1
|
Hutton P, Lendvai ÁZ, Németh J, McGraw KJ. Urban house finches are more resistant to the effects of artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174525. [PMID: 38972420 DOI: 10.1016/j.scitotenv.2024.174525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jószef Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Xu YX, Shen YT, Li J, Ding WQ, Wan YH, Su PY, Tao FB, Sun Y. Real-ambient bedroom light at night increases systemic inflammation and disrupts circadian rhythm of inflammatory markers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116590. [PMID: 38905938 DOI: 10.1016/j.ecoenv.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Exposure to light at night (LAN) has been associated with multiple adverse health outcomes. However, evidence is limited regarding the impacts of LAN exposure on human inflammation. OBJECTIVES To examine the association between real-ambient bedroom LAN exposure with systemic inflammation and circadian rhythm of inflammatory markers. METHODS Using data from a prospective cohort study of Chinese young adults. At baseline, bedroom LAN exposure was measured with a portable illuminance meter; fasting blood sample for high-sensitivity C-reactive protein (hs-CRP) assay was collected. At 3-year follow-up, 20 healthy young adults (10 LANavg < 5 lx, 10 LANavg ≥ 5 lx) were recruited from the same cohort; time-series venous blood samples were sampled every 4 h over a 24 h-cycle for the detection of 8 inflammatory markers. Circadian rhythm of inflammatory markers was assessed using cosinor analysis. RESULTS At baseline, the average age of the 276 participants was 18.7 years, and 33.3 % were male. Higher levels of bedroom LAN exposure were significantly associated with increased hs-CRP levels. The association between bedroom LAN exposure and systemic inflammation was only significant in the inactive group (MVPA < 2 h/d) but not in the physically active group (MVPA ≥ 2 h/d). In addition, exposure to higher levels of nighttime light (LANavg ≥ 5 lx) disrupted circadian rhythms (including rhythmic expression, circadian amplitude and circadian phase) of some inflammatory cytokines and inflammatory balance indicators. CONCLUSION Exposure to bedroom nighttime light increases systemic inflammation and disrupts circadian rhythm of inflammatory markers. Keep bedroom darkness at night may represent important strategies for the prevention of chronic inflammation. Additionally, for people living a community with higher nighttime light pollution, regular physical activity may be a viable option to counteract the negative impacts of LAN exposure on chronic inflammation.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Yu-Ting Shen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Jing Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Wen-Qin Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Anhui, China.
| |
Collapse
|
3
|
Broad HR, Dibnah AJ, Smith AE, Thornton A. Anthropogenic disturbance affects calling and collective behaviour in corvid roosts. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230185. [PMID: 38768208 PMCID: PMC11391286 DOI: 10.1098/rstb.2023.0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Acoustic communication plays an important role in coordinating group dynamics and collective movements across a range of taxa. However, anthropogenic disturbance can inhibit the production or reception of acoustic signals. Here, we investigate the effects of noise and light pollution on the calling and collective behaviour of wild jackdaws (Corvus monedula), a highly social corvid species that uses vocalizations to coordinate collective movements at winter roosting sites. Using audio and video monitoring of roosts in areas with differing degrees of urbanization, we evaluate the influence of anthropogenic disturbance on vocalizations and collective movements. We found that when levels of background noise were higher, jackdaws took longer to settle following arrival at the roost in the evening and also called more during the night, suggesting that human disturbance may cause sleep disruption. High levels of overnight calling were, in turn, linked to disruption of vocal consensus decision-making and less cohesive group departures in the morning. These results raise the possibility that, by affecting cognitive and perceptual processes, human activities may interfere with animals' ability to coordinate collective behaviour. Understanding links between anthropogenic disturbance, communication, cognition and collective behaviour must be an important research priority in our increasingly urbanized world. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Hannah R Broad
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex J Dibnah
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales , Sydney, 2052 NSW, Australia
| | - Anna E Smith
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| |
Collapse
|
4
|
Amar A, Reynolds C, Thomson RL, Dominoni D. Investigating the impacts of artificial light via blackouts. Trends Ecol Evol 2024; 39:612-615. [PMID: 38777636 DOI: 10.1016/j.tree.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Natural experiments provide remarkable opportunities to test the large-scale effects of human activities. Widespread energy blackouts offer such an 'experiment' to test the impacts of artificial light at night (ALAN) on wildlife. We use the situation in South Africa, where regular scheduled blackouts are being implemented, to highlight this opportunity.
Collapse
Affiliation(s)
- Arjun Amar
- FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, South Africa.
| | - Chevonne Reynolds
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, South Africa
| | - Davide Dominoni
- School of Biodiversity, One Health and Veterinary medicine, University of Glasgow, UK
| |
Collapse
|
5
|
Tidau S, Brough FT, Gimenez L, Jenkins SR, Davies TW. Impacts of artificial light at night on the early life history of two ecosystem engineers. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220363. [PMID: 37899009 PMCID: PMC10613533 DOI: 10.1098/rstb.2022.0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 10/31/2023] Open
Abstract
Sessile marine invertebrates play a vital role as ecosystem engineers and in benthic-pelagic coupling. Most benthic fauna develop through larval stages and the importance of natural light cycles for larval biology and ecology is long-established. Natural light-dark cycles regulate two of the largest ocean-scale processes that are fundamental to larvae's life cycle: the timing of broadcast spawning for successful fertilization and diel vertical migration for foraging and predator avoidance. Given the reliance on light and the ecological role of larvae, surprisingly little is known about the impacts of artificial light at night (ALAN) on the early life history of habitat-forming species. We quantified ALAN impacts on larval performance (survival, growth, development) of two cosmopolitan ecosystem engineers in temperate marine ecosystems, the mussel Mytilus edulis and the barnacle Austrominius modestus. Higher ALAN irradiance reduced survival in both species (57% and 13%, respectively). ALAN effects on development and growth were small overall, and different between species, time-points and parentage. Our results show that ALAN adversely affects larval survival and reiterates the importance of paternal influence on offspring performance. ALAN impacts on the early life stages of ecosystem engineering species have implications not only for population viability but also the ecological communities that these species support. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Fraser T. Brough
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Luis Gimenez
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Stuart R. Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Thomas W. Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
6
|
Boycott TJ, Sherrard MG, Gall MD, Ronald KL. Deer management influences perception of avian plumage in temperate deciduous forests. Vision Res 2023; 213:108312. [PMID: 37703599 DOI: 10.1016/j.visres.2023.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Many animals use visual signals to communicate; birds use colorful plumage to attract mates and repel intruders. Visual signal conspicuousness is influenced by the lighting environment, which can be altered by human-induced changes. For example, deer-management efforts can affect vegetation structure and light availability. Whether these changes alter animal communication is still unknown. We investigated the effect of deer management on forest light and the contrast of understory birds against the forest background. We modeled visual perception using: (1) an ultraviolet-sensitive (UVS) avian model and plumage parameters representative of red, yellow, and blue birds (2) species-specific turkey visual and plumage parameters, and (3) individual-specific brown-headed cowbird visual and plumage parameters. Deer management led to greater light irradiance and lowered forest background reflectance. Management increased chromatic contrasts in the UVS model, primarily in deciduous forests and low understory, and across all habitat types in turkey and cowbird models. Deer management did not affect achromatic contrasts in the UVS model, but was associated with lower contrast in mixed forests for turkeys and across habitats for cowbirds. Together, this suggests that management of deer browsing is likely to impact visual signaling for a wide range of avian species. However, we also suspect that species- and individual-specific parameters increased the resolution of models, warranting consideration in future studies. Further work should determine if differences in visual perception translate to biologically relevant consequences. Our results suggest that, at least for some species, deer browsing and anthropogenic change may impose an evolutionary driver on visual communication.
Collapse
Affiliation(s)
- Timothy J Boycott
- Department of Biology, Vassar College, 124 Raymond Ave., Poughkeepsie, NY 12604, USA; New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources and the Environment, Cornell University, 226 Mann Drive, Ithaca, NY 14853, USA
| | - Morgan G Sherrard
- Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49423, USA; University of Detroit Mercy School of Dentistry, 2700 Martin Luther King Jr. Blvd. Detroit, MI 48208-2576, USA
| | - Megan D Gall
- Department of Biology, Vassar College, 124 Raymond Ave., Poughkeepsie, NY 12604, USA; Neuroscience and Behavior Program, Vassar College, 124 Raymond Ave., Poughkeepsie, NY 12604, USA
| | - Kelly L Ronald
- Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49423, USA.
| |
Collapse
|
7
|
Sanders D, Baker DJ, Cruse D, Bell F, van Veen FJF, Gaston KJ. Spectrum of artificial light at night drives impact of a diurnal species in insect food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154893. [PMID: 35364173 DOI: 10.1016/j.scitotenv.2022.154893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Artificial light at night (ALAN) has become a profound form of global anthropogenic environmental change differing in from natural light regimes in intensity, duration, distribution and spectra. It is clear that ALAN impacts individual organisms, however, population level effects, particularly of spectral changes, remain poorly understood. Here we exposed experimental multigenerational aphid-parasitoid communities in the field to seven different light spectra at night ranging from 385 to 630 nm and compared responses to a natural day-night light regime. We found that while aphid population growth was initially unaffected by ALAN, parasitoid efficiency declined under most ALAN spectra, leading to reduced top-down control and higher aphid densities. These results differ from those previously found for white light, showing a strong impact on species' daytime performance. This highlights the importance of ALAN spectra when considering their environmental impact. ALAN can have large impacts on the wider ecological community by influencing diurnal species.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| | - David J Baker
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Dave Cruse
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Fraser Bell
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Frank J F van Veen
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
8
|
Touzot M, Lefebure T, Lengagne T, Secondi J, Dumet A, Konecny-Dupre L, Veber P, Navratil V, Duchamp C, Mondy N. Transcriptome-wide deregulation of gene expression by artificial light at night in tadpoles of common toads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151734. [PMID: 34808173 DOI: 10.1016/j.scitotenv.2021.151734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Artificial light at night (ALAN) affects numerous physiological and behavioural mechanisms in various species by potentially disturbing circadian timekeeping systems and modifying melatonin levels. However, given the multiple direct and indirect effects of ALAN on organisms, large-scale transcriptomic approaches are essential to assess the global effect of ALAN on biological processes. Moreover, although studies have focused mainly on variations in gene expression during the night in the presence of ALAN, it is necessary to investigate the effect of ALAN on gene expression during the day. In this study, we combined de novo transcriptome sequencing and assembly, and a controlled laboratory experiment to evaluate the transcriptome-wide gene expression response using high-throughput (RNA-seq) in Bufo bufo tadpoles exposed to ecologically relevant light levels. Here, we demonstrated for the first time that ALAN affected gene expression at night (3.5% and 11% of differentially expressed genes when exposed to 0.1 and 5 lx compared to controls, respectively), but also during the day (11.2% of differentially expressed genes when exposed to 5 lx compared to controls) with a dose-dependent effect. ALAN globally induced a downregulation of genes (during the night, 58% and 62% of the genes were downregulated when exposed to 0.1 and 5 lx compared to controls, respectively, and during the day, 61.2% of the genes were downregulated when exposed to 5 lx compared to controls). ALAN effects were detected at very low levels of illuminance (0.1 lx) and affected mainly genes related to the innate immune system and, to a lesser extend to lipid metabolism. These results provide new insights into understanding the effects of ALAN on organism. ALAN impacted the expression of genes linked to a broad range of physiological pathways at very low levels of ALAN during night-time and during daytime, potentially resulting in reduced immune capacity under environmental immune challenges.
Collapse
Affiliation(s)
- Morgane Touzot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France.
| | - Tristan Lefebure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Thierry Lengagne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Faculté des Sciences, Université d'Angers, 49045 Angers, France
| | - Adeline Dumet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Lara Konecny-Dupre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Philippe Veber
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Vincent Navratil
- PRABI, Pôle Rhône-Alpes Bioinformatics Center, Université Lyon 1, 69622 Villeurbanne, France; Institut Français de Bioinformatique, UMS 3601, 91057 Évry, France
| | - Claude Duchamp
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Nathalie Mondy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| |
Collapse
|
9
|
Readyhough TS, Joseph S, Vyas K, Schreier AL. The effects of Zoo Lights on animal welfare: A case study of great Indian hornbills at Denver Zoo. Zoo Biol 2022; 41:263-270. [PMID: 35084058 DOI: 10.1002/zoo.21681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/12/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Popular evening events, such as Zoo Lights, increase the exposure of animals in managed care to stressors such as artificial light and noise, which may alter their behavior and negatively affect animal well-being. The pair of great Indian hornbills (Buceros bicornis) at Denver Zoo provided an opportunity to study the impacts of these stressors because their exhibit was open every evening during Zoo Lights 2017. We expected the hornbills to display increased aggressive behaviors during Zoo Lights due to more exposure to stressors compared to the periods before and after the holiday event. Alternatively, if behavioral changes were associated with hornbills' breeding season which runs from December-March, we expected the hornbills to engage in more affiliative behaviors, and to increase conspecific and nest proximity, during and after Zoo Lights compared to before it due to the onset and progression of the breeding season. The hornbills did not engage in significantly more aggressive behavior during Zoo Lights than before or after it. By contrast, the hornbills engaged in significantly more affiliative behaviors and increased conspecific proximity during and after Zoo Lights compared to before the event. These results are consistent with the timing of the hornbills' breeding season and not with the increased exposure to stressors during Zoo Lights. This case study provides an early step in assessing the impact of Zoo Lights on animals whose exhibits are part of these holiday events. Studies like this will help inform best practices for Zoo Lights events such that they are positive experiences for the zoo, visitors, and animals.
Collapse
Affiliation(s)
- Taylor S Readyhough
- Department of Biology, Regis University, Denver, Colorado, USA.,Department of Animal Welfare and Research, Denver Zoo, Denver, Colorado, USA
| | - Sharon Joseph
- Department of Animal Welfare and Research, Denver Zoo, Denver, Colorado, USA
| | - Katie Vyas
- Department of Animal Care, Denver Zoo, Denver, Colorado, USA
| | - Amy L Schreier
- Department of Biology, Regis University, Denver, Colorado, USA.,Department of Animal Welfare and Research, Denver Zoo, Denver, Colorado, USA
| |
Collapse
|
10
|
Light at night disrupts biological clocks, calendars, and immune function. Semin Immunopathol 2021; 44:165-173. [PMID: 34731290 PMCID: PMC8564795 DOI: 10.1007/s00281-021-00899-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
Light at night is a pervasive problem in our society; over 80% of the world’s population experiences significant light pollution. Exacerbating this issue is the reality that artificially lit outdoor areas are growing by 2.2% per year and continuously lit areas brighten by 2.2% each year due to the rapid growths in population and urbanization. Furthermore, the increase in the prevalence of night shift work and smart device usage contributes to the inescapable nature of artificial light at night (ALAN). Although previously assumed to be innocuous, ALAN has deleterious effects on the circadian system and circadian-regulated physiology, particularly immune function. Due to the relevance of ALAN to the general population, it is important to understand its roles in disrupting immune function. This review presents a synopsis of the effects of ALAN on circadian clocks and immune function. We delineate the role of ALAN in altering clock gene expression and suppressing melatonin. We review the effects of light at night on inflammation and the innate and adaptive immune systems in various species to demonstrate the wide range of ALAN consequences. Finally, we propose future directions to provide further clarity and expansion of the field.
Collapse
|
11
|
Wang JS, Tuanmu MN, Hung CM. Effects of artificial light at night on the nest-site selection, reproductive success and behavior of a synanthropic bird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117805. [PMID: 34351282 DOI: 10.1016/j.envpol.2021.117805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Understanding how artificial light at night (ALAN) impacts wildlife is increasingly important because more and more species are colonizing urban areas. As most of the bird studies on ALAN use controlled light set inside or around nest-boxes, the ecological effect of ALAN resulting from in situ streetlight on birds remains contentious. The barn swallow (Hirundo rustica) often builds open nests on buildings, which are directly exposed to varying intensity of ALAN, and thus provides a good system to examine the effect of in situ ALAN on birds. By examining the nest-site selection, reproductive success and behavior of barn swallows under various ALAN intensity in Taipei City, we found a positive effect of ALAN on their fledging success; nonetheless, such effect was only found in the swallows' first brood, but not second one. We also found that parent birds in the nests with higher ALAN intensity had higher feeding rates and more extended feeding time past sunset, which were likely stimulated by the increased begging behavior of their chicks. The night-feeding behavior might contribute to the increased fledging success, especially at the early breeding season. Interestingly, despite of the reproductive benefits obtained from ALAN, we found that the barn swallows did not select nest sites regarding ALAN intensity. The weak nest-site selection perhaps result from the complex life history interactions involving ALAN and/or confounding factors associated with ALAN in cities. This study improves our understanding of how urban birds, especially open-nesting ones, respond to in situ ALAN and provides useful information for developing urban conservation strategies.
Collapse
Affiliation(s)
- Jhih-Syuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Mao-Ning Tuanmu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
12
|
Bani Assadi S, Fraser KC. The Influence of Different Light Wavelengths of Anthropogenic Light at Night on Nestling Development and the Timing of Post-fledge Movements in a Migratory Songbird. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many different aspects of an animal’s lifecycle such as its behavior, patterns of hormone activity, and internal clock time, can be affected by anthropogenic light at night (ALAN). Exposing an organism to ALAN during its early life could also have an impact on its development. Since photoperiod can trigger or schedule the migration timing of long-distance migratory birds, there is great potential for anthropogenic light to interact with photoperiod to affect timing. However, very little has been investigated regarding the impacts of ALAN on post-hatching development and migration timing. We investigated the impact of ALAN during nestling development in a long-distance migratory songbird to determine the potential impact on the timing of post-breeding movements in the wild. We experimentally manipulated the light by using programmable lighting, in the nest boxes of free-living nestlings of purple martin (Progne subis) in Manitoba, Canada. We exposed two groups of developing nestlings, from hatch to fledge date, to green or white LED lights (5 lux) during the night. We also included a control group that experienced natural, ambient light at night. We found that some adults abandoned their nests shortly after starting the experiment (4 of 15 nests in the white light treatment). For the nests that remained active, nestlings exposed to the white light treatment had higher weights (at day 20 or 22), later fledge dates (1.54 ± 0.37, 95% CI 0.80–2.28), and later colony departure date (2.84 ± 1.00, 95% CI 0.88–4.81), than young of the control group. Moreover, nestlings of both white and green light groups had longer nesting duration than nestlings of the control group. This study demonstrates the impact of ALAN on the development of post-breeding movement timing in nestlings of wild migratory birds. However, our results also indicate that green light may have less of an impact as compared to white light.
Collapse
|
13
|
van Dis NE, Spoelstra K, Visser ME, Dominoni DM. Color of Artificial Light at Night Affects Incubation Behavior in the Great Tit, Parus major. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.728377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial light at night (ALAN) has been recognized as a biodiversity threat due to the drastic effects it can have on many organisms. In wild birds, artificial illumination alters many natural behaviors that are important for fitness, including chick provisioning. Although incubation is a key determinant of the early developmental environment, studies into the effects of ALAN on bird incubation behavior are lacking. We measured nest temperature in nest boxes of great tits during the incubation period in two consecutive years. Nest boxes were located in eight previously dark field sites that have been experimentally illuminated since 2012 with white, green, or red light, or were left dark. We tested if light treatment affected mean nest temperature, number of times birds leave the nest (off-bout frequency), and off-bout duration during the incubation period. Subsequently, we investigated if incubation behavior is related to fitness. We found that birds incubating in the white light during a cold, early spring had lower mean nest temperatures at the end of incubation, both during the day and during the night, compared to birds in the green light. Moreover, birds incubating in white light took fewer off-bouts, but off-bouts were on average longer. The opposite was true for birds breeding in the green light. Low incubation temperatures and few but long off-bouts can have severe consequences for developing embryos. In our study, eggs from birds that took on average few off-bouts needed more incubation days to hatch compared to eggs from birds that took many off-bouts. Nevertheless, we found no clear fitness effects of light treatment or incubation behavior on the number of hatchlings or hatchling weight. Our results add to the growing body of literature that shows that effects of ALAN can be subtle, can differ due to the spectral composition of light, and can be year-dependent. These subtle alterations of natural behaviors might not have severe fitness consequences in the short-term. However, in the long term they could add up, negatively affecting parent condition and survival as well as offspring recruitment, especially in urban environments where more environmental pollutants are present.
Collapse
|
14
|
Bani Assadi S, Fraser KC. Experimental manipulation of photoperiod influences migration timing in a wild, long-distance migratory songbird. Proc Biol Sci 2021; 288:20211474. [PMID: 34428969 PMCID: PMC8385336 DOI: 10.1098/rspb.2021.1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023] Open
Abstract
Previous laboratory studies have demonstrated the role of photoperiod in cueing the migration timing of small land birds; however, how migration timing of young birds in wild environments develops in relation to these cues have rarely been investigated. Such investigations can make important contributions to our developing understanding of the phenotypic plasticity of migration timing to new conditions with climate change, where changes in the timing of nesting may expose juvenile birds to different photoperiods. We investigated the impact of manipulating photoperiod during nestling development in a long-distance migratory songbird on the timing of post-breeding movements in the wild. Using programmable lighting installed in the nest-boxes of purple martins (Progne subis), we exposed developing nestlings, from hatch to fledge date, to an extended photoperiod that matched the day length of the summer solstice in Manitoba, Canada. We found that birds with a simulated, earlier photoperiod had a longer nesting period and later fledge and autumn departure dates than control group birds. This study demonstrates the phenotypic plasticity of first-year birds to the ontogenetic effect of their hatch date in the formation of the timing of their first post-breeding movements. Further, we discuss how these results have implications for the potential use of assisted evolution approaches to alter migration timing to match new conditions with climate change.
Collapse
|
15
|
Dominoni DM, Teo D, Branston CJ, Jakhar A, Albalawi BFA, Evans NP. Feather, But Not Plasma, Glucocorticoid Response to Artificial Light at Night Differs between Urban and Forest Blue Tit Nestlings. Integr Comp Biol 2021; 61:1111-1121. [PMID: 34272860 PMCID: PMC8490687 DOI: 10.1093/icb/icab067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urbanization drives phenotypic variation in many animal species. This includes behavioral and physiological traits such as activity patterns, aggression, and hormone levels. A current challenge of urban evolutionary ecology is to understand the environmental drivers of phenotypic variation in cities. Moreover, do individuals develop tolerance to urban environmental factors, which underlie adaptative responses and contribute to the evolution of urban populations? Most available evidence comes from correlative studies and rare experiments where a single urban-related environmental factor has been manipulated in the field. Here we present the results of an experiment in which we tested for differences in the glucocorticoid (CORT) response of urban and rural blue tits nestlings (Cyanistes caeruleus) to artificial light at night (ALAN). ALAN has been suggested to alter CORT response in several animal species, but to date no study has investigated whether this effect of ALAN differs between urban and rural populations. Immediately after hatching, urban and forest broods were either exposed to 2 lux of ALAN (using an LED source mounted inside the nestbox) or received no treatment (dark control). The experiment lasted until the chicks fledged. When the chicks were 13 days old plasma samples were collected to measure baseline CORT concentrations, and feather samples to provide an integrative measure of CORT during growth. Forest birds had higher plasma CORT (pCORT) concentrations than their urban counterparts, irrespective of whether they were exposed to ALAN or not. Conversely, we found population-specific responses of feather CORT to ALAN. Specifically, urban birds that received ALAN had increased feather CORT compared with the urban dark controls, while the opposite was true for the forest birds. pCORT concentrations were negatively associated to fledging success, irrespective of population and treatment, while feather CORT was positively associated to fledging success in broods exposed to ALAN, but negatively in the dark control ones. Our results demonstrate that ALAN can play a role in determination of the glucocorticoid phenotype of wild animals, and may thus contribute to phenotypic differences between urban and rural animals.
Collapse
Affiliation(s)
- Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dylon Teo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Claire J Branston
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Aryan Jakhar
- Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | | | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Injaian AS, Uehling JJ, Taff CC, Vitousek MN. Effects of artificial light at night on avian provisioning, corticosterone, and reproductive success. Integr Comp Biol 2021; 61:1147-1159. [PMID: 34021748 DOI: 10.1093/icb/icab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Artificial light at night (hereafter 'ALAN') affects 88% of the land area in Europe and almost half of the land area in the US, with even rural areas exposed to lights from agricultural and industrial buildings. To date, there have been few studies that assess the impacts of ALAN on both wildlife behavior and physiology. However, ALAN may alter energy expenditure and/or stress physiology during the breeding period, potentially reducing reproductive success and resulting in conservation implications. Here, we experimentally exposed adult female and nestling tree swallows (Tachycineta bicolor) to ALAN. We then measured the effects of ALAN compared to control conditions on parental behavior (provisioning rate), nestling physiology (corticosterone levels), and reproductive success (likelihood of all eggs hatching and all nestlings fledging per nest). Our results showed that ALAN-exposed females provisioned their nestlings at lower rates than control females. Although relatively weak, our results also suggested that ALAN-exposed nestlings had reduced baseline and increased stress-induced corticosterone compared to control nestlings. ALAN-exposed nestlings also showed greater negative feedback of circulating corticosterone. We found no support for our prediction that ALAN would reduce nestling body condition. Finally, we found some support for a negative effect of ALAN on the likelihood that all eggs hatched in a given nest, but not the likelihood that all nestlings fledged. Therefore, while it is possible that the behavioral and physiological changes found here result in long-term consequences, our results also suggest that direct ALAN exposure alone may not have substantially large or negative effects on tree swallows. Exposure regimes for free-living birds, such as exposure to a combination of anthropogenic disturbances (i.e. ALAN and noise pollution) or direct and indirect effects of ALAN (i.e. effects on physiology due to direct light exposure and alterations in food availability), may produce different results than those found here.
Collapse
Affiliation(s)
- Allison S Injaian
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Jennifer J Uehling
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| |
Collapse
|
17
|
Ziegler AK, Watson H, Hegemann A, Meitern R, Canoine V, Nilsson JÅ, Isaksson C. Exposure to artificial light at night alters innate immune response in wild great tit nestlings. J Exp Biol 2021; 224:jeb.239350. [PMID: 33771912 PMCID: PMC8180251 DOI: 10.1242/jeb.239350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
The large-scale impact of urbanization on wildlife is rather well documented; however, the mechanisms underlying the effects of urban environments on animal physiology and behaviour are still poorly understood. Here, we focused on one major urban pollutant - artificial light at night (ALAN) - and its effects on the capacity to mount an innate immune response in wild great tit (Parus major) nestlings. Exposure to ALAN alters circadian rhythms of physiological processes, by disrupting the nocturnal production of the hormone melatonin. Nestlings were exposed to a light source emitting 3 lx for seven consecutive nights. Subsequently, nestlings were immune challenged with a lipopolysaccharide injection, and we measured haptoglobin and nitric oxide levels pre- and post-injection. Both haptoglobin and nitric oxide are important markers for innate immune function. We found that ALAN exposure altered the innate immune response, with nestlings exposed to ALAN having lower haptoglobin and higher nitric oxide levels after the immune challenge compared with dark-night nestlings. Unexpectedly, nitric oxide levels were overall lower after the immune challenge than before. These effects were probably mediated by melatonin, as ALAN-treated birds had on average 49% lower melatonin levels than the dark-night birds. ALAN exposure did not have any clear effects on nestling growth. This study provides a potential physiological mechanism underlying the documented differences in immune function between urban and rural birds observed in other studies. Moreover, it gives evidence that ALAN exposure affects nestling physiology, potentially causing long-term effects on physiology and behaviour, which ultimately can affect their fitness.
Collapse
Affiliation(s)
| | - Hannah Watson
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Richard Meitern
- Department of Zoology, University of Tartu, 51005 Tartu, Estonia
| | - Virginie Canoine
- Department of Behavioural and Cognitive Biology, University of Vienna, 1090Vienna, Austria
| | | | | |
Collapse
|
18
|
Hussein AAA, Bloem E, Fodor I, Baz ES, Tadros MM, Soliman MFM, El-Shenawy NS, Koene JM. Slowly seeing the light: an integrative review on ecological light pollution as a potential threat for mollusks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5036-5048. [PMID: 33341922 PMCID: PMC7838132 DOI: 10.1007/s11356-020-11824-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Seasonal changes in the natural light condition play a pivotal role in the regulation of many biological processes in organisms. Disruption of this natural condition via the growing loss of darkness as a result of anthropogenic light pollution has been linked to species-wide shifts in behavioral and physiological traits. This review starts with a brief overview of the definition of light pollution and the most recent insights into the perception of light. We then go on to review the evidence for some adverse effects of ecological light pollution on different groups of animals and will focus on mollusks. Taken together, the available evidence suggests a critical role for light pollution as a recent, growing threat to the regulation of various biological processes in these animals, with the potential to disrupt ecosystem stability. The latter indicates that ecological light pollution is an environmental threat that needs to be taken seriously and requires further research attention.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
- Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands.
| | - Erik Bloem
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| | - István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| | - El-Sayed Baz
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Maha F M Soliman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| |
Collapse
|
19
|
Smith RA, Gagné M, Fraser KC. Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116136. [PMID: 33280918 DOI: 10.1016/j.envpol.2020.116136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is increasing at a high rate across the globe and can cause shifts in animal phenology due to the alteration of perceived photoperiod. Birds in particular may be highly impacted due to their use of extra-retinal photoreceptors, as well as the use of photoperiodic cues to time life events such as reproduction, moult, and migration. For the first time, we used light-logging geolocators to determine the amount of ALAN experienced by long-distance migratory songbirds (purple martin; Progne subis) while at their overwintering sites in South America to measure its potential relationship with spring migration timing. Almost a third of birds (48/155; 31%) were subjected to at least one night with ALAN over 30 days prior to spring migration. Birds that experienced the highest number of nights (10+) with artificial light departed for spring migration on average 8 days earlier and arrived 8 days earlier at their breeding sites compared to those that experienced no artificial light. Early spring migration timing due to pre-migration ALAN experienced at overwintering sites could lead to mistiming with environmental conditions and insect abundance on the migratory route and at breeding sites, potentially impacting survival and/or reproductive success. Such effects would be particularly detrimental to species already exhibiting steep population declines such as purple martins and other migratory aerial insectivores.
Collapse
Affiliation(s)
- Reyd A Smith
- Dept. Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada; Current Address: Dept. of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| | - Maryse Gagné
- Dept. Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Kevin C Fraser
- Dept. Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
20
|
Baardsen LF, De Bruyn L, Adriaensen F, Elst J, Strubbe D, Heylen D, Matthysen E. No overall effect of urbanization on nest-dwelling arthropods of great tits (Parus major). Urban Ecosyst 2021. [DOI: 10.1007/s11252-020-01082-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Sepp T, Webb E, Simpson RK, Giraudeau M, McGraw KJ, Hutton P. Light at night reduces digestive efficiency of developing birds: an experiment with king quail. Naturwissenschaften 2021; 108:4. [PMID: 33399962 DOI: 10.1007/s00114-020-01715-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Artificial light at night (ALAN) exposes animals to a novel environmental stimulus, one that is generally thought to be maladaptive. ALAN-related health problems have received little attention in non-model species, and we generally know little about the nutritional-physiological impacts of ALAN, especially in young animals. Here, we use a novel application of the acid steatocrit method to experimentally assess changes in digestive efficiency of growing king quail (Excalfactoria chinensis) in response to ALAN. Two weeks after hatching, quail were split into two groups (n = 20-21 per group): overnight-light-treated vs. overnight-dark-treated. When the chicks were 3 weeks old, the experimental group was exposed to weak blue light (ca. 0.3 lux) throughout the entire night for 6 consecutive weeks, until all the chicks had achieved sexual maturation. Fecal samples for assessing digestive efficiency were collected every week. We found that digestive efficiency of quail was reduced by ALAN at two time points from weeks 4 to 9 after hatching (quail reach adulthood by week 9). The negative effect of ALAN on digestion coincided with the period of fastest skeletal growth, which suggests that ALAN may reduce digestive efficiency when energetic demands of growth are at their highest. Interestingly, growth rate was not influenced by ALAN. This suggests that either the negative physiological impacts of ALAN may be concealed when food is provided ad libitum, the observed changes in digestive efficiency were too small to affect growth or condition, or that ALAN-exposed birds had reduced energy expenditure. Our results illustrate that the health impacts of ALAN on wild animals should not be restricted to traditional markers like body mass or growth rate, but instead on a wide array of integrated physiological traits.
Collapse
Affiliation(s)
- Tuul Sepp
- Department of Zoology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Emily Webb
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Richard K Simpson
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,CREEC, MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394, Montpellier Cedex 5, France
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
22
|
Falcón J, Torriglia A, Attia D, Viénot F, Gronfier C, Behar-Cohen F, Martinsons C, Hicks D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front Neurosci 2020; 14:602796. [PMID: 33304237 PMCID: PMC7701298 DOI: 10.3389/fnins.2020.602796] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
The present review draws together wide-ranging studies performed over the last decades that catalogue the effects of artificial-light-at-night (ALAN) upon living species and their environment. We provide an overview of the tremendous variety of light-detection strategies which have evolved in living organisms - unicellular, plants and animals, covering chloroplasts (plants), and the plethora of ocular and extra-ocular organs (animals). We describe the visual pigments which permit photo-detection, paying attention to their spectral characteristics, which extend from the ultraviolet into infrared. We discuss how organisms use light information in a way crucial for their development, growth and survival: phototropism, phototaxis, photoperiodism, and synchronization of circadian clocks. These aspects are treated in depth, as their perturbation underlies much of the disruptive effects of ALAN. The review goes into detail on circadian networks in living organisms, since these fundamental features are of critical importance in regulating the interface between environment and body. Especially, hormonal synthesis and secretion are often under circadian and circannual control, hence perturbation of the clock will lead to hormonal imbalance. The review addresses how the ubiquitous introduction of light-emitting diode technology may exacerbate, or in some cases reduce, the generalized ever-increasing light pollution. Numerous examples are given of how widespread exposure to ALAN is perturbing many aspects of plant and animal behaviour and survival: foraging, orientation, migration, seasonal reproduction, colonization and more. We examine the potential problems at the level of individual species and populations and extend the debate to the consequences for ecosystems. We stress, through a few examples, the synergistic harmful effects resulting from the impacts of ALAN combined with other anthropogenic pressures, which often impact the neuroendocrine loops in vertebrates. The article concludes by debating how these anthropogenic changes could be mitigated by more reasonable use of available technology - for example by restricting illumination to more essential areas and hours, directing lighting to avoid wasteful radiation and selecting spectral emissions, to reduce impact on circadian clocks. We end by discussing how society should take into account the potentially major consequences that ALAN has on the natural world and the repercussions for ongoing human health and welfare.
Collapse
Affiliation(s)
- Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | - Dina Attia
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort, France
| | | | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | | | - David Hicks
- Inserm, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol 2020; 5:74-81. [DOI: 10.1038/s41559-020-01322-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 08/28/2020] [Indexed: 01/11/2023]
|
24
|
Yang Y, Liu Q, Wang T, Pan J. Wavelength-specific artificial light disrupts molecular clock in avian species: A power-calibrated statistical approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114206. [PMID: 32599326 DOI: 10.1016/j.envpol.2020.114206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 05/29/2023]
Abstract
Nighttime lighting is an increasingly important anthropogenic environmental stress on plants and animals. Exposure to unnatural lighting environments may disrupt the circadian rhythm of organisms. However, the sample size of relevant studies, e.g. disruption of the molecular circadian clock by light pollution, was small (<10), which led to low statistical power and difficulties in replicating prior results. Here, we developed a power-calibrated statistical approach to overcome these weaknesses. The results showed that the effect size of 2.48 in clock genes expression induced by artificial light would ensure the reproducibility of the results as high as 80%. Long-wavelength light (560-660 nm) entrained expressions of the positive core clock genes (e.g. cClock) and negative core clock genes (e.g. cCry1, cPer2) in robust circadian rhythmicity, whereas those clock genes were arrhythmic in short-wavelength light (380-480 nm). Further, we found artificial light could entrain the transcriptional-translational feedback loop of the molecular clock in a wavelength-dependent manner. The expression of the positive core clock genes (cBmal1, cBmal2 and cClock), cAanat gene and melatonin were the highest in short-wavelength light and lowest in long-wavelength light. For the negative regulators of the molecular clock (cCry1, cCry2, cPer2 and cPer3), the expression of which was the highest in long-wavelength light and lowest in short-wavelength light. Our statistical approach opens new opportunities to understand and strengthen conclusions, comparing with the studies with small sample sizes. We also provide comprehensive insight into the effect of wavelength-specific artificial light on the circadian rhythm of the molecular clock in avian species. Especially, the global lighting is shifting from "yellow" sodium lamps, which is more like the long-wavelength light, toward short-wavelength light (blue light)-enriched "white" light-emitting diodes (LEDs).
Collapse
Affiliation(s)
- Yefeng Yang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Liu
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jinming Pan
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Durrant J, Green MP, Jones TM. Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. INSECT SCIENCE 2020; 27:571-582. [PMID: 30720239 PMCID: PMC7277038 DOI: 10.1111/1744-7917.12665] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 05/04/2023]
Abstract
A functioning immune system is crucial for protection against disease and illness, yet increasing evidence suggests that species living in urban areas could be suffering from immune suppression, due to the presence of artificial light at night (ALAN). This study examined the effects of ecologically relevant levels of ALAN on three key measures of immune function (haemocyte concentration, lytic activity, and phenoloxidase activity) using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. We reared crickets under an ecologically relevant daily light-cycle consisting of 12 hr bright daylight (2600 lx) followed by either 12 h darkness (0 lx) or dim environmentally relevant ALAN (1, 10, 100 lx), and then assessed immune function at multiple time points throughout adult life using haemolymph samples. We found that the presence of ALAN had a clear negative effect on haemocytes, while the effects on lytic activity and phenoloxidase activity were more complex or largely unaffected by ALAN. Furthermore, the effects of lifelong exposure to ALAN of 1 lx were comparable to those of 10 and 100 lx. Our data suggest that the effects of ALAN could be large and widespread, and such reductions in the core immune response of individuals will likely have greater consequences for fitness and survival under more malign conditions, such as those of the natural environment.
Collapse
Affiliation(s)
- Joanna Durrant
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| | - Mark P. Green
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| | - Therésa M. Jones
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| |
Collapse
|
26
|
Grunst ML, Grunst AS, Pinxten R, Eens M. Anthropogenic noise is associated with telomere length and carotenoid-based coloration in free-living nestling songbirds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114032. [PMID: 32006886 DOI: 10.1016/j.envpol.2020.114032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Growing evidence suggests that anthropogenic noise has deleterious effects on the behavior and physiology of free-living animals. These effects may be particularly pronounced early in life, when developmental trajectories are sensitive to stressors, yet studies investigating developmental effects of noise exposure in free-living populations remain scarce. To elucidate the effects of noise exposure during development, we examined whether noise exposure is associated with shorter telomeres, duller carotenoid-based coloration and reduced body mass in nestlings of a common urban bird, the great tit (Parus major). We also assessed how the noise environment is related to reproductive success. We obtained long-term measurements of the noise environment, over a ∼24-h period, and characterized both the amplitude (measured by LAeq, LA90, LA10, LAmax) and variance in noise levels, since more stochastic, as well as louder, noise regimes might be more likely to induce stress. In our urban population, noise levels varied substantially, with louder, but less variable, noise characteristic of areas adjacent to a highway. Noise levels were also highly repeatable, suggesting that individuals experience consistent differences in noise exposure. The amplitude of noise near nest boxes was associated with shorter telomeres among smaller, but not larger, brood members. In addition, carotenoid chroma and hue were positively associated with variance in average and maximum noise levels, and average reflectance was negatively associated with variance in background noise. Independent of noise, hue was positively related to telomere length. Nestling mass and reproductive success were unaffected by noise exposure. Results indicate that multiple dimensions of the noise environment, or factors associated with the noise environment, could affect the phenotype of developing organisms, that noise exposure, or correlated variables, might have the strongest effects on sensitive groups of individuals, and that carotenoid hue could serve as a signal of early-life telomere length.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, Research Group Didactica, University of Antwerp, 2000, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
27
|
Dominoni DM, Kjellberg Jensen J, de Jong M, Visser ME, Spoelstra K. Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02062. [PMID: 31863538 PMCID: PMC7187248 DOI: 10.1002/eap.2062] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 11/05/2019] [Indexed: 05/09/2023]
Abstract
The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the Great Tit (Parus major), using a replicated experimental set-up where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light vs. the dark treatment, and similar trends for red light. However, there was a strong interannual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.
Collapse
Affiliation(s)
- Davide M. Dominoni
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowG128PG United Kingdom
| | | | - Maaike de Jong
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen UniversityWageningenThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kamiel Spoelstra
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
28
|
Working with Inadequate Tools: Legislative Shortcomings in Protection against Ecological Effects of Artificial Light at Night. SUSTAINABILITY 2020. [DOI: 10.3390/su12062551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental change in nocturnal landscapes due to the increasing use of artificial light at night (ALAN) is recognized as being detrimental to the environment and raises important regulatory questions as to whether and how it should be regulated based on the manifold risks to the environment. Here, we present the results of an analysis of the current legal obligations on ALAN in context with a systematic review of adverse effects. The legal analysis includes the relevant aspects of European and German environmental law, specifically nature conservation and immission control. The review represents the results of 303 studies indicating significant disturbances of organisms and landscapes. We discuss the conditions for prohibitions by environmental laws and whether protection gaps persist and, hence, whether specific legislation for light pollution is necessary. While protection is predominantly provided for species with special protection status that reveal avoidance behavior of artificially lit landscapes and associated habitat loss, adverse effects on species and landscapes without special protection status are often unaddressed by existing regulations. Legislative shortcomings are caused by difficulties in proving adverse effect on the population level, detecting lighting malpractice, and applying the law to ALAN-related situations. Measures to reduce ALAN-induced environmental impacts are highlighted. We discuss whether an obligation to implement such measures is favorable for environmental protection and how regulations can be implemented.
Collapse
|
29
|
Mishra I, Knerr RM, Stewart AA, Payette WI, Richter MM, Ashley NT. Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Sci Rep 2019; 9:15833. [PMID: 31676761 PMCID: PMC6825233 DOI: 10.1038/s41598-019-51791-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Increased exposure to light pollution perturbs physiological processes through misalignment of daily rhythms at the cellular and tissue levels. Effects of artificial light-at-night (ALAN) on diel properties of immunity are currently unknown. We therefore tested the effects of ALAN on diel patterns of cytokine gene expression, as well as key hormones involved with the regulation of immunity, in zebra finches (Taeniopygia guttata). Circulating melatonin and corticosterone, and mRNA expression levels of pro- (IL-1β, IL-6) and anti-inflammatory (IL-10) cytokines were measured at six time points across 24-h day in brain (nidopallium, hippocampus, and hypothalamus) and peripheral tissues (liver, spleen, and fat) of zebra finches exposed to 12 h light:12 h darkness (LD), dim light-at-night (DLAN) or constant bright light (LLbright). Melatonin and corticosterone concentrations were significantly rhythmic under LD, but not under LLbright and DLAN. Genes coding for cytokines showed tissue-specific diurnal rhythms under LD and were lost with exposure to LLbright, except IL-6 in hypothalamus and liver. In comparison to LLbright, effects of DLAN were less adverse with persistence of some diurnal rhythms, albeit with significant waveform alterations. These results underscore the circadian regulation of biosynthesis of immune effectors and imply the susceptibility of daily immune and endocrine patterns to ALAN.
Collapse
Affiliation(s)
- Ila Mishra
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Reinhard M Knerr
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | | | - Wesley I Payette
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Melanie M Richter
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
| |
Collapse
|
30
|
Grunst ML, Raap T, Grunst AS, Pinxten R, Eens M. Artificial light at night does not affect telomere shortening in a developing free-living songbird: A field experiment: Artificial light at night and telomere dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:266-275. [PMID: 30690361 DOI: 10.1016/j.scitotenv.2018.12.469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
Artificial light at night (ALAN) is an increasingly pervasive anthropogenic disturbance factor. ALAN can seriously disrupt physiological systems that follow circadian rhythms, and may be particularly influential early in life, when developmental trajectories are sensitive to stressful conditions. Using great tits (Parus major) as a model species, we experimentally examined how ALAN affects physiological stress in developing nestlings. We used a repeated-measure design to assess effects of ALAN on telomere shortening, body mass, tarsus length and body condition. Telomeres are repetitive nucleotide sequences that protect chromosomes from damage and malfunction. Early-life telomere shortening can be accelerated by environmental stressors, and has been linked to later-life declines in survival and reproduction. We also assayed nitric oxide, as an additional metric of physiological stress, and determined fledging success. Change in body condition between day 8 and 15 differed according to treatment. Nestlings exposed to ALAN displayed a trend towards a decline in condition, whereas control nestlings displayed a trend towards increased condition. This pattern was driven by a greater increase in tarsus length relative to mass in nestlings exposed to ALAN. Nestlings in poorer condition and nestlings that were smaller than their nest mates had shorter telomeres. However, exposure to ALAN was unrelated to telomere shortening, and also had no effect on nitric oxide concentrations or fledging success. Thus, exposure to ALAN may not have led to sufficient stress to induce telomere shortening. Indeed, plasticity in other physiological systems could allow nestlings to maintain telomere length despite moderate stress. Alternatively, the cascade of physiological and behavioral responses associated with light exposure may have no net effect on telomere dynamics.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, 2000 Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
31
|
Hutton P, Wright CD, DeNardo DF, McGraw KJ. No Effect of Human Presence at Night on Disease, Body Mass, or Metabolism in Rural and Urban House Finches (Haemorhous mexicanus). Integr Comp Biol 2019; 58:977-985. [PMID: 29986043 DOI: 10.1093/icb/icy093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Global urban development continues to accelerate and have diverse effects on wildlife. Although most studies of anthropogenic impacts on animals have focused on indirect effects (e.g., environmental modifications like habitat change or pollution), there may also be direct effects of physical human presence and actions on wildlife stress, behavior, and persistence in cities. Most studies on how humans physically interact with wildlife have focused on the active, daytime phase of diurnal animals, rarely considering effects of our night-time activities. We hypothesized that, if night-time human presence is a stressor for wildlife that are not commonly exposed to humans, night-disturbed rural animals would show stronger physiological signs of elevated stress than would urban individuals. Specifically, we experimentally investigated the effects of human presence at night (HPAN) on disease, body mass, and mass-specific metabolic rates in urban- and rural-caught house finches (Haemorhous mexicanus) in captivity. Our HPAN treatment consisted of a human entering the housing room of the birds and briefly jostling the home cages of each finch as the person walked around the room for a 3-min period on five randomly selected nights per week. Compared with a control (night-undisturbed) group, we found that HPAN greatly increased the odds finches were awake for ca. 33 min post-disturbance, but that chronic treatment did not alter body mass, parasitic infection by coccidian endoparasites, or mass-specific basal metabolic rates. Additionally, finches caught from urban and rural sites did not differ in their response to the treatment. Overall, our results are consistent with those showing that brief but regular human disturbances can have acute negative effects on wildlife, but carry few if any long-term metabolic or disease-related costs in fast-lived birds. However, these findings contrast with the broad, chronic physiological effects of other anthropogenic changes, such as artificial light at night, and highlight the differential impacts that various human activities (which differ in sensory stimulus type, perceived threat, duration and intensity, etc.) can have on wildlife health and behavior.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Christian D Wright
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Dale F DeNardo
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Kevin J McGraw
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
32
|
Exposure to artificial light at night increases innate immune activity during development in a precocial bird. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:84-88. [PMID: 30974186 DOI: 10.1016/j.cbpa.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/26/2023]
Abstract
Humans have greatly altered Earth's night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is a problem of growing importance because it may significantly disrupt the seasonal and daily physiological rhythms and behaviors of animals. There has been considerable interest in the impacts of ALAN on health of humans and other animals, but most of this work has centered on adults and we know comparatively little about effects on young animals. We exposed 3-week-old king quail (Excalfactoria chinensis) to a constant overnight blue-light regime for 6 weeks and assessed weekly bactericidal activity of plasma against Escherichia coli - a commonly employed metric of innate immunity in animals. We found that chronic ALAN exposure significantly increased bactericidal activity and that this elevation in immune performance manifested at different developmental time points in males and females. Whether this short-term increase in immune activity can be extended to wild animals, and whether ALAN-mediated increases in immune activity have positive or negative fitness effects, are unknown and will provide interesting avenues for future studies.
Collapse
|
33
|
Mascovich KA, Larson LR, Andrews KM. Lights on, or Lights Off? Hotel Guests' Response to Nonpersonal Educational Outreach Designed to Protect Nesting Sea Turtles. CHELONIAN CONSERVATION AND BIOLOGY 2018. [DOI: 10.2744/ccb-1299.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Katie A. Mascovich
- Odum School of Ecology, University of Georgia, Athens, Georgia 30602 USA [; kma7
| | - Lincoln R. Larson
- Department of Parks, Recreation and Tourism Management, North Carolina State University, Raleigh, No
| | - Kimberly M. Andrews
- Odum School of Ecology, University of Georgia, Athens, Georgia 30602 USA [; kma7
| |
Collapse
|
34
|
Raap T, Thys B, Grunst AS, Grunst ML, Pinxten R, Eens M. Personality and artificial light at night in a semi-urban songbird population: No evidence for personality-dependent sampling bias, avoidance or disruptive effects on sleep behaviour. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1317-1324. [PMID: 30268982 DOI: 10.1016/j.envpol.2018.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Light pollution or artificial light at night (ALAN) is an increasing, worldwide challenge that affects many aspects of animal behaviour. Interestingly, the response to ALAN varies widely among individuals within a population and variation in personality (consistent individual differences in behaviour) may be an important factor explaining this variation. Consistent individual differences in exploration behaviour in particular may relate to the response to ALAN, as increasing evidence indicates its relation with how individuals respond to novelty and how they cope with anthropogenic modifications of the environment. Here, we assayed exploration behaviour in a novel environment as a proxy for personality variation in great tits (Parus major). We observed individual sleep behaviour over two consecutive nights, with birds sleeping under natural dark conditions the first night and confronted with ALAN inside the nest box on the second night, representing a modified and novel roosting environment. We examined whether roosting decisions when confronted with a camera (novel object), and subsequently with ALAN, were personality-dependent, as this could potentially create sampling bias. Finally, we assessed whether experimentally challenging individuals with ALAN induced personality-dependent changes in sleep behaviour. Slow and fast explorers were equally likely to roost in a nest box when confronted with either a camera or artificial light inside, indicating the absence of personality-dependent sampling bias or avoidance of exposure to ALAN. Moreover, slow and fast explorers were equally disrupted in their sleep behaviour when challenged with ALAN. Whether other behavioural and physiological effects of ALAN are personality-dependent remains to be determined. Moreover, the sensitivity to disturbance of different behavioural types might depend on the behavioural context and the specific type of challenge in question. In our increasingly urbanized world, determining whether the effects of anthropogenic stressors depend on personality type will be of paramount importance as it may affect population dynamics.
Collapse
Affiliation(s)
- Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium.
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
35
|
Hu Z, Hu H, Huang Y. Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:30-42. [PMID: 29649758 DOI: 10.1016/j.envpol.2018.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the "Florida Statewide Nesting Beach Survey program". We used the new generation of satellite sensor "Visible Infrared Imaging Radiometer Suite (VIIRS)" (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45° of elevation (>1.14 × 10-11 Wm-2sr-1). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Earth & Environmental Sciences, University of West Florida, Pensacola, FL, USA.
| | - Hongda Hu
- Gangzhou Institute for Geography, Guangzhou, Guangdong, China.
| | - Yuxia Huang
- Department of Computing Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA.
| |
Collapse
|
36
|
Durrant J, Botha LM, Green MP, Jones TM. Artificial light at night prolongs juvenile development time in the black field cricket,
Teleogryllus commodus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:225-233. [DOI: 10.1002/jez.b.22810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Joanna Durrant
- The School of BioSciences Faculty of Science University of Melbourne Victoria Australia
| | - L. Michael Botha
- The School of BioSciences Faculty of Science University of Melbourne Victoria Australia
| | - Mark P. Green
- The School of BioSciences Faculty of Science University of Melbourne Victoria Australia
| | - Therésa M. Jones
- The School of BioSciences Faculty of Science University of Melbourne Victoria Australia
| |
Collapse
|
37
|
Raap T, Pinxten R, Eens M. Cavities shield birds from effects of artificial light at night on sleep. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:449-456. [DOI: 10.1002/jez.2174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Raap
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
| | - Rianne Pinxten
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
- Faculty of Social Sciences; Antwerp School of Education; University of Antwerp; Antwerp Belgium
| | - Marcel Eens
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
| |
Collapse
|
38
|
Alaasam VJ, Duncan R, Casagrande S, Davies S, Sidher A, Seymoure B, Shen Y, Zhang Y, Ouyang JQ. Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:465-472. [PMID: 29766666 DOI: 10.1002/jez.2168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022]
Abstract
Nighttime light pollution is quickly becoming a pervasive, global concern. Since the invention and proliferation of light-emitting diodes (LED), it has become common for consumers to select from a range of color temperatures of light with varying spectra. Yet, the biological impacts of these different spectra on organisms remain unclear. We tested if nighttime illumination of LEDs, at two commercially available color temperatures (3000 and 5000 K) and at ecologically relevant illumination levels affected body condition, food intake, locomotor activity, and glucocorticoid levels in zebra finches (Taeniopygia guttata). We found that individuals exposed to 5000 K light had higher rates of nighttime activity (peaking after 1 week of treatment) compared to 3000 K light and controls (no nighttime light). Birds in the 5000 K treatment group also had increased corticosterone levels from pretreatment levels compared to 3000 K and control groups but no changes in body condition or food intake. Individuals that were active during the night did not consequently decrease daytime activity. This study adds to the growing evidence that the spectrum of artificial light at night is important, and we advocate the use of nighttime lighting with warmer color temperatures of 3000 K instead of 5000 K to decrease energetic costs for avian taxa.
Collapse
Affiliation(s)
| | - Richard Duncan
- Department of Biology, University of Nevada, Reno, Nevada
| | | | - Scott Davies
- Department of Biological Sciences, Quinnipiac University, Hamden, Connecticut
| | - Abhijaat Sidher
- Department of Biology, University of Nevada, Reno, Nevada.,Department of Electrical and Biomedical Engineering, University of Nevada, Reno, Nevada
| | - Brett Seymoure
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Yantao Shen
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, Nevada
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Nevada
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Nevada
| |
Collapse
|
39
|
Dimovski AM, Robert KA. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:497-505. [DOI: 10.1002/jez.2163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 03/31/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Alicia M. Dimovski
- Department of Ecology; Environment and Evolution; La Trobe University; Melbourne Australia
| | - Kylie A. Robert
- Department of Ecology; Environment and Evolution; La Trobe University; Melbourne Australia
| |
Collapse
|
40
|
Ouyang JQ, Davies S, Dominoni D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. ACTA ACUST UNITED AC 2018; 221:221/6/jeb156893. [PMID: 29545373 DOI: 10.1242/jeb.156893] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Scott Davies
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA.,Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
41
|
Raap T, Pinxten R, Eens M. Artificial light at night causes an unexpected increase in oxalate in developing male songbirds. CONSERVATION PHYSIOLOGY 2018; 6:coy005. [PMID: 29479432 PMCID: PMC5815018 DOI: 10.1093/conphys/coy005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/10/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Artificial light at night (ALAN) is a widespread and increasing environmental pollutant with known negative impacts on animal physiology and development. Physiological effects could occur through sleep disruption and deprivation, but this is difficult to quantify, especially in small developing birds. Sleep loss can potentially be quantified by using oxalate, a biomarker for sleep debt in adult humans and rats. We examined the effect of ALAN on oxalate in free-living developing great tits (Parus major) as effects during early-life could have long-lasting and irreversible consequences. Nestlings' physiology was quantified at baseline (= 13 days after hatching) and again after two nights of continued darkness (control) or exposure to ALAN (treatment). We found that ALAN increased oxalate levels but only in male nestlings, rather than decreasing it as was found in sleep-deprived humans and rats. Our results using developing birds differ strongly from those obtained with adult mammals. However, we used ALAN to reduce sleep while in rats forced movement was used. Finally, we used free-living opposed to laboratory animals. Whether oxalate is a reliable marker of sleep loss in developing great tits remains to be examined. Potentially the increase of oxalate in male nestlings was unrelated to sleep debt. Nonetheless, our results substantiate physiological effects of ALAN in developing animals and may provide a foundation for future work with free-living animals.
Collapse
Affiliation(s)
- Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
- Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
42
|
Sun J, Raap T, Pinxten R, Eens M. Artificial light at night affects sleep behaviour differently in two closely related songbird species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:882-889. [PMID: 28886533 DOI: 10.1016/j.envpol.2017.08.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Artificial light at night (ALAN) or light pollution is an increasing and worldwide problem. There is growing concern that because of the disruption of natural light cycles, ALAN may pose serious risks for wildlife. While ALAN has been shown to affect many aspects of animal behaviour and physiology, few studies have experimentally studied whether individuals of different species in the wild respond differently to ALAN. Here, we investigated the effect of ALAN on sleep behaviour in two closely related songbird species inhabiting the same study area and roosting/breeding in similar nest boxes. We experimentally exposed free-living great tits (Parus major) and blue tits (Cyanistes caeruleus) to artificial light inside their nest boxes and observed changes in their sleep behaviour compared to the previous night when the nest boxes were dark. In line with previous studies, sleep behaviour of both species did not differ under dark conditions. ALAN disrupted sleep in both great and blue tits. However, compared to blue tits, great tits showed more pronounced effects and more aspects of sleep were affected. Light exposed great tits entered the nest boxes and fell asleep later, woke up and exited the nest boxes earlier, and the total sleep amount and sleep percentage were reduced. By contrast, these changes in sleep behaviour were not found in light exposed blue tits. Our field experiment, using exactly the same light manipulation in both species, provides direct evidence that two closely related species respond differently to ALAN, while their sleep behaviour under dark conditions was similar. Our research suggests that findings for one species cannot necessarily be generalised to other species, even closely-related species. Furthermore, species-specific effects could have implications for community dynamics.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Biology, Behavioural Ecology & Ecophysiology Group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Thomas Raap
- Department of Biology, Behavioural Ecology & Ecophysiology Group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology & Ecophysiology Group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Venusstraat 35, B-2000 Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology & Ecophysiology Group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
43
|
Ouyang JQ, de Jong M, van Grunsven RHA, Matson KD, Haussmann MF, Meerlo P, Visser ME, Spoelstra K. Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird. GLOBAL CHANGE BIOLOGY 2017; 23:4987-4994. [PMID: 28597541 DOI: 10.1111/gcb.13756] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Maaike de Jong
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Roy H A van Grunsven
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Kevin D Matson
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
44
|
Disruptive effects of light pollution on sleep in free-living birds: Season and/or light intensity-dependent? Behav Processes 2017; 144:13-19. [DOI: 10.1016/j.beproc.2017.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022]
|
45
|
Casasole G, Raap T, Costantini D, AbdElgawad H, Asard H, Pinxten R, Eens M. Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:14-21. [DOI: 10.1016/j.cbpa.2017.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 11/29/2022]
|
46
|
Raap T, Pinxten R, Casasole G, Dehnhard N, Eens M. Ambient anthropogenic noise but not light is associated with the ecophysiology of free-living songbird nestlings. Sci Rep 2017; 7:2754. [PMID: 28584270 PMCID: PMC5459827 DOI: 10.1038/s41598-017-02940-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/20/2017] [Indexed: 11/24/2022] Open
Abstract
Urbanization is associated with dramatic increases in noise and light pollution, which affect animal behaviour, physiology and fitness. However, few studies have examined these stressors simultaneously. Moreover, effects of urbanization during early-life may be detrimental but are largely unknown. In developing great tits (Parus major), a frequently-used model species, we determined important indicators of immunity and physiological condition: plasma haptoglobin (Hp) and nitric oxide (NOx) concentration. We also determined fledging mass, an indicator for current health and survival. Associations of ambient noise and light exposure with these indicators were studied. Anthropogenic noise, light and their interaction were unrelated to fledging mass. Nestlings exposed to more noise showed higher plasma levels of Hp but not of NOx. Light was unrelated to Hp and NOx and did not interact with the effect of noise on nestlings’ physiology. Increasing levels of Hp are potentially energy demanding and trade-offs could occur with life-history traits, such as survival. Effects of light pollution on nestlings of a cavity-nesting species appear to be limited. Nonetheless, our results suggest that the urban environment, through noise exposure, may entail important physiological costs for developing organisms.
Collapse
Affiliation(s)
- Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium.
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium.,Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Giulia Casasole
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Nina Dehnhard
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
47
|
Welbers AAMH, van Dis NE, Kolvoort AM, Ouyang J, Visser ME, Spoelstra K, Dominoni DM. Artificial Light at Night Reduces Daily Energy Expenditure in Breeding Great Tits (Parus major). Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Da Silva A, de Jong M, van Grunsven RHA, Visser ME, Kempenaers B, Spoelstra K. Experimental illumination of a forest: no effects of lights of different colours on the onset of the dawn chorus in songbirds. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160638. [PMID: 28280562 PMCID: PMC5319328 DOI: 10.1098/rsos.160638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/06/2016] [Indexed: 05/28/2023]
Abstract
Light pollution is increasing exponentially, but its impact on animal behaviour is still poorly understood. For songbirds, the most repeatable finding is that artificial night lighting leads to an earlier daily onset of dawn singing. Most of these studies are, however, correlational and cannot entirely dissociate effects of light pollution from other effects of urbanization. In addition, there are no studies in which the effects of different light colours on singing have been tested. Here, we investigated whether the timing of dawn singing in wild songbirds is influenced by artificial light using an experimental set-up with conventional street lights. We illuminated eight previously dark forest edges with white, green, red or no light, and recorded daily onset of dawn singing during the breeding season. Based on earlier work, we predicted that onset of singing would be earlier in the lighted treatments, with the strongest effects in the early-singing species. However, we found no significant effect of the experimental night lighting (of any colour) in the 14 species for which we obtained sufficient data. Confounding effects of urbanization in previous studies may explain these results, but we also suggest that the experimental night lighting may not have been strong enough to have an effect on singing.
Collapse
Affiliation(s)
- Arnaud Da Silva
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Maaike de Jong
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Roy H. A. van Grunsven
- Nature Conservation and Plant Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
49
|
Raap T, Casasole G, Costantini D, AbdElgawad H, Asard H, Pinxten R, Eens M. Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: an experimental study. Sci Rep 2016; 6:35626. [PMID: 27759087 PMCID: PMC5069498 DOI: 10.1038/srep35626] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/04/2016] [Indexed: 11/09/2022] Open
Abstract
Artificial light at night (ALAN), termed light pollution, is an increasingly important anthropogenic environmental pressure on wildlife. Exposure to unnatural lighting environments may have profound effects on animal physiology, particularly during early life. Here, we experimentally investigated for the first time the impact of ALAN on body mass and oxidative status during development, using nestlings of a free-living songbird, the great tit (Parus major), an important model species. Body mass and blood oxidative status were determined at baseline (=13 days after hatching) and again after a two night exposure to ALAN. Because it is very difficult to generalise the oxidative status from one or two measures we relied on a multi-biomarker approach. We determined multiple metrics of both antioxidant defences and oxidative damage: molecular antioxidants GSH, GSSG; antioxidant enzymes GPX, SOD, CAT; total non-enzymatic antioxidant capacity and damage markers protein carbonyls and TBARS. Light exposed nestlings showed no increase in body mass, in contrast to unexposed individuals. None of the metrics of oxidative status were affected. Nonetheless, our study provides experimental field evidence that ALAN may negatively affect free-living nestlings' development and hence may have adverse consequences lasting throughout adulthood.
Collapse
Affiliation(s)
- Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Giulia Casasole
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - David Costantini
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Hamada AbdElgawad
- Department of Biology, Molecular Plant Physiology and Biotechnology Group, University of Antwerp, Antwerp, Belgium
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - Han Asard
- Department of Biology, Molecular Plant Physiology and Biotechnology Group, University of Antwerp, Antwerp, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
- Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Venusstraat 35, B-2000, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|