did not know any solution to this problem. Interviews revealed that the fishers usually discard carcasses in the sea after fat and muscle tissue are removed so that they can be used as bait for shark fishing or as food. In Southeastern Brazil, fishers LEK related to their ability to identify franciscana dolphin varied from 'no identification' and 'extremely low identification' to 'partial' and 'good identification,' while in southern Brazil, fishers mainly presented a 'good identification' of the dolphins. We propose comanagement actions to conserve the franciscana dolphin in the SWAO.
Collapse
Affiliation(s)
- Samanta C DE Araujo
- Programa de Pós-Graduação em Oceanografia Ambiental, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29075-900 Vitória, ES, Brazil
- Universidade Federal do Espírito Santo, Grupo de Pesquisa Ecologia Humana do Oceano, Laboratório de Oceanografia Socioambiental, Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brazil
| | - Ana Paula M DI Beneditto
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, 28013-602 Campos dos Goytacazes, RJ, Brazil
- Universidade Federal do Espírito Santo, Grupo de Pesquisa Ecologia Humana do Oceano, Laboratório de Oceanografia Socioambiental, Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brazil
| | - Carlos Eduardo N Gatts
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Ciência e Tecnologia, Laboratório de Ciências Físicas, Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, 28013-602 Rio de Janeiro, RJ, Brazil
| | - Sérgio C Moreira
- Universidade Federal do Rio de Janeiro, Laboratório de Bioacústica e Ecologia de Cetáceos, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Universidade Federal do Espírito Santo, Grupo de Pesquisa Ecologia Humana do Oceano, Laboratório de Oceanografia Socioambiental, Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brazil
| | - Camila Domit
- Universidade Federal do Paraná, Centro de Estudos do Mar, Laboratório de Ecologia e Conservação, Av. Beira Mar, s/n, Caixa Postal 6, 83255-000 Pontal do Sul, Paraná, Brazil
- Universidade Federal do Espírito Santo, Grupo de Pesquisa Ecologia Humana do Oceano, Laboratório de Oceanografia Socioambiental, Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brazil
| | - Renata M Gama
- Universidade Federal do Espírito Santo, Grupo de Pesquisa Ecologia Humana do Oceano, Laboratório de Oceanografia Socioambiental, Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brazil
| | - Agnaldo S Martins
- Programa de Pós-Graduação em Oceanografia Ambiental, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29075-900 Vitória, ES, Brazil
| | - Camilah A Zappes
- Programa de Pós-Graduação em Oceanografia Ambiental, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29075-900 Vitória, ES, Brazil
- Universidade Federal do Espírito Santo, Grupo de Pesquisa Ecologia Humana do Oceano, Laboratório de Oceanografia Socioambiental, Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brazil
| |
Collapse
|
5
|
Montone RC, Alonso MB, Santos MCO, Méndez-Fernandez P, Taniguchi S, Barbosa APM, Gonçalves RM, Padilha JDA, Bertozzi C, da Silva J, Marigo J, Pereira ADS, Lourenço RA. Temporal trends of persistent organic pollutant contamination in Franciscana dolphins from the Southwestern Atlantic. ENVIRONMENTAL RESEARCH 2023; 216:114473. [PMID: 36195158 DOI: 10.1016/j.envres.2022.114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Persistent organic pollutants (POPs) were analyzed in 136 blubber samples of Franciscana dolphins from Brazil (Pontoporia blainvillei), which is the most threatened dolphin in the Southwestern Atlantic. The dolphins were caught by the fishery fleet and collected from 2000 to 2018 in three regions of São Paulo state: northern São Paulo (SPN), central São Paulo (SPC), and southern São Paulo (SPS). The POPs analyzed in this study were polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), Mirex, hexachlorobenzene (HCB), chlordane compounds (CHLs), hexachlorocyclohexane isomers (HCHs), and polybrominated diphenyl ethers (PBDEs). The concentrations ranged from 36 to 7200 ng g-1 lipid weight (lw) and 113-42200 ng g-1 lw for predominant compounds DDTs and PCBs, respectively. Similar profiles of PCB congeners were observed with a predominance of hexachlorinated compounds, representing approximately 50% of the total PCB amount; the highest PCB concentrations were observed from Baixada Santista (SPC) proximate to a highly urbanized and industrial coastal area. Significant differences were observed between the sexes and maturity of dolphins, mainly for PCBs, DDTs, and Mirex. In general, POPs other than HCB in Franciscana dolphins showed downward temporal trends, matching the regulatory periods for restricting and/or banning these compounds. Although POP concentrations are declining, PCB levels remain high in small dolphins, suggesting adverse health effects on Franciscanas. As organic contaminants are one of the numerous threats Franciscanas have been vulnerable to along the Brazilian coast, we recommend monitoring POPs levels every five years to check for declining (or stabilizing) trends.
Collapse
Affiliation(s)
- Rosalinda C Montone
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil.
| | - Mariana B Alonso
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil; Instituto de Biofísica Carlos Chagas Filho- Universidade Federal do Rio de Janeiro, 21941-902, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, Brazil
| | - Marcos César O Santos
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Paula Méndez-Fernandez
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 allées de l'océan, 17000, La Rochelle, France
| | - Satie Taniguchi
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Ana Paula M Barbosa
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Renato M Gonçalves
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Janeide de Assis Padilha
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil; Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Carolina Bertozzi
- Instituto de Biociências - Universidade Estadual Paulista - UNESP, câmpus do Litoral Paulista, São Vicente, SP, Brazil
| | - Josilene da Silva
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Juliana Marigo
- Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo, 05508-270 São Paulo, SP, Brazil
| | - Antonio Derley S Pereira
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Rafael A Lourenço
- Instituto Oceanográfico - Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Sun Y, Zeng Y, Rajput IR, Sanganyado E, Zheng R, Xie H, Li C, Tian Z, Huang Y, Yang L, Lin J, Li P, Liang B, Liu W. Interspecies differences in mammalian susceptibility to legacy POPs and trace metals using skin fibroblast cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120358. [PMID: 36228850 DOI: 10.1016/j.envpol.2022.120358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The susceptibility to trace metals and legacy POPs is different between terrestrial and marine mammals. In this study, we established the first cell line from Indo-Pacific finless porpoises and compared the cellular responses of skin fibroblast cells from Pygmy killer whales, Pantropic spotted dolphins, Indo-Pacific finless porpoises, mice, and humans following exposure to copper, methylmercury, cadmium, PCB126, PCB153, and BDE47 to better understand the interspecies sensitivities of mammals to chemical pollutants. We conducted a risk assessment by comparing no-observed effect concentrations (NOEC), lowest-observed effect concentrations (LOEC), and half maximal effective concentrations (EC50) from cell viability assays and previously reported pollutant body burdens in mammals. Based on the in vitro data, Indo-Pacific finless porpoises were more sensitive to copper and methylmercury than other mammals. PCB153 exposure reduced cell viability in all mammals except humans, while PCB126 was more potent, with 13.33 μg/mL exposure reducing cell viability in all mammals. In contrast, BDE47 exposure reduced cell viability only in terrestrial mammals in addition to pantropic spotted dolphin. Based on the in vitro data and the natural context of metal concentrations, both methylmercury and cadmium posed a higher risk to cetaceans than human, while copper posed a lower risk to cetaceans. All three legacy POPs (PCB126, PCB153, and BDE47) posed minor risk to cetaceans for short-term exposure. This study demonstrated that a species-specific in vitro model may provide more accurate information on the potential risk of pollutants to mammals. However, due to the bioamplification of POPs and their potential impact on the endocrine system and immune system of cetaceans, risk assessment with long-term exposure with more in vitro models should be further studied.
Collapse
Affiliation(s)
- Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Imran Rashid Rajput
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Faculty of Veterinary and Animal Science, Department of Biotechnology, Lasbela University of Agriculture Water and Marine Science, 89250, Uthal, Balochistan, Pakistan
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE2 4PB, UK
| | - Ruiqiang Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; China Blue Sustainability Institute, Haikou, Hainan, 570208, China
| | - Huiying Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Liangliang Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jianqing Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
7
|
Souza MCO, Rocha BA, Adeyemi JA, Nadal M, Domingo JL, Barbosa F. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157774. [PMID: 35932867 DOI: 10.1016/j.scitotenv.2022.157774] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 05/06/2023]
Abstract
The increase and indiscriminate use of personal care products, food products, fertilizers, pesticides, and health products, among others, have resulted/are resulting in extensive environmental contamination. Most of these products contain traces of widespread chemicals, usually known as emerging pollutants (EPs) or pollutants of emerging concern (PEC). The Latin American (LA) region comprises 20 countries with different social and cultural aspects, with 81 % of the population living in urban areas. The LA region has some countries on the top list of users/consumers of EPs, from pesticides and fertilizers to personal care products. However, there is a gap in information related to the distribution of EPs in the environment of this region, with very few existing review texts exploring this issue. Therefore, this present paper advances this approach. An exhaustive literature review, with the selection of 176 documents, provided unique up-to-date information on the presence/distribution of 17 classes of legacy or emerging pollutants in different food and environmental matrices (soil, sediment, water, and air). The study shows that the wide distribution and recorded levels of these pollutants in the continental environment are potential risks to human health, mainly through food and drinking water ingestion. Polycyclic aromatic hydrocarbons are pollutants of deep public concern since they show carcinogenic properties. Several classes of pollutants, like endocrine disruptors, have caused harmful effects on humans and the environment. Besides that, pharmaceutical products and pesticides are compounds of high consumption worldwide, being environmental contamination a real and ongoing possibility. Finally, gaps and future research needs are deeply pointed out.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Catalonia, Spain.
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Catalonia, Spain
| | - José Luis Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Catalonia, Spain
| | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
8
|
de Oliveira-Ferreira N, Manhães BMR, Santos-Neto EB, Rocha Y, Guari EB, Botta S, Colosio AC, Ramos HGC, Barbosa L, Cunha IAG, Bisi TL, Azevedo AF, Cunha HA, Lailson-Brito J. Franciscana dolphins, Pontoporia blainvillei, as environmental sentinels of the world's largest mining disaster: Temporal trends for organohalogen compounds and their consequences for an endangered population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119370. [PMID: 35526646 DOI: 10.1016/j.envpol.2022.119370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
On November 5th, 2015, the Fundão dam collapsed in Minas Gerais, southeastern Brazil, releasing millions of cubic meters of mud containing mining residue into the Doce River. Two weeks later, the mud arrived to the marine environment, triggering changes in franciscana dolphin habitat, Pontoporia blainvillei, from Franciscana Management Area Ia. This is an isolated population of the most endangered cetacean species in the South Atlantic Ocean. Organohalogen compounds (OHCs) may pose a threat to this endangered population because of their endocrine disrupting properties. Hence, this study sought to determine if there were differences in the bioaccumulation profile of OHC (PCBs, DDTs, Mirex, HCB, HCHs, PBDEs, PBEB, HBBZ and MeO-BDEs) in franciscana dolphins before and after dam collapse and to build a temporal trend. Blubber of 33 stranded individuals was collected in Espírito Santo state for organohalogen assessment between 2003 and 2019. Differences were found between franciscana dolphins collected prior to and after the disaster. Additionally, significant temporal trends for organochlorine pesticides and natural and anthropogenic organobromine were detected. The increase in pesticide concentrations after 2015 is suggestive of their reavailability in the environment. The decline in organobromine over time could be due to their debromination in the marine environment and alterations in the composition of their natural producers. PCBs remained stable during the period of the study. Our findings show an increase in endocrine disruptor concentrations, which is of great concern for this endangered population.
Collapse
Affiliation(s)
- Nara de Oliveira-Ferreira
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-590, Rio de Janeiro, Brazil.
| | - Bárbara M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil
| | - Elitieri B Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil
| | - Yasmin Rocha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil
| | - Emi B Guari
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália s/n, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Adriana C Colosio
- Instituto Baleia Jubarte, Rua Barão do Rio Branco, 125, 45900-000, Caravelas, Bahia, Brazil
| | - Hernani G C Ramos
- Instituto Baleia Jubarte, Rua Barão do Rio Branco, 125, 45900-000, Caravelas, Bahia, Brazil
| | - Lupércio Barbosa
- Instituto ORCA), Rua Quinze de Novembro, 29101-055, Vila Velha, Espírito Santo, Brazil
| | - Ian A G Cunha
- Instituto ORCA), Rua Quinze de Novembro, 29101-055, Vila Velha, Espírito Santo, Brazil
| | - Tatiana L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil
| | - Alexandre F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil
| | - Haydée A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-590, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Xie Q, Yu RQ, Yu R, Wang Z, Zhang X, Wu Y. Historic changes of polychlorinated biphenyls (PCBs) in juvenile and adult cetaceans from the Pearl River estuary from 2003 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149512. [PMID: 34391148 DOI: 10.1016/j.scitotenv.2021.149512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), as a type of legacy persistent organic pollutants, pose significant health threats to wildlife. However, long-term residue changes and profiles of PCBs in cetaceans have not been extensively studied in the Pearl River Estuary (PRE), an important marine mammal area in China. Here, the body burdens, spatiotemporal trends, and health risks of 21 chlorobiphenyl congeners (∑21CBs) were analyzed in blubber samples collected from twelve cetacean species (n = 172) in the PRE from 2003 to 2020. Our results revealed medium levels of PCBs (316-96,233 ng g-1 lipid) compared to those reported for cetaceans elsewhere (70-370,000 ng g-1 lipid). Clear differences in PCB distribution patterns between inshore and offshore cetaceans and between odontocetes and mysticetes were also found. Both the coastal Indo-Pacific humpback dolphins (Sousa chinensis) and Indo-Pacific finless porpoises (Neophocaena phocaenoides) displayed similarly fine-scale spatial distribution patterns of PCBs, suggesting that the two cetaceans could serve as bioindicators of PCB pollution in the PRE. Additionally, both cetaceans exhibited decreasing trends in their blubber PCB concentrations over the past 20 years, likely reflecting the effective regulation of PCBs in the PRE Delta. Nevertheless, the relatively high and stable PCB-toxic equivalent (TEQ) levels detected in calf humpback dolphins during the sampling period suggested that the calves are still under the stresses of high PCB-related health risks. Our results highlight the need for more efforts to eliminate PCB contamination to prevent these cetaceans from continuous population decline and further extinction.
Collapse
Affiliation(s)
- Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, TX, USA
| | - Ronglan Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China
| | - Zhenhua Wang
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China.
| |
Collapse
|
10
|
Monteiro F, Lemos LS, de Moura JF, Rocha RCC, Moreira I, Di Beneditto APM, Kehrig HA, Bordon IC, Siciliano S, Saint'Pierre TD, Hauser-Davis RA. Total and subcellular Ti distribution and detoxification processes in Pontoporia blainvillei and Steno bredanensis dolphins from Southeastern Brazil. MARINE POLLUTION BULLETIN 2020; 153:110975. [PMID: 32275533 DOI: 10.1016/j.marpolbul.2020.110975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Titanium (Ti), used in many dailyuse products, such as shampoos and sunscreen filters, in the form of TiO2 nanoparticles (NPs), may elicit adverse marine biota effects. Marine mammal Ti data is scarce, and subcellular distribution and detoxification information is non-existent. Ti concentrations and metalloprotein detoxification in Pontoporia blainvillei and Steno bredanensis dolphins from Southeastern Brazil were assessed. Metallothionein (MT) concentrations were determined spectrophotometrically, total and subcellular Ti, by ICP-MS and detoxification, by HPLC-ICP-MS. Ti detoxification occurred through MT complexation. Statistical Ti-MT associations were observed in S. bredanensis liver, indicating TiO2 NPs contamination, as Ti binds to MT only as NPs. MT-Ti correlations were observed for both the coastal (P. blainvillei) and offshore (S. bredanensis) dolphins, evidencing oceanic TiO2 diffusion. Ti detoxification through binding to reduced glutathione occurred in both species. Thermostable subcellular fractions are a valuable tool for cetacean Ti detoxification assessments and should be applied to conservation efforts.
Collapse
Affiliation(s)
- Fernanda Monteiro
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Leila S Lemos
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos), Rua São José 1.260, Praia Seca, Araruama, RJ 28970-000, Brazil; Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - Jailson Fulgêncio de Moura
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos), Rua São José 1.260, Praia Seca, Araruama, RJ 28970-000, Brazil; Leibniz Center for Tropical Marine Ecology - ZMT, Systems Ecology Group, Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Rafael Christian Chávez Rocha
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Isabel Moreira
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Ana Paula M Di Beneditto
- Universidade Estadual do Norte Fluminense, Laboratório de Ciências Ambientais, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Helena A Kehrig
- Universidade Estadual do Norte Fluminense, Laboratório de Ciências Ambientais, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Isabella C Bordon
- UNESP - Universidade Estadual Paulista, Campus do Litoral Paulista, Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Praça Infante Dom Henrique s/n°, Parque Bitaru, 11330-900 São Vicente, SP, Brazil
| | - Salvatore Siciliano
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos), Rua São José 1.260, Praia Seca, Araruama, RJ 28970-000, Brazil; Laboratório de Biodiversidade, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Mourisco sala 217, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
| | - Tatiana D Saint'Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ, Brazil.
| | - Rachel Ann Hauser-Davis
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos), Rua São José 1.260, Praia Seca, Araruama, RJ 28970-000, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
11
|
Jeong Y, Lee Y, Park KJ, An YR, Moon HB. Accumulation and time trends (2003-2015) of persistent organic pollutants (POPs) in blubber of finless porpoises (Neophocaena asiaeorientalis) from Korean coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121598. [PMID: 31732341 DOI: 10.1016/j.jhazmat.2019.121598] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Accumulation of persistent organic pollutants (POPs) in marine mammals is of great concern and is associated with declining populations. The concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) were measured in blubber of finless porpoises (Neophocaena asiaeorientalis) collected from Korean coastal waters in 2010 and 2015, to assess the concentrations, time trends, and ecotoxicological effects. Among the POPs measured, DDTs were detected at the highest concentrations, followed by PCBs and PBDEs. Significant age- and sex-dependent accumulation of POPs was evident for porpoises collected in 2010, but not for those collected in 2015. This finding may be a function of stabilization of POP concentrations over time. In our study, accumulation patterns of POPs were dependent on consumption patterns and physico-chemical properties of the contaminants, and on the metabolism in the porpoises. Significant reductions of POPs were found between 2003 and 2010, likely reflecting the impact of domestic and global regulation of POPs. However, no changes in most POPs were found between 2010 and 2015, suggesting a trend toward stabilization. Approximately 10 % and 27 % of porpoises exceeded previously proposed threshold levels for PCBs and DDTs, respectively, implying a potential health risk.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Youngsun Lee
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyum Joon Park
- Cetacean Research Institute (CRI), National Institute of Fisheries Science (NIFS), Ulsan 44780, Republic of Korea
| | - Yong-Rock An
- National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
12
|
Stoll GC, da Silva Carreira R, Massone CG. Polychlorinated biphenyls (PCBs) in water: method development and application to river samples from a populated tropical urban area. Anal Bioanal Chem 2020; 412:2477-2486. [PMID: 32030496 DOI: 10.1007/s00216-020-02468-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
Abstract
A method for the determination of polychlorinated biphenyls (PCBs) in water from urban rivers was implemented and validated. Extractions of dissolved and particulate PCBs were performed using solid-phase extraction and a pressurized solvent extraction system, respectively, and the analytes were identified and quantified by gas chromatography with tandem mass spectrometry in selected reaction monitoring mode with no further purification. The method was successfully developed for the determination of 41 PCBs with two precursor-product confirmations for each analyte. Low method detection limits (0.06-0.50 ng L-1) and good precision (≤ 20%; n = 8) were obtained, as well a linear response of the calibration curve ranging from 1.0 to 50 ng L-1. Method performance for real samples was tested with water collected weekly in triplicate during April 2018 from a eutrophic river in the city of Rio de Janeiro. The total (dissolved + particulate) PCB concentrations ranged from 2.17 to 5.29 ng L-1, above the threshold for river water quality standards in Brazil. Graphical abstract.
Collapse
Affiliation(s)
- Gabriela Costa Stoll
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil.,Mineral Analysis Laboratory, Companhia de Pesquisa de Recursos Minerais (CPRM), Rio de Janeiro, 22290-240, Brazil
| | - Renato da Silva Carreira
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil
| | - Carlos German Massone
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil.
| |
Collapse
|
13
|
Lavandier R, Arêas J, Quinete N, de Moura JF, Taniguchi S, Montone R, Siciliano S, Hauser-Davis RA, Moreira I. PCB and PBDE contamination in Tursiops truncatus and Stenella frontalis, two data-deficient threatened dolphin species from the Brazilian coast. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:485-493. [PMID: 30368142 DOI: 10.1016/j.ecoenv.2018.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCB) and polybrominated diphenyl ethers (PBDE) levels were assessed in the liver and muscle of two data-deficient threatened dolphin species, the bottlenose dolphin (Tursiops truncatus, n = 4) and the Atlantic spotted dolphin (Stenella frontalis, n = 6), sampled off the Southeastern Brazilian coast. PCB concentrations were greater in liver compared to muscle, with males presenting higher concentrations than females. The three main detected PCB congeners were PCBs 138, 153 and 180. A predominance of hexachlorinated congeners was observed, followed by hepta- and penta-PCBs. For both species, Cl 3 and Cl 4 levels were higher in muscle compared to liver, while Cl 5 to Cl 8 and ∑PCBs were higher in liver. PBDE concentrations were significantly higher in Atlantic spotted dolphin muscle and liver compared to bottlenose dolphins. Similarly to PCBs, the highest PBDE concentrations were observed in males. The presence of PBDE congeners BDE-47, -100 and -99 in the muscle and liver of both species suggests the existence of a pollution source in Brazil by a penta-BDE mixture, as PBDEs have never been produced in Brazil. Interspecific PCB and PBDE profiles were very similar, which may be related to the similar characteristics of the analyzed species, mainly geographic distribution and life and feeding habits. This study furthers knowledge on environmental PCB and PBDE contamination, assisting in the establishment of dolphin population conservation strategies. In addition, this study calls into question the current threshold values established for PCBs and PBDEs, and demonstrates the lack of information and knowledge in this regard for cetaceans.
Collapse
Affiliation(s)
- Ricardo Lavandier
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ 22453-900, Brazil.
| | - Jennifer Arêas
- Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
| | - Natalia Quinete
- Southeast Environmental Research Center (SERC) - Florida International University, University Park, Miami, FL 33199, USA
| | - Jailson F de Moura
- Systems Ecology Group, Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany
| | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo (USP), Praça do Oceanográfico 191, Butantã, São Paulo, SP 05508-900, Brazil
| | - Rosalinda Montone
- Instituto Oceanográfico, Universidade de São Paulo (USP), Praça do Oceanográfico 191, Butantã, São Paulo, SP 05508-900, Brazil
| | - Salvatore Siciliano
- Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
| | - Rachel Ann Hauser-Davis
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH), ENSP, FIOCRUZ, Rua Leopoldo Bulhões, 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Isabel Moreira
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ 22453-900, Brazil
| |
Collapse
|
14
|
Polybrominated Diphenyl Ethers (PBDEs) in a Large, Highly Polluted Freshwater Lake, China: Occurrence, Fate, and Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071529. [PMID: 30029535 PMCID: PMC6068772 DOI: 10.3390/ijerph15071529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 12/22/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) were extensively investigated in water, sediment, and biota samples collected from Chaohu Lake basin in China. The total concentrations of eight PBDEs (Σ8PBDEs) were in the ranges of 0.11–4.48 ng/L, 0.06–5.41 ng/g, and 0.02–1.50 ng/g dry weight (dw) in the water, sediment, and biota samples, respectively. The concentrations showed wide variations in the monitoring area, while the congener profiles in all the water, sediment, and biota samples were generally characterized by only a few compounds, such as BDE-47, BDE-99, and/or BDE-209. The spatial analysis depicted a decreasing trend of PBDEs from west to east Chaohu Lake, consistent with regional industrialization degree. The distributions of PBDE congeners in the biota samples were similar to the compositional profiles in the water, which were dominated by BDE-47 and/or BDE-99. Nevertheless, BDE-47 and BDE-153 in the brain tissue showed a higher accumulative potential than PBDEs in other tissues as well as the whole body, with 96% relative contribution of Σ8PBDEs. The noncarcinogenic risk values estimated for BDE-47, BDE-99, and BDE-153 indicated that the specific risk associated with the studied water and foodstuffs is limited. However, there is a potential mixture ecotoxicity at three trophic levels at some sampling points in the water, which should draw considerable attention.
Collapse
|
15
|
The Risk of Polychlorinated Biphenyls Facilitating Tumors in Hawaiian Green Sea Turtles ( Chelonia mydas). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061243. [PMID: 29895772 PMCID: PMC6025165 DOI: 10.3390/ijerph15061243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/31/2018] [Accepted: 06/10/2018] [Indexed: 11/24/2022]
Abstract
The Hawaiian green turtle (Chelonia mydas) is on the list of threatened species protected under the U.S. Endangered Species Act in 1978 in large part due to a severe tumor-forming disease named fibropapillomatosis. Chemical pollution is a prime suspect threatening the survival of C. mydas. In this study, PCBs concentrations were determined in 43 C. mydas plasma samples archived on Tern Island. The total PCBs concentration in male C. mydas (mean 1.10 ng/mL) was two times more than that of females (mean 0.43 ng/mL). The relationship between straight carapace length and PCBs concentration in females has also been studied, which was negatively related. To figure out the possible existence of correlations between PCBs and tumor status, we measured the PCBs concentration in turtles with no tumor, moderate or severe tumor affliction. PCBs concentration of two afflicted groups was much higher than the healthy group, suggesting that PCBs may play a role in fibropapillomatosis in Hawaiian green turtle.
Collapse
|
16
|
Tanaka Y, Fujiwara M, Shindo A, Yin G, Kitazawa T, Teraoka H. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. CHEMOSPHERE 2018; 193:1207-1215. [PMID: 29874750 DOI: 10.1016/j.chemosphere.2017.11.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Contamination with polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the environment is a major concern due to their persistent bioaccumulative toxicity that can disturb neurobehavioral functions including movements. Recently, it was reported that some PBDE including BDE-47 stimulates locomotor activities of zebrafish embryos by unknown mechanism. In this study, motor movements of the zebrafish embryo were used as a model system to evaluate the neuronal toxicity of a non-coplanar PCB-dominant mixture (Aroclor 1254) and BDE-47. Both organohalogens increased tail shaking and rotation of embryos in a concentration-dependent manner. Chemical inhibition and gene knock-down of tyrosine hydroxylase and vesicular monoamine transporter 2 (VMAT2) also induced hyperactivities. Hyperactivities induced by these treatments were all inhibited by supplementation of l-tyrosine and l-dopa, precursors of dopamine synthesis. Both organohalogens reduced dopamine contents and increased the 3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine ratio in whole embryos. The results suggest that functional inhibition of dopaminergic neurons is involved in hyperactivities of zebrafish embryos caused by Aroclor 1254 and BDE-47.
Collapse
Affiliation(s)
- Yasuaki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Mari Fujiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Asako Shindo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| |
Collapse
|
17
|
Annunciação DLR, Almeida FV, Sodré FF. Method development and validation for the determination of polybrominated diphenyl ether congeners in Brazilian aquatic sediments. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Arkoosh MR, Van Gaest AL, Strickland SA, Hutchinson GP, Krupkin AB, Dietrich JP. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99. CHEMOSPHERE 2017; 171:1-8. [PMID: 28006665 DOI: 10.1016/j.chemosphere.2016.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 05/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T4 and T3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T3 or T4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes.
Collapse
Affiliation(s)
- Mary R Arkoosh
- Environmental & Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Ahna L Van Gaest
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Stacy A Strickland
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Greg P Hutchinson
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Alex B Krupkin
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Joseph P Dietrich
- Environmental & Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| |
Collapse
|