1
|
Liu MQ, Guo Y, Wu C, Gao CX, Liu F, Hui CY. Visual arsenic detection in environmental waters: Innovating with a naked-eye biosensor for universal application. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135398. [PMID: 39096639 DOI: 10.1016/j.jhazmat.2024.135398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Arsenic contamination in environmental water sources poses a significant threat to human health, necessitating the development of sensitive and accessible detection methods. This study presents a multidimensional optimization of a bacterial biosensor for the susceptible and deoxyviolacein (DV)-based visual detection of arsenic. The research involved screening six different arsenic resistance (ars) operons and optimizing the genetic circuit to minimize background noise. Introducing an arsenic-specific transport channel enhanced the sensor's sensitivity to 1 nM with a quantitative range from 0.036 to 1.171 μM. The pigment-based biosensor offers a simple colorimetric approach for arsenic detection without complex instrumentation. The preferred biosensor demonstrated characteristics of anti-chelating agent interference, consistently quantified As(III) concentrations ranging from 0.036 to 1.171 μM covering the World Health Organization (WHO) drinking water limit. Innovatively, it effectively detects arsenic in seawater within a linear regression range of 0.071 to 1.125 μM. The biosensor's selectivity for arsenic was confirmed, with minimal cross-response to group 15 metals. Our naked-eye biosensor offers a novel approach for the rapid, on-site detection of arsenic in various water sources. Its simplicity, cost-effectiveness, and versatility make it a valuable tool for environmental monitoring and public health initiatives.
Collapse
Affiliation(s)
- Ming-Qi Liu
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Can Wu
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chao-Xian Gao
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Fen Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China.
| |
Collapse
|
2
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Zhang X, Zhu Y, Elçin E, He L, Li B, Jiang M, Yang X, Yan XP, Zhao X, Wang Z, Wang F, Shaheen SM, Rinklebe J, Wells M. Whole-cell bioreporter application for rapid evaluation of hazardous metal bioavailability and toxicity in bioprocess. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132556. [PMID: 37757563 DOI: 10.1016/j.jhazmat.2023.132556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Assessing heavy metal bioavailability and toxicity during bioprocess is critical for advancing green biotechnology. The capability of whole-cell bioreporters to measure heavy metal bioavailability has been increasingly recognized. The advantages of this technology being applied to bioprocess monitoring are less studied. Here we investigate the potential of a cadmium- and lead-sensitive bioreporter to be used for heavy metals as a class, which holds great interest for bioprocess applications. We evaluated the bioavailability of eight individual heavy metals with bioreporter zntA, as well as the bioavailability and toxicity of mixed metals. The bioavailability and toxicity of heavy metals in bioprocess samples were also evaluated. We have demonstrated for the first time that the zntA bioreporter can effectively detect the bioavailability of zinc, nickel, and cobalt with limit of detection lower than 0.01, 0.08 and 0.5 mg·L-1, respectively. The detection limits meet the requirements of the WHO, the U.S. Environmental Protection Agency, and the China drinking water quality standards, which makes this approach reasonable for monitoring heavy metal bioavailability in bioprocess. LIVE/DEAD toxicity experiments have been conducted for the detection of mixed metal solution toxicity to zntA bioreporter which shows an EC50 (as EC50, concentration for 50% of maximal effect) value of mixed metal solution is 3.84 mg·L-1. Samples from wastewater treatment plants, sludge treatment plants and kitchen waste fermentation processes were analyzed to extend upon the laboratory results. The results of this study confirm the potential for practical applications of bioreporter technology in bioprocess monitoring. In turn, development for such practical applications is key to achieve the necessary level of commercialization to further make the routine use of bioreporters in bioprocess monitoring feasible.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın 09970, Turkey
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, andWaste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, andWaste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Mona Wells
- The Meadows Center for Water and the Environment, Texas State University, San Marcos, TX 78666, USA; Natural Sciences, Ronin Institute, Montclair, New Jersey 07043, USA
| |
Collapse
|
4
|
Zhang X, Jiang M, He L, Niazi NK, Vithanage M, Li B, Wang J, Abdelrahman H, Antoniadis V, Rinklebe J, Wang Z, Shaheen SM. Pandemic COVID-19 ends but soil pollution increases: Impacts and a new approach for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164070. [PMID: 37196949 PMCID: PMC10185367 DOI: 10.1016/j.scitotenv.2023.164070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
For three years, a large amount of manufactured pollutants such as plastics, antibiotics and disinfectants has been released into the environment due to COVID-19. The accumulation of these pollutants in the environment has exacerbated the damage to the soil system. However, since the epidemic outbreak, the focus of researchers and public attention has consistently been on human health. It is noteworthy that studies conducted in conjunction with soil pollution and COVID-19 represent only 4 % of all COVID-19 studies. In order to enhance researchers' and the public awareness of the seriousness on the COVID-19 derived soil pollution, we propose the viewpoint that "pandemic COVID-19 ends but soil pollution increases" and recommend a whole-cell biosensor based new method to assess the environmental risk of COVID-19 derived pollutants. This approach is expected to provide a new way for environmental risk assessment of soils affected by contaminants produced from the pandemic.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Faculty of Science & Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hamada Abdelrahman
- Soil Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 384 46 Volos, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| |
Collapse
|
5
|
Zhang X, Zhu Y, Li B, Tefsen B, Wang Z, Wells M. We need to plan streamlined environmental impact assessment for the future X-Press Pearl disasters. MARINE POLLUTION BULLETIN 2023; 188:114705. [PMID: 36791553 DOI: 10.1016/j.marpolbul.2023.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The X-Press Pearl disaster illustrates the urgent needs for streamlined environmental impact assessment to inform decision making. The environmental contamination caused by the disaster is complex, and the biological impact of different environmental stressors, and at different biological scales, needs to be determined. Traditional methods for analyzing complex environmental stressors are often inefficient and do not reflect the biological impact of pollution. The combination of chemical stressors and biological impacts is the key to environmental impact assessment based on integrated monitoring. Whole-cell bioreporters are tools for rapid, efficient and quantitative detection of the bioavailability, stressor effects, and toxicity of pollutants, i.e., spanning a wide range of applications. Here we propose the view that using whole-cell bioreporter technology to streamline short-term environmental impact assessment for maritime disasters such as the X-Press Pearl is more fit-for-purpose/practical than other approaches in use.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Boris Tefsen
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, CH Utrecht 3584, Netherlands; Natural Sciences, Ronin Institute, Montclair, NJ 07043, USA
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mona Wells
- Natural Sciences, Ronin Institute, Montclair, NJ 07043, USA; The Meadows Center for Water and the Environment, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
6
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Zhang X, Barceló D, Clougherty RJ, Gao B, Harms H, Tefsen B, Vithanage M, Wang H, Wang Z, Wells M. "Potentially Toxic Element"─Something that Means Everything Means Nothing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11922-11925. [PMID: 35980128 DOI: 10.1021/acs.est.2c03056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Robert J Clougherty
- 26 - Education and Technology, 79 Passaic Ave, Rutherford 07070, New Jersey, United States
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville 32611, Florida, United States
| | - Hauke Harms
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, Leipzig 04318, Germany
| | - Boris Tefsen
- Natural Sciences, Ronin Institute, Montclair 07043, New Jersey, United States
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, CH Utrecht 3584, Netherlands
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Mona Wells
- Natural Sciences, Ronin Institute, Montclair 07043, New Jersey, United States
| |
Collapse
|
8
|
Li B, Zhang X, Tefsen B, Wells M. From speciation to toxicity: Using a "Two-in-One" whole-cell bioreporter approach to assess harmful effects of Cd and Pb. WATER RESEARCH 2022; 217:118384. [PMID: 35427828 DOI: 10.1016/j.watres.2022.118384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Due to the sheer number of contaminated sites, bioavailability-based measurement and modeling of toxicity is used to triage response; despite advances, both remain relatively cumbersome. Cadmium (Cd) and lead (Pb) are two of the most toxic and globally prevalent pollutants, disproportionately impacting disadvantaged communities. Here we demonstrate the use of high throughput lights-on bioreporter technology to measure both speciation and toxicity. The organism's response is fit-for-purpose to parameterize the Biotic Ligand Model used in risk assessment of aquatic ecotoxicity and setting environmental Water Quality Criteria. Toxicity endpoints for analogous Cd and Pb models reported in literature average 71st and 44th rank-percentile sensitivity of Genus Mean Acute Values for acute toxicity (i.e., insensitive) in comparison to the bioreporter, the unique dual-mode measurement ability of which can predict toxicity endpoints from below the 5th percentile up to the 50th rank-percentile. These results are extensible to other reporters, paving the way to cost-efficient environmental risk assessment of aquatic ecotoxicity for a wide range of priority toxic pollutants.
Collapse
Affiliation(s)
- Boling Li
- Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Boris Tefsen
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| |
Collapse
|
9
|
Zhang X, Wells M, Niazi NK, Bolan N, Shaheen S, Hou D, Gao B, Wang H, Rinklebe J, Wang Z. Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118810. [PMID: 35007673 DOI: 10.1016/j.envpol.2022.118810] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination has increasingly become a serious environmental issue globally, nearing crisis proportions. There is an urgent need to find environmentally friendly materials to remediate heavy-metal contaminated soils. With the continuing maturation of research on using biochar (BC) for the remediation of contaminated soil, nano-biochar (nano-BC), which is an important fraction of BC, has gradually attracted increasing attention. Compared with BC, nano-BC has unique and useful properties for soil remediation, including a high specific surface area and hydrodynamic dispersivity. The efficacy of nano-BC for immobilization of non-degradable heavy-metal contaminants in soil systems, however, is strongly affected by plant rhizosphere processes, and there is very little known about the role that nano-BC play in these processes. The rhizosphere represents a dynamically complex soil environment, which, although having a small thickness, drives potentially large materials fluxes into and out of plants, notably agricultural foodstuffs, via large diffusive gradients. This article provides a critical review of over 140 peer-reviewed papers regarding nano-BC-rhizosphere interactions and the implications for the remediation of heavy-metal contaminated soils. We conclude that, when using nano-BC to remediate heavy metal-contaminated soil, the relationship between nano-BC and rhizosphere needs to be considered. Moreover, the challenges to extending our knowledge regarding the environmental risk of using nano-BC for remediation, as well as further research needs, are identified.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mona Wells
- Natural Sciences, Ronin Institute, Montclair, NJ, 07043, United States
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sabry Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia
| | - Deyi Hou
- Tsinghua University, School of Environment, Beijing, 100084, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Zhang X, Li B, Schillereff DN, Chiverrell RC, Tefsen B, Wells M. Whole-cell biosensors for determination of bioavailable pollutants in soils and sediments: Theory and practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152178. [PMID: 34883180 DOI: 10.1016/j.scitotenv.2021.152178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
The bioavailability of pollutants is a key factor affecting environmental risk. Whole-cell bioreporters are a demonstratedly effective tool for the investigation of pollutant bioavailability in water and soil/sediment. Unlike aqueous samples, transmittance of bioreporter optical signal is reduced in direct-contact assays with soil/sediment, which affects the accuracy of bioreporter-detected pollutant bioavailability. No studies have measured the magnitude and variability of soil/sediment effects on signal in direct-contact assays or how associated uncertainties influence results. In this study, we investigate the optical effects of soil/sediment particles in suspensions on bioreporter signal transmittance and quantify how variable these optical effects are from sample-to-sample. We find that neglecting bioreporter signal diminution by soil/sediment, as many studies do, can lead to order-of-magnitude errors in results, underestimating risk. Correction based on methods in ad hoc use (e.g. comparison to signal from non-inducible reporter or use of reference soil/sediment) are also problematic for some types of experiment, and could lead to errors in excess of 30%. Our findings have a sound basis in theory, and we provide recommendations concerning the most suitable type of approach to use for different experimental settings. Generally, if best accuracy is not needed to quantify bioavailability, for samples that have been ground, sieved, and are of reasonably uniform color, it may be possible to use a single or average correction factor, particularly for experiments performed at a single slurry concentration. For investigations studying bioavailability under varying solid-phase:water ratios (e.g., sorption/desorption), detailed compensation measurements are needed for independent variables, including each specific soil/sediment sample, slurry concentration, and in some cases bioreporter signal intensity. Our measurements and calculations indicate that best results are obtained when working in the region of ballistic photon transmittance. Findings herein will be useful in areas that require information on bioavailability, such as ecotoxicology and environmental risk assessment.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Boling Li
- School of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, PR China
| | | | - Richard C Chiverrell
- School of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom
| | - Boris Tefsen
- Natural Sciences, Ronin Institute, Montclair, NJ 07043, United States
| | - Mona Wells
- Natural Sciences, Ronin Institute, Montclair, NJ 07043, United States.
| |
Collapse
|
11
|
Zhang X, Li B, Deng J, Qin B, Wells M, Tefsen B. Advances in freshwater risk assessment: improved accuracy of dissolved organic matter-metal speciation prediction and rapid biological validation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110848. [PMID: 32570102 DOI: 10.1016/j.ecoenv.2020.110848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 05/28/2023]
Abstract
Speciation modeling of bioavailability has increasingly been used for environmental risk assessment (ERA). Heavy metal pollution is the most prevalent environmental pollution issue globally, and metal bioavailability is strongly affected by its chemical speciation. Dissolved organic matter (DOM) in freshwater will bind heavy metals thereby reducing bioavailability. While speciation modeling has been shown to be quite effective and is validated for use in ERA, there is an increasing body of literature reporting problems with the accuracy of metal-DOM binding in speciation models. In this study, we address this issue for a regional-scale field area (Lake Tai, with 2,400 km2 surface area and a watershed of 36,000 km2) where speciation models in common use are not highly accurate, and we tested alternative approaches to predict metal-DOM speciation/bioavailability for lead (Pb) in this first trial work. We tested five site-specific approaches to quantify Pb-DOM binding that involve varying assumptions about conditional stability constants, binding capacities, and different components in DOM, and we compare these to what we call a one-size-fits-all approach that is commonly in use. We compare model results to results for bioavailable Pb measured using a whole-cell bioreporter, which has been validated against speciation models and is extremely rapid compared to many biological methods. The results show that all of the site-specific approaches we use provide more accurate estimates of bioavailability than the default model tested, however, the variation of the conditional stability constant on a site-specific basis is the most important consideration. By quantitative metrics, up to an order of magnitude improvement in model accuracy results from modeling active DOM as a single organic ligand type with site-specific variations in Pb-DOM conditional stability constants. Because the biological method is rapid and parameters for site-specific tailoring of the model may be obtained via high-throughput analysis, the approach that we report here in this first regional-scale freshwater demonstration shows excellent potential for practical use in streamlined ERA.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Boling Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Mona Wells
- Freshwater Ecology Group, National Institute of Water and Atmospheric Research, Dunedin, 9016, New Zealand.
| | - Boris Tefsen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China
| |
Collapse
|
12
|
Zhang X, Li B, Deng J, Qin B, Wells M, Tefsen B. Quantitative high-throughput approach to chalkophore screening in freshwaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139476. [PMID: 32470672 DOI: 10.1016/j.scitotenv.2020.139476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
There is an increasing need to study the effects of trace metal micronutrients on microorganisms in natural waters. For Fe, small Fe-binding ligands called siderophores, which are secreted from cells and bind Fe with high affinity, have been demonstrated to modulate bioavailability of this critical nutrient. Relatively little is known about secretion of strong Cu-binding ligands (chalkophores) that may help organisms navigate the divide between Cu nutrition and toxicity. A barrier to environmental chalkophore research is a lack of literature on chalkophore analysis. Here we report the development of a quantitative, high-throughput approach to chalkophore screening based on a popular competitive-ligand binding assay for siderophores wherein ligands compete for metal in a chromogenic ternary complex of chrome azurol sulfonate-metal-surfactant. We developed the assay for high-throughput analysis using a microplate reader. The method performance is slightly better than that of comparable screening approaches for siderophores. We find that levels of other metals in natural samples may be capable of causing matrix interferences (a neglected source of analytical uncertainty in siderophore screening) and that for our method this can be overcome by standard additions. In this respect the high-throughput nature of the technique is a distinct advantage. To demonstrate practical use, we tested samples from field mesocosm studies that were set up with and without Cu and Fe amendments; we find trends in results that are logical in the environmental context of our application. This approach will be useful in areas such as risk assessment for a rapid survey of metal speciation and bioavailability; investigators who perform structural studies might also benefit from this approach to rapidly screen and select samples with high Fe/Cu binding capacity for further study.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, People's Republic of China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom
| | - Boling Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, People's Republic of China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Mona Wells
- Freshwater Ecology Group, National Institute of Water and Atmospheric Research, Dunedin 9016, New Zealand; Environmental Sciences, Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| | - Boris Tefsen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
13
|
Zhang X, Li B, Deng J, Qin B, Wells M, Tefsen B. Regional-scale investigation of dissolved organic matter and lead binding in a large impacted lake with a focus on environmental risk assessment. WATER RESEARCH 2020; 172:115478. [PMID: 32000128 DOI: 10.1016/j.watres.2020.115478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Environmental risk assessment (ERA) increasingly relies on speciation modeling of bioavailability. Heavy metals are the most prevalent pollutants globally, and dissolved organic matter (DOM) plays an important role in speciation and bioavailability of heavy metals. Due to the variation of DOM properties in natural aquatic systems, improvements to the standard one-size-fits-all approach to modeling metal-DOM interactions are needed for ERA. In this study, we investigate variations in DOM and lead (Pb)-DOM binding in Lake Tai (Taihu), a large, impacted lake in eastern China that is characterized by a complex drainage network and is an important water resource at a regional level, and we assess implications of our findings within the context of ERA needs. In our study, DOM in water samples collected from across the 2,400 km2 area of Taihu was characterized using three-dimensional excitation-emission matrix and synchronous fluorescence spectroscopy spectra, the latter being used to calculate conditional stability constants for metal binding. Parallel factor analysis and peak picking were used to assess contributions of protein- and humic-like components of DOM, and fluorescence indices indicative of diagenetic processes were calculated. These quantities calculated from spectroscopic studies, in addition to water quality parameters, were analyzed by bivariate and multivariate analysis. Results show that different DOM components are highly variable across different regions of Taihu, and bivariate and multivariate analyses confirm that water quality and DOM characterization parameters are strongly interrelated. This reflects the different inputs, diagenetic and transport processes across the large expanse of Taihu. We find that the conditional stability constant of Pb-DOM binding is strongly affected by the water chemical properties and composition of DOM, though the conditional stability constant is not itself a parameter that differentiates lake water properties in different regions of the lake. The variability of DOM composition and Pb-DOM binding strength across Taihu is consistent with prior findings that a one-size-fits-all approach to metal-DOM binding may lead to inaccuracies in commonly used speciation models, and therefore such generalized approaches need improvement for regional-level ERA in complex watersheds. The approach taken here to obtain site-specific metal-DOM conditional stability constants for use in increasing the accuracy of speciation modeling is fit-for-purpose for ERA applications at regional levels because the approach is relatively simple, inexpensive, and amenable to high throughput analysis.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Boling Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Mona Wells
- Freshwater Ecology Group, National Institute of Water and Atmospheric Research, Dunedin, 9016, New Zealand; Environmental Sciences, Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, United States.
| | - Boris Tefsen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China
| |
Collapse
|
14
|
Elizabeth George S, Wan Y. Advances in characterizing microbial community change and resistance upon exposure to lead contamination: Implications for ecological risk assessment. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019; 50:2223-2270. [PMID: 34326626 PMCID: PMC8318135 DOI: 10.1080/10643389.2019.1698260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent advancement in molecular techniques has spurred waves of studies on responses of microorganisms to lead contamination exposure, leveraging detailed phylogenetic analyses and functional gene identification to discern the effects of lead toxicity on microbial communities. This work provides a comprehensive review of recent research on (1) microbial community changes in contaminated aquatic sediments and terrestrial soils; (2) lead resistance mechanisms; and (3) using lead resistance genes for lead biosensor development. Sufficient evidence in the literature, including both in vitro and in situ studies, indicates that exposure to lead contamination inhibits microbial activity resulting in reduced respiration, suppressed metabolism, and reduced biomass as well as altered microbial community structure. Even at sites where microbial communities do not vary compositionally with contamination levels due to extremely long periods of exposure, functional differences between microbial communities are evident, indicating that some microorganisms are susceptible to lead toxicity as others develop resistance mechanisms to survive in lead contaminated environments. The main mechanisms of lead resistance involve extracellular and intracellular biosorption, precipitation, complexation, and/or efflux pumps. These lead resistance mechanisms are associated with suites of genes responsible for specific lead resistance mechanisms and may serving as indicators of lead contamination in association with dominance of certain phyla. This allows for development of several lead biosensors in environmental biotechnology. To promote applications of these advanced understandings, molecular techniques, and lead biosensor technology, perspectives of future work on using microbial indicators for site ecological assessment is presented.
Collapse
Affiliation(s)
- S. Elizabeth George
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| | - Yongshan Wan
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| |
Collapse
|
15
|
Li J, Liu Y, Zuo R, Teng Y, Ai Y, Yang J. Influences of dissolved humic acid on Zn bioavailability and its consequences for thyroid toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:132-137. [PMID: 30265876 DOI: 10.1016/j.ecoenv.2018.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the effect of dissolved humic acid (dHA) on Zn bioavailability and the subsequent influence on the Zn-induced thyroid toxicity. Zn toxicity was assessed using a yeast bioassay in the presence and absence of dHA. With increasing concentration of dHA, the toxic effects decreased, and the free Zn concentrations detected by the anodic stripping voltammetry (ASV) method also decreased. The high correlation (R = 0.92, p < 0.001) between toxic effects and free Zn concentrations indicated that Zn thyroid toxicity largely comes from the free Zn fraction. Water samples from the Qing River in Beijing were also assayed for thyroid toxicity. The results revealed that the metals might contribute to the toxicity. The known thyroid hormone-disrupting metals, namely, Zn, Cd and Hg, were analyzed. The cause-effect relationship between the observed thyroid toxicity and free Zn concentrations as well as their dose-effect relationships were examined. Our results showed that Zn might be the major contributor to the observed thyroid toxicity caused by metals. These results suggest that the ASV method and the identified major contributor (Zn) may be used in lieu of conventional environmental analyses to follow the progression of a risk assessment or remediation strategy.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yang Ai
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
He W, Hu ZH, Yuan S, Zhong WH, Mei YZ, Dai CC. Bacterial Bioreporter-Based Mercury and Phenanthrene Assessment in Yangtze River Delta Soils of China. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:562-570. [PMID: 29864184 DOI: 10.2134/jeq2017.07.0286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genetically engineered bacterial whole-cell bioreporters were deployed to investigate bioavailable mercury (b-Hg) and phenanthrene (b-PHE). Characterized by high sensitivity and specificity in aqueous solutions, the bioreporter system could detect in amended soils the concentrations of b-Hg and b-PHE in the ranges of 19.6 to 111.6 and 21.5 to 110.9 μg kg, respectively. The sensitivity of the system allowed for the combined analysis of b-Hg and b-PHE from real environmental samples. Therefore, soil samples from three large refinery facilities were tested, and the results from the instrumental analysis strongly correlated with the ones obtained with the bioreporter method. Large-scale and fast screening of soil contamination across the Yangtze River Delta in Eastern China was conducted. More than 36% of the samples contained b-Hg, whereas the fractions of b-PHE were below the detection limit for all the samples. These results indicated a higher toxicity and more hazardous condition for Hg contamination than for PHE. Population densities and airborne 10-μm particulate matter (PM10) concentrations were used as parameters for comparison with the spatial distribution of the b-Hg and b-PHE fractions. The results revealed that the bioreporters could offer a rapid and cost-efficient method to test soil samples from contaminated areas and provide a screening tool for environmental risk assessment.
Collapse
|