1
|
Agueda Aramburu P, Flecha S, Lujan-Williams CAM, Hendriks IE. Water column oxygenation by Posidonia oceanica seagrass meadows in coastal areas: A modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173805. [PMID: 38848917 DOI: 10.1016/j.scitotenv.2024.173805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Seagrass meadows are among the most abundant marine coastal ecosystems in the world. The wide variety of species, a worldwide distribution with overall high abundance, and especially their high productivity make them a plausible nature-based blue carbon solution to mitigate atmospheric CO2 levels. In the Mediterranean Basin, the endemic angiosperm Posidonia oceanica plays a remarkable role as a marine habitat provider in shallow waters through its vertical growth and as a carbon sink storing allochthonous carbon and biomass underneath the meadows. OBJECTIVES Here, we assess the capacity of a pristine meadow to oxygenate the water column in the coastal area of the Balearic Islands through an evaluation of the metabolic rates in the benthic compartment as well as the resulting oxygen concentrations in the pelagic compartment. METHODS Gross primary production (GPP), respiration (R), and net community production (NCP) are determined from dissolved oxygen (DO) measurements using two different calculation methods: a model developed for this purpose is used for data obtained from water column sensors and benthic multiparametric sensors, whereas the mass balance of measured DO is used to calculate the metabolic rates inside benthic chambers. RESULTS The meadow at our study site was characterised as a net autotrophic ecosystem throughout the year. Oxygen productivity was significantly higher in the benthic compartment than in the water column and followed clear seasonal patterns, with enhanced productivity during spring. NOVELTY This work shows the key role of a healthy Posidonia oceanica ecosystem as a water column oxygenator by comparing primary production using three different sampling strategies. The potential of the seagrass as climate change mitigator and its importance for the Mediterranean coasts should be considered in future coastal planning strategies.
Collapse
Affiliation(s)
- Peru Agueda Aramburu
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), C/Miquel Marqués 21, 07109 Esporles, Spain.
| | - Susana Flecha
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), C/Miquel Marqués 21, 07109 Esporles, Spain
| | | | - Iris E Hendriks
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), C/Miquel Marqués 21, 07109 Esporles, Spain
| |
Collapse
|
2
|
Stipcich P, Pansini A, Ceccherelli G. Resistance of Posidonia oceanica seedlings to warming: Investigating the importance of the lag-phase duration between two heat events to thermo-priming. MARINE POLLUTION BULLETIN 2024; 204:116515. [PMID: 38796990 DOI: 10.1016/j.marpolbul.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The increase of marine heat waves (MHWs) occurrence is exacerbated in Mediterranean Sea and temperature resilience-enhancing strategies on key species, such as the seagrass Posidonia oceanica, need to be investigated. "Priming" describes a stimulus that prepares an organism for an improved response to upcoming environmental changes by triggering a memory that remains during a lag-phase. The aim of this study, conducted in Sardinia (Italy), was to investigate whether the development of thermo-primed P. oceanica seedlings is affected by a field simulated MHW depending on the duration of the lag-phase. After the thermo-priming stimulus, seedlings had a 0, 7 or 14 days lag-phase and after that, for each lag-phase group, half of the seedlings experienced a simulated MHW (the other half served as controls). Some other seedlings did not experience either the priming stimulus or the lag-phase. Results did not show any evidence of a memory triggered by the priming stimulus, but they highlighted the importance of an acclimation phase before the highest temperature: seedlings that experienced a gradual increase of temperature had a higher number of leaves and shorter leaf necrosis length compared to seedlings that had a lag-phase between two heat events. Regardless the priming stimulus, MHWs slowed down the development of the leaf and root length. Considering the increase of temperature fluctuations, testing different intensities of priming and different length of lag-phase is necessary to provide information about the adaptive success of the species.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy; Department of Biology, University of Naples Federico II, Naples, Italy; National Biodiversity Future Centre, Palermo, Italy.
| | - Arianna Pansini
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Giulia Ceccherelli
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy
| |
Collapse
|
3
|
Bockel T, Marre G, Delaruelle G, Agel N, Boissery P, Guilhaumon F, Mouquet N, Mouillot D, Guilbert A, Deter J. Early signals of Posidonia oceanica meadows recovery in a context of wastewater treatment improvements. MARINE POLLUTION BULLETIN 2024; 201:116193. [PMID: 38428047 DOI: 10.1016/j.marpolbul.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.
Collapse
Affiliation(s)
- Thomas Bockel
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France; MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France.
| | - Guilhem Marre
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France
| | | | - Noémie Agel
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France
| | - Pierre Boissery
- Agence de l'Eau Rhône-Méditerranée-Corse, Délégation de Marseille, immeuble CMCI, 2 rue Henri Barbusse, CS 90464, 13207 Marseille Cedex 01, France
| | - François Guilhaumon
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France
| | - Nicolas Mouquet
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France; FRB - CESAB, Institut Bouisson Bertrand, 5, rue de l'École de médecine, 34000 Montpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France
| | - Antonin Guilbert
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France
| | - Julie Deter
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France; MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France
| |
Collapse
|
4
|
Provera I, Martinez M, Zenone A, Giacalone VM, D'Anna G, Badalamenti F, Marín-Guirao L, Procaccini G. Exploring priming strategies to improve stress resilience of Posidonia oceanica seedlings. MARINE POLLUTION BULLETIN 2024; 200:116057. [PMID: 38301434 DOI: 10.1016/j.marpolbul.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Seagrasses' ability to store information after exposure to stress (i.e. stress memory) and to better respond to further stress (i.e. priming) have recently been observed, although the temporal persistence of the memory and the mechanisms for priming induction remain to be defined. Here, we explored three priming strategies in Posidonia oceanica seedlings, each inducing a different level of stress, for temperature and salinity. We investigated changes in morphometry, growth rate and biomass between primed and non-primed seedlings. The results showed similar behaviour of seedlings when exposed to an acute stress event, regardless of whether they had been primed or not and of the priming strategy received. This opens the debate on the level of stress necessary for inducing a priming status and the persistence of the stress memory in P. oceanica seedlings. Although no priming-induced stress resistance was observed, seedlings showed unexpectedly high resilience to extreme levels of both abiotic stressors.
Collapse
Affiliation(s)
- I Provera
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - M Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy
| | - A Zenone
- Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo 4521, 90149 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - V M Giacalone
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via del Mare 3, 91021 Torretta Granitola, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - G D'Anna
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), via Giovanni da Verrazzano 17, 91014 Castellammare del Golfo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - F Badalamenti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - L Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Centro Oceanográfico de Murcia (IEO-CSIC), Varadero 1, 30740 San Pedro del Pinatar, Spain
| | - G Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| |
Collapse
|
5
|
Litsi-Mizan V, Efthymiadis PT, Gerakaris V, Serrano O, Tsapakis M, Apostolaki ET. Decline of seagrass (Posidonia oceanica) production over two decades in the face of warming of the Eastern Mediterranean Sea. THE NEW PHYTOLOGIST 2023; 239:2126-2137. [PMID: 37366062 DOI: 10.1111/nph.19084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The response of Posidonia oceanica meadows to global warming of the Eastern Mediterranean Sea, where the increase in sea surface temperature (SST) is particularly severe, is poorly investigated. Here, we reconstructed the long-term P. oceanica production in 60 meadows along the Greek Seas over two decades (1997-2018), using lepidochronology. We determined the effect of warming on production by reconstructing the annual and maximum (i.e. August) SST, considering the role of other production drivers related to water quality (i.e. Chla, suspended particulate matter, Secchi depth). Grand mean (±SE) production across all sites and the study period was 48 ± 1.1 mg DW per shoot yr-1 . Production over the last two decades followed a trajectory of decrease, which was related to the concurrent increase in annual SST and SSTaug . Annual SST > 20°C and SSTaug > 26.5°C was related to production decline (GAMM, P < 0.05), while the rest of the tested factors did not help explain the production pattern. Our results indicate a persistent and increasing threat for Eastern Mediterranean meadows, drawing attention to management authorities, highlighting the necessity of reducing local impacts to enhance the resilience of seagrass meadows to global change threats.
Collapse
Affiliation(s)
- Victoria Litsi-Mizan
- Biology Department, University of Crete, Voutes University Campus, PO Box 2208, Heraklion, Crete, GR-70013, Greece
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, Heraklion, Crete, GR-71003, Greece
| | - Pavlos T Efthymiadis
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, Heraklion, Crete, GR-71003, Greece
| | - Vasilis Gerakaris
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 712, Anavyssos, Attiki, 19013, Greece
| | - Oscar Serrano
- Centre of Advanced Studies of Blanes (CEAB-CSIC), Cala Sant Francesc 14, Blanes, 17300, Spain
- School of Science & Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, Heraklion, Crete, GR-71003, Greece
| | - Eugenia T Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, Heraklion, Crete, GR-71003, Greece
| |
Collapse
|
6
|
Stipcich P, Pansini A, Beca-Carretero P, Stengel DB, Ceccherelli G. Field thermo acclimation increases the resilience of Posidonia oceanica seedlings to marine heat waves. MARINE POLLUTION BULLETIN 2022; 184:114230. [PMID: 36307950 DOI: 10.1016/j.marpolbul.2022.114230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Acclimation is a response that results from chronic exposure of an individual to a new environment. This study aimed to investigate whether the thermal environment affects the early development of the seagrass Posidonia oceanica, and whether the effects of a field-simulated Marine Heat Wave (MHW) on seedlings change depending on acclimation. The experiment was done in the field using a crossed design of Acclimation (acclimated vs unacclimated) and MHW (present vs absent) factors. Acclimation has initially constrained the development of P. oceanica seedlings, but then it increased their resilience to the MHW, under both a morphological and biochemical (fatty acid saturation) level. This treatment could be considered in P. oceanica restoration projects in a climate change-impaired sea, by purposely inducing an increased resistance to heat before transplants.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy.
| | - Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain; Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
7
|
Pruckner S, Bedford J, Murphy L, Turner JA, Mills J. Adapting to heatwave-induced seagrass loss: Prioritizing management areas through environmental sensitivity mapping. ESTUARINE, COASTAL AND SHELF SCIENCE 2022; 272:107857. [PMID: 35937418 PMCID: PMC9189866 DOI: 10.1016/j.ecss.2022.107857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Seagrass meadows support complex species assemblages and provide ecosystem services with a multitude of socio-economic benefits. However, they are sensitive to anthropogenic pressures such as coastal development, agricultural run-off, and overfishing. The increasing prevalence of marine heatwaves (MHWs) due to climate change poses an additional and growing threat. In this study, we apply the environmental sensitivity mapping approach MESA (Mapping Environmentally Sensitive Assets) to explore the potential consequences of MHWs on the ecosystem services that Posidonia oceanica provides to coastal communities. Under the intermediate climate change scenario Representative Concentration Pathway 4.5, Mediterranean marine heatwaves will be severe by 2050, and will very likely increase mortality of P. oceanica. However, the societal risk of seagrass loss is not evenly distributed across the Mediterranean. The spatial distribution of socio-economic implications of seagrass loss is highlighted through two case studies on seagrass-dependent fisheries and coastal hazards. Coastal communities in Tunisia and Libya show very high sensitivity to a loss of fisheries due to a combination of increasingly intense and frequent MHWs, coupled with high proportions of regional seagrass-dependent fisheries catch. The coastlines of Italy, Tunisia, and Cyprus are shown to potentially be highly sensitive to loss of seagrass due to high levels of coastal hazards, and seagrass meadows susceptible to MHW-induced degradation. These coastlines are likely to suffer from reduced coastal protection services provided by intact seagrass meadows. We demonstrate the implications of MHWs for ecosystem service provision to coastal communities in the Mediterranean and the need for policy instruments to help mitigate and adapt to its effect. We also highlight the potential for environmental sensitivity mapping to help support policymakers with rapid screening tools to prioritize resources more effectively to areas where in-depth local planning is needed.
Collapse
Affiliation(s)
- Sara Pruckner
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntingdon Road, CB30DL, Cambridge, United Kingdom
| | - Jacob Bedford
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntingdon Road, CB30DL, Cambridge, United Kingdom
| | - Leo Murphy
- Fauna & Flora International, The David Attenborough Building, Pembroke St, Cambridge, CB2 3QZ, United Kingdom
| | - Joseph A. Turner
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntingdon Road, CB30DL, Cambridge, United Kingdom
| | - Juliet Mills
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntingdon Road, CB30DL, Cambridge, United Kingdom
| |
Collapse
|
8
|
Cen C, Zhang K, Fu J, Wu X, Wu J, Zheng Y, Zhang Y. Odor-producing response pattern by four typical freshwater algae under stress: Acute microplastic exposure as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153350. [PMID: 35077797 DOI: 10.1016/j.scitotenv.2022.153350] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Algae-induced odor problems in water have been repeatedly occurred concerns for drinking water quality. However, present researches mostly focus on the odor-producing pattern of algae in normal growth, and there is scarce discussion on those under stress. Microplastics (MPs) pollution have been global concern for their negative ecological impacts and frequently co-occurs with odor-producing algal bloom in freshwaters. Thus, this study aimed to elucidate the effects and mechanisms of MPs as an environmental stress on algal odorant production for good illustration of odor-producing response pattern under stress. Variation in MP size (polystyrene microspheres; 100 nm, 1000 nm and 10 μm) had significant effects on odorant formation (β-cycloidal, 2-methylisopropanol, 2,4-heptandienal and 2,4-decadienal) by four freshwater algae (Microcystis aeruginosa, Pseudanabaena sp., Cyclotella meneghiniana and Melosira varians). The size ratio of MPs over cells (SRMC) was proposed to categorize the size-ratio dependent effects on the algal odorant production. Interestingly, when SRMC was in the range of 0.1-1, there were always promoting effects; when SRMC < 0.1 or SRMC > 1, there exhibited inhibiting effects, and the inhibiting effects of SRMC < 0.1 were far more severe than those of SRMC > 1. The promotion on odorant production in the SRMC range of 0.1-1 was mainly attributed to the increase in cellular yield, which was related to the increased odorant precursors derived from the oxidation products of reactive oxygen species (ROS). Alternatively, the inhibition of odorant production caused by MPs with SRMC < 0.1 was the results of simultaneously inhibiting cellular density and cellular yield, which might be attributed to the cellular internalization of MPs, inducing the extensive toxic effects. This study illustrated the possibilities of MPs in impairing the esthetics of the source water and provided guidance for the future algal odor issues under stress.
Collapse
Affiliation(s)
- Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaogang Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yingying Zheng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Pazzaglia J, Badalamenti F, Bernardeau-Esteller J, Ruiz JM, Giacalone VM, Procaccini G, Marín-Guirao L. Thermo-priming increases heat-stress tolerance in seedlings of the Mediterranean seagrass P. oceanica. MARINE POLLUTION BULLETIN 2022; 174:113164. [PMID: 34864463 DOI: 10.1016/j.marpolbul.2021.113164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Seawater warming and increased incidence of marine heatwaves (MHW) are threatening the integrity of coastal marine habitats including seagrasses, which are particularly vulnerable to climate changes. Novel stress tolerance-enhancing strategies, including thermo-priming, have been extensively applied in terrestrial plants for enhancing resilience capacity under the re-occurrence of a stress event. We applied, for the first time in seedlings of the Mediterranean seagrass Posidonia oceanica, a thermo-priming treatment through the exposure to a simulated warming event. We analyzed the photo-physiological and growth performance of primed and non-primed seedlings, and the gene expression responses of selected genes (i.e. stress-, photosynthesis- and epigenetic-related genes). Results revealed that during the re-occurring stress event, primed seedlings performed better than unprimed showing unaltered photo-physiology supported by high expression levels of genes related to stress response, photosynthesis, and epigenetic modifications. These findings offer new opportunities to improve conservation and restoration efforts in a future scenario of environmental changes.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fabio Badalamenti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; CNR-IAS, Lungomare Cristoforo Colombo 4521, 90149 Palermo, Italy
| | - Jaime Bernardeau-Esteller
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Juan M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | | | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Lazaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| |
Collapse
|
10
|
Nguyen HM, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G. Seagrasses in an era of ocean warming: a review. Biol Rev Camb Philos Soc 2021; 96:2009-2030. [PMID: 34014018 DOI: 10.1111/brv.12736] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy.,Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, C/Varadero, San Pedro del Pinatar, Murcia, 30740, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | | |
Collapse
|
11
|
Helber SB, Procaccini G, Belshe EF, Santillan-Sarmiento A, Cardini U, Bröhl S, Schmid M, Reuter H, Teichberg M. Unusually Warm Summer Temperatures Exacerbate Population and Plant Level Response of Posidonia oceanica to Anthropogenic Nutrient Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:662682. [PMID: 34290722 PMCID: PMC8287906 DOI: 10.3389/fpls.2021.662682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/23/2021] [Indexed: 05/14/2023]
Abstract
Posidonia oceanica is a key foundation species in the Mediterranean providing valuable ecosystem services. However, this species is particularly vulnerable towards high coastal nutrient inputs and the rising frequency of intense summer heat waves, but their combined effect in situ has received little attention so far. Here, we investigated the effects of in situ nutrient addition during an unusually warm summer over a 4-month period, comparing different morphological, physiological and biochemical population metrics of seagrass meadows growing in protected areas (Ischia) with meadows already exposed to significant anthropogenic pressure (Baia - Gulf of Pozzuoli). Our study highlights that the effects of warmer than usual summer temperatures on the population level of seagrass meadows can be exacerbated if the plants are already exposed to higher anthropogenic pressures. Morphological and population level indicators mainly changed over time, possibly impacted by season and the warmer temperatures, and displayed more pronounced reductions in seagrasses from impacted sites. The additional nutrient supply had even more deleterious effects, as shown by a decrease in approximately 67% in cover in fertilized plots at high impacted sites and 33% at low impacted sites. Moreover, while rhizome starch concentration showed a seasonal increase in plants from low impacted sites it displayed a trend of a 27% decrease in fertilized plots of the high impacted sites. Epiphyte biomass was approximately four-fold higher on leaves of plants growing in impacted sites and even doubled with the additional nutrient input. Predicting and anticipating stress in P. oceanica is of crucial importance for conservation and management efforts, given the limited colonizing and reproductive ability and extremely slow growth of this ecosystem engineer. Our results suggest that monitoring efforts should focus especially on leaf area index (LAI), carbohydrate concentrations in the rhizomes, and epiphyte cover on leaves as indicators of the onset of stress in Posidonia oceanica, which can be used by decision makers to take appropriate measures before damage to the ecosystem becomes irreversible, minimize future human interference and strengthen the resilience of these important ecosystems.
Collapse
Affiliation(s)
- Stephanie B. Helber
- Leibniz Centre for Tropical Marine Research (ZMT) GmbH, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
- *Correspondence: Stephanie B. Helber,
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - E. Fay Belshe
- Leibniz Centre for Tropical Marine Research (ZMT) GmbH, Bremen, Germany
| | - Alex Santillan-Sarmiento
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Faculty of Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Ulisse Cardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stefanie Bröhl
- Leibniz Centre for Tropical Marine Research (ZMT) GmbH, Bremen, Germany
| | - Michael Schmid
- Leibniz Centre for Tropical Marine Research (ZMT) GmbH, Bremen, Germany
| | - Hauke Reuter
- Leibniz Centre for Tropical Marine Research (ZMT) GmbH, Bremen, Germany
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Mirta Teichberg
- Leibniz Centre for Tropical Marine Research (ZMT) GmbH, Bremen, Germany
| |
Collapse
|
12
|
King MR. One approach for downscaling climate change data towards regional implications in climate change scenarios: the case for Newfoundland and Labrador, Canada. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Velez N, Nicastro KR, McQuaid CD, Zardi GI. Small scale habitat effects on anthropogenic litter material and sources in a coastal lagoon system. MARINE POLLUTION BULLETIN 2020; 160:111689. [PMID: 33181959 DOI: 10.1016/j.marpolbul.2020.111689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic litter is ubiquitous throughout marine ecosystems, but its abundance and distribution are driven by complex interactions of distinct environmental factors and thus can be extremely heterogeneous. Here we compare the extent of anthropogenic litter pollution at a sheltered lagoon habitat and nearby open coast sites. Monthly surveys over a period of five months showed that both the types and sources of litter always differed significantly between lagoon and open coast sites. Pollution within the lagoon was mainly land-derived and was largely made up of construction materials (70% to 95%). At open coast sites, construction materials represented a minor portion of pollution (4% to 12%) while plastics were the most abundant (82% to 95%). We show that stranded anthropogenic litter in adjacent marine habitats can differ significantly and stress the importance of sampling at appropriate spatial scales to gain realistic insights into the sources of pollution.
Collapse
Affiliation(s)
- Nadja Velez
- CCMAR-CIMAR - Associated Laboratory, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Katy R Nicastro
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | | | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
14
|
Sánchez-Barredo M, Sandoval-Gil JM, Zertuche-González JA, Ladah LB, Belando-Torrentes MD, Beas-Luna R, Cabello-Pasini A. Effects of Heat Waves and Light Deprivation on Giant Kelp Juveniles (Macrocystis pyrifera, Laminariales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2020; 56:880-894. [PMID: 32282942 DOI: 10.1111/jpy.13000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Due to climate change, the incidence of marine heat waves (MHWs) has increased, yet their effects on seaweeds are still not well understood. Adult sporophytes of Macrocystis pyrifera, the species forming the iconic giant kelp forests, can be negatively affected by thermal stress and associated environmental factors (e.g., nutrient depletion, light deprivation); however, little is known about the tolerance/vulnerability of juvenile sporophytes. Simultaneously to MHWs, juveniles can be subjected to light limitation for extended periods of time (days-weeks) due to factors causing turbidity, or even because of shading by understory canopy-forming seaweeds. This study evaluated the effects of a simulated MHW (24°C, 7 d) in combination (or not) with light deprivation, on the photosynthetic capacities, nutrient uptake, and tissue composition, as well as oxidative stress descriptors of M. pyrifera juvenile sporophytes (single blade stage, up to 20 cm length). Maximum quantum yield (Fv /Fm ) decreased in juveniles under light at 24°C, likely reflecting some damage on the photosynthetic apparatus or dynamic photoinhibition; however, no other sign of physiological alteration was found in this treatment (i.e., pigments, nutrient reserves and uptake, oxidative stress). Photosynthetic capacities were maintained or even enhanced in plants under light deprivation, likely supported by photoacclimation (pigments increment); by contrast, nitrate uptake and internal storage of carbohydrates were strongly reduced, regardless of temperature. This study indicated that light limitation can be more detrimental to juvenile survival, and therefore recruitment success of M. pyrifera forests, than episodic thermal stress from MHWs.
Collapse
Affiliation(s)
- Mariana Sánchez-Barredo
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Jose Miguel Sandoval-Gil
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | | | - Lydia B Ladah
- Department of Biological Oceanography, CICESE, Ensenada, Baja California, México
| | | | - Rodrigo Beas-Luna
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Alejandro Cabello-Pasini
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| |
Collapse
|
15
|
de Virgilio M, Cifarelli S, de Gennaro P, Garofoli G, Degryse B. A first attempt of citizen science in the genetic monitoring of a Posidonia oceanica meadow in the Italian Southern Adriatic Sea. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Guerrero-Meseguer L, Marín A, Sanz-Lázaro C. Heat wave intensity can vary the cumulative effects of multiple environmental stressors on Posidonia oceanica seedlings. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105001. [PMID: 32662435 DOI: 10.1016/j.marenvres.2020.105001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Climate change is introducing new stressors into already stressed ecosystems. Among these, extreme events such as heat waves play a crucial role in determining the structure of ecosystems. We tested single and combined effects of overgrazing, burial and heat waves on the seedlings of the habitat-forming species Posidonia oceanica. At current heat wave temperatures, overgrazing in isolation had more deleterious effects than seed burial, and effects were synergistic and additive when both factors co-occurred. The combined effect of overgrazing and seed burial with current heat waves could hamper P. oceanica seedling development, with similar or even higher levels than the sole effect of heat waves in the near future (29 °C). The effects of overgrazing and seed burial are expected to be overridden if heat waves temperatures exceed 29 °C. These results suggest that co-occurring environmental stressors, in combination with current heat waves, could compromise the sexual recruitment of this seagrass.
Collapse
Affiliation(s)
- Laura Guerrero-Meseguer
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia. Campus de Espinardo, 30100, Murcia, Spain; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Department of Biology, Faculty of Sciences, University of Porto, Campo Alegre s/n, 4150-181, Porto, Portugal.
| | - Arnaldo Marín
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia. Campus de Espinardo, 30100, Murcia, Spain
| | - Carlos Sanz-Lázaro
- Departamento de Ecología, Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain; Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain.
| |
Collapse
|
17
|
Ruocco M, De Luca P, Marín-Guirao L, Procaccini G. Differential Leaf Age-Dependent Thermal Plasticity in the Keystone Seagrass Posidonia oceanica. FRONTIERS IN PLANT SCIENCE 2019; 10:1556. [PMID: 31850036 PMCID: PMC6900526 DOI: 10.3389/fpls.2019.01556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 05/22/2023]
Abstract
Introduction: Gene-expression patterns and their upstream regulatory mechanisms (e.g. epigenetic) are known to modulate plant acclimatability and thus tolerance to heat stress. Within species, thermal plasticity (i.e. temperature-sensitive phenotypic plasticity) and differential thermo-tolerance are recognized among different genotypes, development stages, organs or tissues. Leaf age and lifespan have been demonstrated to strongly affect photosynthetic thermo-tolerance in terrestrial species, whereas there is no information available for marine plants. Materials and Methods: Here, we investigated how an intense warming event affects molecular and photo-physiological functions in the large-sized seagrass Posidonia oceanica, at fine spatial resolution. Plants were exposed for one week at 34°C in a controlled-mesocosm system. Subsequent variations in the expression of 12 target genes and global DNA methylation level were evaluated in three leaf-age sections (i.e. basal, medium and high) established along the longitudinal axis of youngest, young and fully mature leaves of the shoot. Targeted genes were involved in photosynthesis, chlorophyll biosynthesis, energy dissipation mechanisms, stress response and programmed cell death. Molecular analyses paralleled the assessment of pigment content and photosynthetic performance of the same leaf segments, as well as of plant growth inhibition under acute warming. Results: Our data revealed, for the first time, the presence of variable leaf age-dependent stress-induced epigenetic and gene-expression changes in seagrasses, underlying photo-physiological and growth responses to heat stress. An investment in protective responses and growth arrest was observed in immature tissues; while mature leaf sections displayed a higher ability to offset gene down-regulation, possibly through the involvement of DNA methylation changes, although heat-induced damages were visible at photo-physiological level. Discussion: Overall, mature and young leaf tissues exhibited different strategies to withstand heat stress and thus a variable thermal plasticity. This should be taken in consideration when addressing seagrass response to warming and other stressors, especially in large-sized species, where sharp age differences are present within and among leaves, and other gradients of environmental factors (e.g. light) could be at play. Molecular and physiological evaluations conducted only on adult leaf tissues, as common practice in seagrass research, could give inadequate estimates of the overall plant state, and should not be considered as a proxy for the whole shoot.
Collapse
Affiliation(s)
- Miriam Ruocco
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Pasquale De Luca
- Research Infrastructures for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Lázaro Marín-Guirao
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, San Pedro del Pinatar, Spain
| | - Gabriele Procaccini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
18
|
A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events. SUSTAINABILITY 2019. [DOI: 10.3390/su11215954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is modifying disturbance regimes, affecting the severity and occurrence of extreme events. Current experiments investigating extreme events have a large diversity of experimental approaches and key aspects such as the interaction with other disturbances, the timing, and long-term effects are not usually incorporated in a standardized way. This lack of comparability among studies limits advances in this field of research. This study presents a framework that is comprised of two experimental approaches designed to test expected changes on disturbance regime due to climate change. These approaches test the effects of disturbances becoming more clustered and more extreme. They use common descriptor variables regardless of the type of disturbance and ecosystem. This framework is completed with a compilation of procedures that increase the realism of experiments in the aforementioned key aspects. The proposed framework favours comparability among studies and increases our understanding of extreme events. Examples to implement this framework are given using rocky shores as a case study. Far from being perfect, the purpose of this framework is to act as a starting point that triggers the comparability and refinement of these types of experiments needed to advance our understanding of the ecological effects of extreme events.
Collapse
|
19
|
Ontoria Y, Cuesta-Gracia A, Ruiz JM, Romero J, Pérez M. The negative effects of short-term extreme thermal events on the seagrass Posidonia oceanica are exacerbated by ammonium additions. PLoS One 2019; 14:e0222798. [PMID: 31536606 PMCID: PMC6752784 DOI: 10.1371/journal.pone.0222798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023] Open
Abstract
Global warming is increasingly affecting our biosphere. However, in addition to global warming, a panoply of local stressors caused by human activities is having a profound impact on our environment. The risk that these local stressors could modify the response of organisms to global warming has attracted interest and fostered research on their combined effect, especially with a view to identifying potential synergies. In coastal areas, where human activities are heavily concentrated, this scenario is particularly worrying, especially for foundation species such as seagrasses. In this study we explore these potential interactions in the seagrass Posidonia oceanica. This species is endemic to the Mediterranean Sea. It is well known that the Mediterranean is already experiencing the effects of global warming, especially in the form of heat waves, whose frequency and intensity are expected to increase in the coming decades. Moreover, this species is especially sensitive to stress and plays a key role as a foundation species. The aim of this work is thus to evaluate plant responses (in terms of photosynthetic efficiency and growth) to the combined effects of short-term temperature increases and ammonium additions.To achieve this, we conducted a mesocosm experiment in which plants were exposed to three thermal treatments (20°C, 30°C and 35°C) and three ammonium concentrations (ambient, 30 μM and 120 μM) in a full factorial experiment. We assessed plant performance by measuring chlorophyll fluorescence variables (maximum quantum yield (Fv/Fm), effective quantum yield of photosystem II (ΔF/Fm'), maximum electron transport rate (ETRmax) and non-photochemical quenching (NPQ)), shoot growth rate and leaf necrosis incidence. At ambient ammonium concentrations, P. oceanica tolerates short-term temperature increases up to 30°C. However, at 35°C, the plant loses functionality as indicated by a decrease in photosynthetic performance, an inhibition of plant growth and an increase of the necrosis incidence in leaves. On the other hand, ammonium additions at control temperatures showed only a minor effect on seagrass performance. However, the combined effects of warming and ammonium were much worse than those of each stressor in isolation, given that photosynthetic parameters and, above all, leaf growth were affected. This serves as a warning that the impact of global warming could be even worse than expected (based on temperature-only approaches) in environments that are already subject to eutrophication, especially in persistent seagrass species living in oligotrophic environments.
Collapse
Affiliation(s)
- Yaiza Ontoria
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Ainhoa Cuesta-Gracia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Juan M. Ruiz
- Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, San Pedro del Pinatar, Murcia, Spain
| | - Javier Romero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Marta Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Pereda-Briones L, Terrados J, Tomas F. Negative effects of warming on seagrass seedlings are not exacerbated by invasive algae. MARINE POLLUTION BULLETIN 2019; 141:36-45. [PMID: 30955744 DOI: 10.1016/j.marpolbul.2019.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The observed and projected rise in sea surface temperature challenges marine biodiversity worldwide, and particularly in temperate ecosystems dealing with the arrival of novel species of tropical provenance. When the impacted biota are early life stages of ecosystem engineers, the effects of those impacts are of major concern for ecologists and coastal managers. We experimentally examined the individual and potential additive effects of seawater warming and the presence of the invasive algae on the development of seedlings of the seagrass Posidonia oceanica in a three-month mesocosm experiment. Whereas the presence of the invasive algae (Caulerpa cylindracea and Lophocladia lallemandii) did not result in detrimental effects on seedlings, warming negatively affected seedling development. Interestingly, the presence of both invasive algae may ameliorate the negative effects of warming.
Collapse
Affiliation(s)
- L Pereda-Briones
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Miquel Marques 21, 07190 Esporles, Illes Balears, Spain.
| | - J Terrados
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Miquel Marques 21, 07190 Esporles, Illes Balears, Spain
| | - F Tomas
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Miquel Marques 21, 07190 Esporles, Illes Balears, Spain; Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR 97331, USA
| |
Collapse
|
21
|
Traboni C, Mammola SD, Ruocco M, Ontoria Y, Ruiz JM, Procaccini G, Marín-Guirao L. Investigating cellular stress response to heat stress in the seagrass Posidonia oceanica in a global change scenario. MARINE ENVIRONMENTAL RESEARCH 2018; 141:12-23. [PMID: 30077343 DOI: 10.1016/j.marenvres.2018.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 05/22/2023]
Abstract
Posidonia oceanica meadows are facing global threats mainly due to episodic heat waves. In a mesocosm experiment, we aimed at disentangling the molecular response of P. oceanica under increasing temperature (20 °C-32 °C). The experiment was carried out in spring, when heat waves can potentially occur and plants are putatively more sensitive to heat stress, since they are deprived in carbohydrates reserves after the cold winter months. We aimed to identify the activation of different phases of the cellular stress response (CSR) reaction and the responsive genes activated or repressed in heated plants. A molecular traffic light was proposed as a response model including green (protein folding and membrane protection), yellow (ubiquitination and proteolysis) and red (DNA repair and apoptosis) categories. Additionally, we estimated phenological trait variations to complement the information obtained from the molecular proxies of stress. Despite reduced leaf growth rate, heated plants did not exhibit signs of irreversible damage, probably underlying species pre-adaptation to warm and fluctuating regimes. Gene expression analyses revealed that molecular chaperoning, DNA repair and apoptosis inhibition processes related genes were the ones that mostly responded to high thermal stress and will be target of further investigation and in situ proofing for assessing their use as indicators of P. oceanica performance under sub-lethal heat stress.
Collapse
Affiliation(s)
- Claudia Traboni
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Salvatore Davide Mammola
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Università Politecnica della Marche, Piazza Roma 22, 60121, Ancona, Italy
| | - Miriam Ruocco
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Yaiza Ontoria
- Department of Evolutionary Biology, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Juan M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/Varadero, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Gabriele Procaccini
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Lazaro Marín-Guirao
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|