1
|
Sun Y, Wang X, Guo W, Li F, Hua J, Zhu B, Guo Y, Han J, Yang L, Zhou B. Life-time exposure to decabromodiphenyl ethane (DBDPE) caused transgenerational epigenetic alterations of thyroid endocrine system in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175337. [PMID: 39117194 DOI: 10.1016/j.scitotenv.2024.175337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Because of its ubiquitous occurrence in the environment, decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, has been widely concerned. However, its transgenerational thyroid disrupting potential and intricate mechanism are barely explored. Therefore, zebrafish embryos were exposed to environmentally relevant concentrations of DBDPE (0, 0.1, 1 and 10 nM) until sexual maturity. The results indicated that life-time exposure to DBDPE caused anxiety-like behavior in unexposed offspring. Furthermore, the changing of thyroid hormones as well as transcriptional and DNA methylation level in the promoter region of related genes were evaluated. The thyroid disruptions observed in F1 larvae were primarily attributed to excessive transfer of thyroid hormone from F0 adults to F1 eggs. Conversely, the disruptions in F2 larvae were likely due to inherited epigenetic changes, specifically hypomethylation of crh and hypermethylation of ugt1ab, passed down from the F1 generation. Additionally, our results revealed sex-specific responses of the hypothalamic-pituitary-thyroid (HPT) axis in adult zebrafish. Furthermore, thyroid disruptions observed in unexposed offspring were more likely inherited from their mothers. The current results prompted our in-depth understanding of the multi- and transgenerational toxicity by DBDPE, and also highlighted the need to consider their adverse effects on persistent and inheritable epigenetic changes in future research on emerging pollutants.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650504, China
| | - Fan Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Biran Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Cao J, Lei Y, Jiang X, Kannan K, Li M. Biotransformation, Bioaccumulation, and Bioelimination of Triphenyl Phosphate and Its Dominant Metabolite Diphenyl Phosphate In Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15486-15496. [PMID: 39167085 DOI: 10.1021/acs.est.4c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Aryl phosphorus flame retardants (aryl-PFRs), such as triphenyl phosphate (TPHP) and diphenyl phosphate (DPHP), are widely used worldwide. Understanding the fates of aryl-PFRs in vivo is crucial to assessing their toxicity and the risks they pose. Seven TPHP metabolites, including Phase I hydrolysis and hydroxylation and Phase II glucuronidation products, were identified in C57BL/6J male mice following subacute dietary exposure to aryl-PFRs (70 μg/kg body weight (bw)/day) for 7 days. TPHP was almost completely metabolized by mice (∼97%), with DPHP the major metabolite formed (34%-58%). In addition, mice were exposed to aryl-PFRs (7 μg/kg bw/day) for 12 weeks. Both TPHP and DPHP occurred at higher concentrations in the digestive tract (intestine and stomach), liver and heart. The total concentration of DPHP in all organs was 3.55-fold greater than that of TPHP. Recovery analysis showed that the rate of TPHP elimination from mouse organs reached 38%, while only 3%-5% of DPHP was removed, suggesting that the rates of degradation and elimination of DPHP were slower than TPHP and its bioaccumulation potential was higher. These results highlight the critical role of DPHP in the biotransformation, bioaccumulation, and bioelimination of TPHP, providing valuable insights into the fate of aryl-PFRs in vivo.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York 12237, United States
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Rodrigues T, Ferreira KC, Isquibola G, Franco DF, Anderson JL, Merib JDO, Lima Gomes PCFD. Investigating a new approach for magnetic ionic liquids: Dispersive liquid-liquid microextraction coupled to pyrolysis gas-chromatography-mass spectrometry to determine flame retardants in sewage sludge samples. J Chromatogr A 2024; 1730:465038. [PMID: 38905945 DOI: 10.1016/j.chroma.2024.465038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
This study addresses the analysis of emerging contaminants, often using chromatographic techniques coupled to mass spectrometry. However, sample preparation is often required prior to instrumental analysis, and dispersive liquid-liquid microextraction (DLLME) is a viable strategy in this context. DLLME stands out for its ability to reduce sample and solvent volumes. Notably, dispersive liquid-liquid microextraction using magnetic ionic liquids (MILs) has gained relevance due to the incorporation of paramagnetic components in the chemical structure, thereby eliminating the centrifugation step. A pyrolizer was selected in this work to introduce sample onto the GC column, since the MIL is extremely viscous and incompatible with direct introduction through an autosampler. This study is the first to report the use of a DLLME/MIL technique for sample introduction through a pyrolizer in gas chromatography coupled to mass spectrometry (GC-MS). This approach enables the MIL to be compatible with gas chromatography systems, resulting in optimized analytical and instrument performance. The analysis of polybrominated diphenyl ether flame retardants (PBDEs) was focused on the PBDE congeners 28, 47, 99, 100, and 153 in sewage sludge samples. The [P6,6,6,14+]2[MnCl42-] MIL was thoroughly characterized using UV-Vis, Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, as well as thermal analysis. In the chromatographic method, a pyrolyzer was used in the sample introduction step (Py-GC-MS), and critical injection settings were optimized using multivariate approaches. Optimized conditions were achieved with a temperature of 220 °C, a pyrolysis time of 0.60 min, and an injection volume of 9.00 μL. DLLME optimization was performed through central compound planning (CCD), and optimized training conditions were achieved with 10.0 mg of MIL, 3.00 μL of acetonitrile (ACN) as dispersive solvent, extraction time of 60 s, and volume of a sample of 8.50 mL. Precision was observed to range from 0.11 % to 12.5 %, with limits of detection (LOD) of 44.4 μg L-1 for PBDE 28, 16.9 μg L-1 for PBDE 47 and PBDE 99, 33.0 μg L-1 for PBDE 100 and 375 μg L-1 for PBDE 153. PBDE 28 was identified and analyzed in the sludge sample at a concentration of 800 μg L-1. The use of MIL in dispersive liquid-liquid microextraction combined with pyrolysis gas chromatography-mass spectrometry enables identification and quantification of PBDEs in sewage sludge samples at concentrations down to the µg L-1 level.
Collapse
Affiliation(s)
- Thais Rodrigues
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Karen Chibana Ferreira
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Guilherme Isquibola
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Douglas Faza Franco
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14800-060, Brazil
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Josias de Oliveira Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil.
| |
Collapse
|
4
|
Dong L, Wang S, Wang X, Wang Z, Liu D, You H. Investigating the adverse outcome pathways (AOP) of neurotoxicity induced by DBDPE with a combination of in vitro and in silico approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131021. [PMID: 36821895 DOI: 10.1016/j.jhazmat.2023.131021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Current studies have shown an association between DBDPE and neurotoxicity. In this study, the adverse outcome pathway (AOP) and mechanistic analysis of DBDPE-induced neurotoxicity were explored by a combination of in vitro and in silico approaches in SK-N-SH cells. DBDPE-induced oxidative stress caused DNA strand breaks, resulting in the activation of poly (ADP-ribose) (PAR) polymerase-1 (PARP-1). Activation of PARP1 could cause toxic damage in various organ systems, especially in the nervous system. DBDPE-induced apoptosis via the caspase-dependent intrinsic mitochondrial pathway and the PARP1-dependent pathway. Activation of PARP1 by DBDPE was deemed the initiating event, thereby affecting the key downstream biochemical events (e.g., ROS production, DNA damage, membrane potential changes, and ATP reduction), which induced apoptosis. Furthermore, excessive activation of PARP1 was accompanied by the translocation of the apoptosis-inducing factor (AIF), which was associated with PARP1-dependent cell death. The inhibition of PARP1 by PJ34 reduced DBDPE-induced apoptosis and maintained cellular ATP levels. PJ34 also prevented the translocation of AIF from the mitochondria to the nucleus. These findings improve the understanding of the mechanism of DBDPE-induced neurotoxic effects and provide a theoretical basis for the ecological risk of DBDPE.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xingyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziwei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Khan AUH, Naidu R, Dharmarajan R, Fang C, Shon H, Dong Z, Liu Y. The interaction mechanisms of co-existing polybrominated diphenyl ethers and engineered nanoparticles in environmental waters: A critical review. J Environ Sci (China) 2023; 124:227-252. [PMID: 36182134 DOI: 10.1016/j.jes.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 06/16/2023]
Abstract
This review focuses on the occurrence and interactions of engineered nanoparticles (ENPs) and brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in water systems and the generation of highly complex compounds in the environment. The release of ENPs and BFRs (e.g. PBDEs) to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms. The major interaction mechanisms including electrostatic, van der Waals, hydrophobic, molecular bridging and steric, hydrogen and π-bonding, cation bridging and ligand exchange were identified. The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds. The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors. The intermingled compound (ENPs-BFRs) would show different behaviour from the parental ENPs or BFRs, which are currently lack of investigation. This review provided insights on the interactions of ENPs and BFRs in artificial, environmental water systems and wastewater treatment plants (WWTPs), which are important for a comprehensive risk assessment.
Collapse
Affiliation(s)
- Anwar Ul Haq Khan
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Raja Dharmarajan
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hokyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW 2007, Australia
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijging 100191, China
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
6
|
Lyu Y, Li G, He Y, Li Y, Tang Z. Occurrence and distribution of organic ultraviolet absorbents in soils and plants from a typical industrial area in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157383. [PMID: 35843326 DOI: 10.1016/j.scitotenv.2022.157383] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Organic ultraviolet absorbents (UVAs) have attracted increasing concern due to their ubiquity, bioaccumulation, and potential toxicity. However, available information on their occurrence and transfer in terrestrial environment is still extremely insufficient. In this study, we investigated twelve UVAs in the soils and five terrestrial plant species from a typical industrial area in South China, and found their total concentrations were 5.87-76.1 (median 13.1) and 17.9-269 (median 82.9) ng/g dry weight, respectively. Homosalate was dominant in soils while benzophenone and octrizole were predominant in plants, likely due to their complex sources and bioaccumulation preferences. The bioaccumulation factors (BAFs) were further evaluated based on the ratios of UVA concentrations in plants and soils. The observed BAFs of UVAs were compound and species-specific, and most of them were much >1.0, indicating the chemicals could be transferred from soils to plants. To the best of our knowledge, this is the first report of organic UVAs in field soil-plant systems, providing information that may improve our understanding of the bioaccumulability of these chemicals in terrestrial environment and the associated risks. More studies are needed to investigate the transfer and bioaccumulation of such chemicals in soils and terrestrial biota.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Guanghui Li
- Chongqing Engineering Research Center for Soil Contamination Control and Remediation, Chongqing 400067, China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
7
|
Shi Q, Xiong Y, Kaur P, Sy ND, Gan J. Contaminants of emerging concerns in recycled water: Fate and risks in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152527. [PMID: 34953850 DOI: 10.1016/j.scitotenv.2021.152527] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Recycled water (RW) has been increasingly recognized as a valuable source of water for alleviating the global water crisis. When RW is used for agricultural irrigation, many contaminants of emerging concern (CECs) are introduced into the agroecosystem. The ubiquity of CECs in field soil, combined with the toxic, carcinogenic, or endocrine-disrupting nature of some CECs, raises significant concerns over their potential risks to the environment and human health. Understanding such risks and delineating the fate processes of CECs in the water-soil-plant continuum contributes to the safe reuse of RW in agriculture. This review summarizes recent findings and provides an overview of CECs in the water-soil-plant continuum, including their occurrence in RW and irrigated soil, fate processes in agricultural soil, offsite transport including runoff and leaching, and plant uptake, metabolism, and accumulation. The potential ecological and human health risks of CECs are also discussed. Studies to date have shown limited accumulation of CECs in irrigated soils and plants, which may be attributed to multiple attenuation processes in the rhizosphere and plant, suggesting minimal health risks from RW-fed food crops. However, our collective understanding of CECs is rather limited and knowledge of their offsite movement and plant accumulation is particularly scarce for field conditions. Given a large number of CECs and their occurrence at trace levels, it is urgent to develop strategies to prioritize CECs so that future research efforts are focused on CECs with elevated risks for offsite contamination or plant accumulation. Irrigating specific crops such as feed crops and fruit trees may be a viable option to further minimize potential plant accumulation under field conditions. To promote the beneficial reuse of RW in agriculture, it is essential to understand the human health and ecological risks imposed by CEC mixtures and metabolites.
Collapse
Affiliation(s)
- Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Sun Y, Zhu B, Ling S, Yan B, Wang X, Jia S, Martyniuk CJ, Zhang W, Yang L, Zhou B. Decabromodiphenyl Ethane Mainly Affected the Muscle Contraction and Reproductive Endocrine System in Female Adult Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:470-479. [PMID: 34919388 DOI: 10.1021/acs.est.1c06679] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a widespread environmental pollutant. However, the target tissue and toxicity of DBDPE are still not clear. In the current study, female zebrafish were exposed to 1 and 100 nM DBDPE for 28 days. Chemical analysis revealed that DBDPE tended to accumulate in the brain other than the liver and gonad. Subsequently, tandem mass tag-based quantitative proteomics and parallel reaction monitoring verification were performed to screen the differentially expressed proteins in the brain. Bioinformatics analysis revealed that DBDPE mainly affected the biological process related to muscle contraction and estrogenic response. Therefore, the neurotoxicity and reproductive disruptions were validated via multilevel toxicological endpoints. Specifically, locomotor behavioral changes proved the potency of neurotoxicity, which may be caused by disturbance of muscular proteins and calcium homeostasis; decreases of sex hormone levels and transcriptional changes of genes related to the hypothalamic-pituitary-gonad-liver axis confirmed reproductive disruptions upon DBDPE exposure. In summary, our results suggested that DBDPE primarily accumulated in the brain and evoked neurotoxicity and reproductive disruptions in female zebrafish. These findings can provide important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siyuan Ling
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Yan
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulin Wang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhao Jia
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611 United States
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
9
|
Li H, Song A, Liu H, Li Y, Liu M, Sheng G, Peng P, Ying G. Occurrence of Dechlorane series flame retardants in sediments from the Pearl River Delta, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116902. [PMID: 33743437 DOI: 10.1016/j.envpol.2021.116902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Dechlorane series flame retardants (DECs), e.g. Dechlorane plus (DP), have reportedly showed an increase in consumption since the phase-out of traditional brominated flame retardants (BFRs). Here we investigated DP and 7 structural analogues, as well as its 2 dechlorinated products in 76 surficial sediments from the Pearl River Delta (PRD), one of the three important manufacturing bases of China. The concentration of Σ8DECs varied from 28.1 to 38,000 pg g-1 dw in the PRD sediments, dominated by DP and Mirex. Spatially, sedimental DP concentrations were significantly and positively correlated with the municipal gross domestic product (GDP), population and sewage discharge of the PRD cities, but were insignificantly related to their industrial outputs. This indicates that DP in the PRD sediments mainly originated from urban activities instead of industrial ones. Although Mirex has been restricted for several decades, it demonstrated ubiquity in the PRD and considerably high levels in several termite control hot-spots (up to 34,200 pg g-1), implying its massive historical use in this subtropical region. Other DECs, however, exhibited quite low abundances, implying their limited applications in this region. In comparison to the historical data, sedimental DP concentrations presented an increasing trend in most rivers in the PRD except the West River. The fractions of anti-DP (fanti) showed insignificant deviations from its technical value, suggesting that no obvious anti-DP transformation occurred in most PRD sediments. However, anti-Cl11-DP, an important dechlorination product of anti-DP, was ubiquitously found in the PRD sediments, and its concentrations were significantly and positively associated with those of anti-DP. Therefore, anti-Cl11-DP in the PRD sediments was deemed as the impurity co-emitted with anti-DP rather than its dechlorination byproduct. Considering its ubiquity, increasing trend and persistence, DP in the PRD environments merits continuous concerns.
Collapse
Affiliation(s)
- Huiru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Aimin Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hehuan Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Li
- Monitoring and Research Center for Eco-Environmental Sciences, Ecology and Environment Administration of Pearl River Valley and South China Sea, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Mingyang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Xu G, Zhao X, Zhao S, Chen C, Rogers MJ, Ramaswamy R, He J. Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4205-4226. [PMID: 33705105 DOI: 10.1021/acs.est.0c05681] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
11
|
Liu J, Liang C, Peng B, Zhang YY, Liu LY, Zeng EY. Legacy and alternative flame retardants in typical freshwater cultured fish ponds of South China: Implications for evolving industry and pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143016. [PMID: 33139011 DOI: 10.1016/j.scitotenv.2020.143016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The production and usage of polybrominated diphenyl ethers (PBDEs) has been gradually phased out and the application of alternative halogenated flame retardants (AHFRs) has been continuously increased. It is essential to understand how the evolving flame retardants industry has affected the occurrence and flux of legacy and alternative flame retardants so that better pollution control measures can be made accordingly. Air, rainwater, inflowing river water, pond water, pond sediment, fish feed, and fish collected from freshwater cultured fish ponds (FWCFPs) within the Pearl River Delta, South China were analyzed for PBDEs and AHFRs. Concentrations of AHFRs in air (range; median: 7.8-870; 210 pg m-3), rainwater (0.88-65; 4.8 ng L-1), and sediment (19-120; 54 ng g-1 dry weight (d.w.)) were one order of magnitude higher than those of PBDEs in air (12-98; 21 pg m-3), rainwater (0.18-15; 0.70 ng L-1), and sediment (1.5-9.6, 2.9 ng g-1 d.w.) (t-test; p < 0.05). Decabromodiphenyl ether and decabromodiphenylethane were the predominant BDE and AHFR components, respectively, agreeing well with the production and usage patterns of flame retardants in China. The average input fluxes of AHFRs to the FWCFPs via dry deposition, wet deposition, net air-water exchange, and feeding (38.6, 20.6, and 2.14, μg m-2 yr-1) were one order of magnitude higher than those of PBDEs (3.44, 5.17, and -10.1, μg m-2 yr-1). Elevated occurrence and input fluxes of AHFRs suggested that aquaculture production is potentially facing a new challenge from alternative flame retardants. Atmospheric dry and wet deposition are important input sources of AHFRs to the FWCFPs. Feeding is an important input pathway for both PBDEs and AHFRs. Pollution control measures should be modified to accommodate the evolving flame retardants industry.
Collapse
Affiliation(s)
- Jing Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bo Peng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yu-Yu Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
McGrath TJ, Kolobaric A, Lee E, Clarke BO. Brominated flame retardants (BFRs) in Western Australian biosolids and implications for land application. CHEMOSPHERE 2020; 260:127601. [PMID: 32688318 DOI: 10.1016/j.chemosphere.2020.127601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates the prevalence of eight priority polybrominated diphenyl ethers (PBDEs; -28, -47, -99, -100, -153, -154, -183 and -209) and six novel brominated flame retardants (NBFRs; pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE)) in biosolids samples from 15 wastewater treatment plants (WWTPs) in Western Australia. Analytes were extracted using selective pressurized liquid extraction (S-PLE) and quantified by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) operated in electron impact (EI) ionization mode. ∑8PBDE levels in biosolids ranged from 11 to 18,000 μg/kg dw with a median concentration of 1800 μg/kg dw. BDE-209 was the most prevalent congener constituting a median of 98% of ∑8PBDE concentrations in samples with BDE-99, -47 and -100 each typically contributing less than 3% to total levels. NBFRs were detected in 71% of samples with ∑6NBFR levels ranging between ND-1100 μg/kg dw (median; 600 μg/kg dw). Levels of DBDPE greatly exceeded those of all other NBFRs, while the next most prevalent compounds were EH-TBB and HBB. Australia produced approximately 327,000 dry tonnes of biosolids in 2017, of which approximately 75% was beneficially utilized on farmland as a fertilizer. Based on these results, an estimated 440 kg of BDE-209 and 150 kg of DBDPE are applied to agricultural land via biosolids applications annually in Australia. This study provides the first account of NBFR concentrations in Australian biosolids.
Collapse
Affiliation(s)
- Thomas J McGrath
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Elliot Lee
- Water Corporation, 629 Newcastle Street, Leederville, WA, 6007, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Wu Q, Li H, Hu X, Shi Y, Kong D, Zhang Y, Mai B, Zhao D, Fu J. Full-scale evaluation of reversed A2/O process for removal of multiple pollutants in sewage. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Chen M, Liao X, Yan SC, Gao Y, Yang C, Song Y, Liu Y, Li W, Tsang SY, Chen ZF, Qi Z, Cai Z. Uptake, Accumulation, and Biomarkers of PM 2.5-Associated Organophosphate Flame Retardants in C57BL/6 Mice after Chronic Exposure at Real Environmental Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9519-9528. [PMID: 32609501 DOI: 10.1021/acs.est.0c02237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the bioaccumulation of organophosphate flame retardants (OPFRs) in aquatic organisms has been investigated, little information is available about their bioaccumulation in mammals following chronic inhalation exposure. To address this knowledge gap, C57BL/6 mice were exposed to 7 PM2.5-associated OPFRs via the trachea to study their bioaccumulation, tissue distribution, and urinary metabolites. Low (corresponding to the real PM2.5 concentrations occurring during winter in Guangzhou), medium, and high dosages were examined. After 72 days' exposure, ∑OPFR concentrations in tissues from mice in the medium dosage group decreased in the order of intestine > heart > stomach > testis > kidney > spleen > brain > liver > lung > muscle. Of the OPFRs detected in all three exposure groups, chlorinated alkyl OPFRs were most heavily accumulated in mice. We found a significant positive correlation between the bioaccumulation ratio and octanol-air partition coefficient (KOA) in mice tissues for low log KOW OPFR congeners (log KOW ≤ 4, p < 0.05). Three urinary metabolites (di-p-cresyl phosphate: DCrP, diphenyl phosphate: DPhP, dibutyl phosphate: DnBP) were detected from the high dosage group. These results provide important insights into the bioaccumulation potential of OPFRs in mammals and emphasize the health risk of chlorinated alkyl OPFRs.
Collapse
Affiliation(s)
- Min Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi-Chao Yan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Suk-Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
15
|
Chen Y, Song Y, Chen YJ, Zhang Y, Li R, Wang Y, Qi Z, Chen ZF, Cai Z. Contamination profiles and potential health risks of organophosphate flame retardants in PM 2.5 from Guangzhou and Taiyuan, China. ENVIRONMENT INTERNATIONAL 2020; 134:105343. [PMID: 31778934 DOI: 10.1016/j.envint.2019.105343] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate flame retardants (OPFRs) are emerging contaminants in recent years. They can be present in the atmospheric fine particle (PM2.5), leading to potential adverse effects on humans. In this study, the concentrations and in vitro toxicities of OPFRs in PM2.5 samples were investigated for one year at Guangzhou and Taiyuan in China. Eleven OPFRs, including chloro-, aryl-, and alkyl-substituted OPFRs, were detected at total concentrations ranging from 3.10 to 544 ng m-3. Chloro-substituted OPFRs were the dominant contaminants. Based on the statistical analysis, the same contamination sources of all OPFRs were found except for tris(butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP), which may come from traffic emission. The results of cell viability and dithiothreitol assays indicated that OPFRs and PM2.5 could induce the death of normal lung epithelial cells and the production of reactive oxygen species (ROS), respectively. According to the redundancy analysis, the distribution of OPFRs was significantly related to the PM2.5 concentrations and indirectly associated with ROS production induced by PM2.5 from Taiyuan. Exposure to PM2.5-bound OPFRs in Guangzhou and Taiyuan only posed minimum health risks to both toddlers and adults. These findings could provide important evidence to better clarify the contamination profiles and human health risks of OPFRs in atmospheric fine particles.
Collapse
Affiliation(s)
- Yanyan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Jie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yujie Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
16
|
Liu Z, Deng M, Wu Q, Kuo DTF, Zeng L, Wang Z, Zhang Y, Liu X, Liu S, Liang J, Hu X, Mai B. Occurrence, seasonal variation and environmental impact of phosphorus flame retardants in a large scale wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36333-36342. [PMID: 31713826 DOI: 10.1007/s11356-019-06670-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The occurrence, seasonal variation and emission of nine widely used phosphorus flame retardants (PFRs) were investigated in a wastewater treatment plant (WWTP) located in Guangzhou, China, over 1 year. Results showed that PFRs were widely detected in wastewater and sewage sludge. Tris(2-chloroisopropyl) phosphate (TCIPP) was the most dominant PFRs in influent, effluent, and sludge. Significant seasonal variation of total PFRs in the influent was observed (p < 0.05). However, no significant seasonal variation found in chlorinated and alkyl PFRs. The emission of PFRs was comparable with the previously reported values of decabromodiphenyl ether in WWTPs. Risk quotient for PFRs showed low eco-toxicity risk in effluent for aquatic organisms. Since the removal efficiency of total PFRs was less than 30% and the use of PFRs had been increasing, continuous monitoring of the environmental impact on the receiving water is still needed.
Collapse
Affiliation(s)
- Zhineng Liu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mingjun Deng
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
- Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, Guangzhou University, Guangzhou, 510006, China.
| | - Dave T F Kuo
- Department of Architecture and Civil Engineering, Hong Kong Special Administrative Region, City University of Hong Kong, Kowloon Tong, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
- Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, Guangzhou University, Guangzhou, 510006, China
| | - Ying Zhang
- Monitoring and Research Center for Eco-Environmental Sciences, Ecology and Environment Administration of Pearl River Valley and South China Sea, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Xinyu Liu
- Monitoring Centre of Pearl River Valley Aquatic Environment, Guangzhou, 510611, China
| | - Shengyu Liu
- Monitoring Centre of Pearl River Valley Aquatic Environment, Guangzhou, 510611, China
| | - Junyan Liang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaodong Hu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
17
|
Yuan Z, Liu G, Lam MHW, Liu H, Liu R, Da C. Polybrominated Diphenyl Ethers in Surface Soils from the Yellow River Delta Natural Reserve, China: Occurrence, Sources, and Potential Risk. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:594-604. [PMID: 31388704 DOI: 10.1007/s00244-019-00660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
A total of 39 lower brominated PBDE congeners in surface soils from the Yellow River Delta Natural Reserve (YRDNR) were analyzed in the present study. The total concentrations of PBDEs (ΣPBDEs) ranged from "not detected" to 0.732 ng g-1, with a mean concentration of 0.142 ng g-1. The concentrations of the ΣPBDEs displayed no correlation with the content of the total organic carbon in the YRDNR. The ΣPBDEs concentrations in the Experimental Area were significantly higher than that of the Buffer Area and Core Area, and ΣPBDEs in soils in the North were lower than that of the South. PentaBDEs and HexaBDEs were the most abundant homologues, and the occurrence of PBDEs in the YRDNR may be attributed to the debromination and long range transport of DecaBDEs. Even though the cancer risk and mass inventory of PBDEs in the present study area were estimated to be very low, due to the widespread presence of PBDEs and the particularity of the natural reserve, vigilance should not be let up on the issue of environmental contamination caused by these compounds despite the gradual phase out of their commercial products in the world.
Collapse
Affiliation(s)
- Zijiao Yuan
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, China
- University of Science and Technology of China - City University of Hong Kong Joint Advanced Research Centre, Suzhou, 215123, Jiangsu, China
- Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- University of Science and Technology of China - City University of Hong Kong Joint Advanced Research Centre, Suzhou, 215123, Jiangsu, China.
| | - Michael Hon Wah Lam
- University of Science and Technology of China - City University of Hong Kong Joint Advanced Research Centre, Suzhou, 215123, Jiangsu, China
- Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| | - Houqi Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Rongqiong Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Chunnian Da
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
18
|
Li LY, Zhang H, Gorgy T, Grace JR. Effect of polybrominated diphenyl ethers on sand-bentonite liner material. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:73-82. [PMID: 31079761 DOI: 10.1016/j.wasman.2019.03.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are present in biosolids and other solid wastes, as well as being detected in landfill leachates. As sand-bentonite mixtures are extensively used as basal liner materials for landfills, a sand-bentonite mixture was investigated by swelling tests and leaching column tests to determine whether it can effectively contain and/or immobilize PBDEs in landfill leachate. Leaching column tests were conducted with permeants consisting of biosolids' leachates diluted to 50% by volume and spiked with 50 μg/mL of a pentaBDE mixture solution. The results showed that the sand-bentonite retained up to 45-66% of the total PBDEs in the permeant; however, the concentration of PBDEs in the effluent increased continuously and reached a significant level during a 3-week period. PBDEs probably sorbed onto both fine and ultra-fine organic particles. During leaching, a compacted sand-bentonite admix could stop fine particles from passing, but at the same time, ultra-fine organic particles carried PBDEs through the barrier materials. The hydraulic conductivity, k, of the sand-bentonite was negatively affected by shrinkage of the clay interlayer caused by the permeant hydrophobicity. However, the hydraulic conductivity changed only to a limited extent, remaining at a magnitude of 10-9 cm/s, probably because the PBDE concentrations were low. Therefore, caution is needed when sand-bentonite is applied to landfill liners as a barrier for PBDEs.
Collapse
Affiliation(s)
- Loretta Y Li
- Department of Civil Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Huijie Zhang
- Department of Civil Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada; Faculty of Civil and Mechanics Engineering of Jiangsu University, Zhenjiang 212013, China
| | - Tamer Gorgy
- Department of Civil Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - John R Grace
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
19
|
Chen Y, Chen YJ, Zhang Y, Li R, Chen W, Yan SC, Qi Z, Chen ZF, Cai Z. Determination of HFRs and OPFRs in PM2.5 by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS. Talanta 2019; 194:320-328. [DOI: 10.1016/j.talanta.2018.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
|
20
|
Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Zafra-Gómez A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019; 192:508-533. [DOI: 10.1016/j.talanta.2018.09.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
21
|
Huang CC, Zeng YH, Luo XJ, Tang B, Liu YE, Ren ZH, Mai BX. Level changes and human dietary exposure assessment of halogenated flame retardant levels in free-range chicken eggs: A case study of a former e-waste recycling site, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:509-515. [PMID: 29631140 DOI: 10.1016/j.scitotenv.2018.03.386] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
To assess the impacts of e-waste regulations on environmental pollution, we built on a previous study from 2010 to investigate the levels and human dietary exposure of halogenated flame retardants (HFRs) in free-range chicken eggs from Baihe village in 2013 and 2016. The concentrations of PBDEs, PBBs, HBCDs, and DBDPE showed a significant decrease (p<0.05) from 2010 to 2013/2016, suggesting the efficacy of regulatory policies. The relative contribution of BDE209 were higher in 2013 and 2016 than in 2010, accounting for 67.8%, 61.4%, and 27.7%, respectively. The concentration ratios of PBB209:PBB153 were much lower in 2013 (1.51) and 2016 (1.32) than in 2010 (29.5). These observed different profiles likely due to the different environmental behaviors of HFRs (e.g. the different atmospheric migration abilities of PBDE congeners and degradation of PBB209). Our exposure estimates suggested high dietary intake of HFRs via home-produced eggs. As for PBDEs, considering the worst situation (highly polluted eggs were consumed), the margin of exposure (MOE) of BDE99 for both adults and children were 1.5 and 0.3 in 2013, and 1.1 and 0.2 in 2016, respectively, which were below 2.5. According to the CONTAM panel, an MOE larger than 2.5 indicates no health concern. Therefore, these MOE values represent a significant potential health concern due to the adverse impacts of PBDEs on human neurodevelopment and fertility.
Collapse
Affiliation(s)
- Chen-Chen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-He Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
22
|
Cai YM, Ren GF, Lin Z, Sheng GY, Bi XH, Sun SY. Assessment of exposure to polybrominated diphenyl ethers associated with consumption of market hens in Guangzhou. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:40-44. [PMID: 29407736 DOI: 10.1016/j.ecoenv.2018.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 06/07/2023]
Abstract
To evaluate contamination by polybrominated diphenyl ethers (PBDEs) in market hens and human PBDE exposure via hen consumption in Guangzhou, hens were collected and their muscle, liver, fat, blood, yolk, and ingluvies tissues were analyzed for 13 PBDE congeners. The median highest concentration of ∑PBDEs was found in the ingluvies (5.30 ng/g lw), followed by the muscle (2.53 ng/g lw), with the lowest located in the yolk (0.09 ng/g lw). The concentrations of PBDEs in the muscle tissue of market hens in Guangzhou were at medium levels compared to others reported around the world. BDE-47, -153, -99, and -183 were the predominant congeners. The daily intake concentrations of PBDEs from hen muscle were estimated to range from 0.08 to 0.31 ng/kg/day in this study, with a Hazard Quotient (HQ) below 1.0. These results suggest that the health risk of PBDEs for the general population, through the consumption of market hens in Guangzhou, was generally low. However, the intake of PBDEs via food consumption may be one major exposure pathway for the general population of Guangzhou.
Collapse
Affiliation(s)
- Yun-Mei Cai
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, Guangdong 528216, China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guo-Fa Ren
- Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering, Shanghai University, Shanghai 200072, China
| | - Zheng Lin
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guo-Ying Sheng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xin-Hui Bi
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Shui-Yu Sun
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, Guangdong 528216, China.
| |
Collapse
|
23
|
Ma WL, Li WL, Zhang ZF, Liu LY, Song WW, Huo CY, Yuan YX, Li YF. Occurrence and source apportionment of atmospheric halogenated flame retardants in Lhasa City in the Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1109-1116. [PMID: 28724249 DOI: 10.1016/j.scitotenv.2017.07.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Active air samples were collected in Lhasa, one of the highest cities in the world (3650m above sea level) located in the Tibetan Plateau, and were analyzed for 38 halogenated flame retardants (HFRs), including polybrominated diphenyl ethers (PBDEs), non-PBDE brominated flame retardants (NBFRs) and dechlorane plus (DPs). The median concentrations of PBDEs, NBFRs and DPs were 40, 23 and 0.21pg/m3, respectively. Correlation analysis indicated the common source and/or similar environmental behavior for several HFRs. The Clausius-Clapeyron equation was applied to diagnose the sources of lower molecular weight HFRs (LMW-HFRs), which suggested that the gaseous LMW-HFRs at Lhasa were more controlled by regional or long-range atmospheric transport rather than the temperature-driven evaporation from local contaminated surfaces. Finally, the potential source contribution function model was applied to assess the influences of air parcels on the atmospheric concentrations of HFRs in Lhasa, which suggested that the sources of higher molecular weight HFRs (HMW-HFRs) were mostly originated from local emissions, while the others were originated from long-range atmospheric transport.
Collapse
Affiliation(s)
- Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Xing Yuan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada.
| |
Collapse
|
24
|
Campo J, Lorenzo M, Cammeraat ELH, Picó Y, Andreu V. Emerging contaminants related to the occurrence of forest fires in the Spanish Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:330-339. [PMID: 28633110 DOI: 10.1016/j.scitotenv.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 05/21/2023]
Abstract
Forest fires can be a source of contamination because, among others, of the use of chemicals to their extinction (flame retardants, FRs), or by the production of Polycyclic Aromatic Hydrocarbons (PAHs) derived from high temperature alteration of organic matter. Up to our knowledge, this study is the first to assess the direct (PAHs 16 on the USA EPA's priority list), and indirect [tri- to hepta- brominated diphenyl ethers (PBDEs), organophosphorus flame retardants (PFRs) and perfluoroalkyl substances (PFASs)] contamination related to forest fires. The abundance and distribution of these contaminants were monitored on two Mediterranean hillslopes, one burned and one unburned, near Azuébar (SE Spain). Samples were taken in the foot, middle, and top of the slope, at two depths, and in two environments (under canopy and bare soil). Sediments were collected from sediment fences after erosive rainfall events. Most of the screened compounds were found in both, burned and control hillslopes, though significant differences were found between both. In burned soil, low concentrations of PBDEs (maximum ΣPBDEs: 7.3ngg-1), PFRs (664.4ngg-1) and PFASs (56.4ngg-1) were detected in relation to PAHs (Σ16 PAHs=1255.3ngg-1). No significant influence of the hillslope position was observed for any of the contaminants but differences based on depth and vegetation presence tended to be significant, particularly for the PAHs. After the first erosive event, concentrations of PBDEs and PAHs were higher in sediment than in soil (ΣPBDEs: 17.8ngg-1 and Σ16 PAHs=3154.2ngg-1) pointing out the importance of connectivity processes, especially shortly after fire.
Collapse
Affiliation(s)
- Julian Campo
- Environmental Forensic and Landscape Chemistry Research Group, Desertification Research Centre - CIDE, (Spanish Council for Scientific Research, University of Valencia, Generalitat Valenciana), Carretera Moncada - Náquera km 4.5 (Campus IVIA), 46113 Moncada, Valencia, Spain; Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystems Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - María Lorenzo
- Food and Environmental Safety Research Group (SAMA - UV), Desertification Research Centre - CIDE, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Erik L H Cammeraat
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystems Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA - UV), Desertification Research Centre - CIDE, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Vicente Andreu
- Environmental Forensic and Landscape Chemistry Research Group, Desertification Research Centre - CIDE, (Spanish Council for Scientific Research, University of Valencia, Generalitat Valenciana), Carretera Moncada - Náquera km 4.5 (Campus IVIA), 46113 Moncada, Valencia, Spain
| |
Collapse
|
25
|
Levels of Urinary Metabolites of Organophosphate Flame Retardants, TDCIPP, and TPHP, in Pregnant Women in Shanghai. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2016; 2016:9416054. [PMID: 28115951 PMCID: PMC5220514 DOI: 10.1155/2016/9416054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 11/17/2022]
Abstract
Flame retardants are widely used in consumer products to reduce their flammability. Previously used flame retardants have been sequentially banned due to their environmental and human toxicity. Currently, tris(1,3-dichloropropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) are among the most commonly used flame retardants. TDCIPP and TPHP are reproductive toxins and have carcinogenic, neurotoxic, and endocrine-disrupting properties. Although high levels of TDCIPP and TPHP have been found in drinking water, seawater, and office air in China, data regarding human exposure are lacking. In this study, we assessed the level of urinary TPHP and TDCIPP metabolites (DPHP and BDCIPP, resp.) in a cohort of pregnant women (N = 23) from Shanghai, China, using liquid chromatography-tandem mass spectrometry. DPHP were detected in 100% urine samples, while only four urine samples had detectable level of BDCIPP in this cohort (17% detected). Geometric means of DPHP and BDCIPP concentrations were 1.1 ng/mL (interquartile range [IQR]: 0.6, 1.5 ng/mL) and 1.2 ng/mL (IQR: 0.6, 2.2 ng/mL), respectively. In this small cohort, urinary DPHP and BDCIPP levels were not significantly correlated with miscarriages, neonatal birthweight, gestational diabetes, or maternal age. These data suggest that exposure to TPHP is widespread, and they demonstrate the feasibility of using urinary biomarkers to measure exposures to modern flame-retardant chemicals.
Collapse
|