1
|
Garg A, Bandyopadhyay S. A comprehensive review of arsenic-induced neurotoxicity: Exploring the role of glial cell pathways and mechanisms. CHEMOSPHERE 2025; 372:144046. [PMID: 39740699 DOI: 10.1016/j.chemosphere.2024.144046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells. These cells are crucial for preserving neural health and responding to environmental toxins, and arsenic disrupts their functions, resulting in decreased antioxidative responses, induction of inflammatory pathways, and subsequent neuronal dysfunction. The brain's cytotoxic impact arises from a complex network of cellular responses, with pathways such as MAPK, transcription factor and autophagy signaling to play critical roles in mediating these dysregulated inflammation and oxidative stress mechanisms. The detailed exploration into specific impacts of arsenic on glial cell morphology, activation, and mitochondrial functions illuminates the cascade of neuroinflammatory and neurodegenerative changes that may be triggered upon arsenic exposure. The review recommends a multidisciplinary research approach by emphasizing the significance of the brain's microenvironment, methylation processes, and the enzyme AS3MT in arsenic neurotoxicity. It calls for converging environmental science, neurobiology, and toxicology to develop targeted interventions for preventing and mitigating arsenic's neurotoxic effects. This in-depth exploration into glial cell dynamics aims to advance public health and neurotoxicology research, striving to devise strategies that reduce the cognitive and neurodegenerative damage caused by arsenic, thereby enhancing global health outcomes.
Collapse
Affiliation(s)
- Asmita Garg
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanghamitra Bandyopadhyay
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
3
|
Sarkar S, Pandey A, Yadav SK, Raghuwanshi P, Siddiqui MH, Srikrishna S, Pant AB, Yadav S. MicroRNA-29b-3p degenerates terminally differentiated dopaminergic SH-SY5Y cells by perturbation of mitochondrial functions. J Neurochem 2024; 168:1297-1316. [PMID: 38413218 DOI: 10.1111/jnc.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Mitochondrial dysfunction is the main cause of gradual deterioration of structure and function of neuronal cells, eventually resulting in neurodegeneration. Studies have revealed a complex interrelationship between neurotoxicant exposure, mitochondrial dysfunction, and neurodegenerative diseases. Alteration in the expression of microRNAs (miRNAs) has also been linked with disruption in mitochondrial homeostasis and bioenergetics. In our recent research (Cellular and Molecular Neurobiology (2023) https://doi.org/10.1007/s10571-023-01362-4), we have identified miR-29b-3p as one of the most significantly up-regulated miRNAs in the blood of Parkinson's patients. The findings of the present study revealed that neurotoxicants of two different natures, that is, arsenic or rotenone, dramatically increased miR-29b-3p expression (18.63-fold and 12.85-fold, respectively) in differentiated dopaminergic SH-SY5Y cells. This dysregulation of miR-29b-3p intricately modulated mitochondrial morphology, induced oxidative stress, and perturbed mitochondrial membrane potential, collectively contributing to the degeneration of dopaminergic cells. Additionally, using assays for mitochondrial bioenergetics in live and differentiated SH-SY5Y cells, a reduction in oxygen consumption rate (OCR), maximal respiration, basal respiration, and non-mitochondrial respiration was observed in cells transfected with mimics of miR-29b-3p. Inhibition of miR-29b-3p by transfecting inhibitor of miR-29b-3p prior to exposure to neurotoxicants significantly restored OCR and other respiration parameters. Furthermore, we observed that induction of miR-29b-3p activates neuronal apoptosis via sirtuin-1(SIRT-1)/YinYang-1(YY-1)/peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)-regulated Bcl-2 interacting protein 3-like-dependent mechanism. Collectively, our studies have shown the role of miR-29b-3p in dysregulation of mitochondrial bioenergetics during degeneration of dopaminergic neurons via regulating SIRT-1/YY-1/PGC-1α axis.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, UP, India
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
| | - Pragati Raghuwanshi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, UP, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, UP, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Aditya Bhushan Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, UP, India
| |
Collapse
|
4
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
5
|
Giri AK, Banerjee N. The probable reasons of arsenic susceptibility in a chronically exposed population of West Bengal. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503725. [PMID: 38432773 DOI: 10.1016/j.mrgentox.2024.503725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Arsenic is potent human carcinogen which affects millions of people across the globe. Arsenic induced pre-cancerous and cancerous skin lesions are hall marks of chronic arsenic toxicity. Even then, only 15%-20% of the population manifest arsenic-induced skin lesions but the rest do not, the reason for which in not very clear. Not only that, conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress are the non-dermatological health effects which are often manifested in them in addition to the cancers of skin and other internal organs. In this work we have considered 233 arsenic exposed individuals with skin lesions and 205 arsenic exposed individuals without skin lesions from the highly arsenic affected Murshidabad district of West Bengal. We have compared arsenic exposure in the two groups through drinking water. Both the study groups have similar levels of arsenic exposure, drinking same arsenic laden water. Results show that higher amounts of arsenic were retained in the nails and hair of the skin lesion group compared to the no skin lesion group. Significant higher amounts of chromosomal aberration and micronucleus formation were found in the skin lesion group, than the no skin lesion group. Incidences of conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress were much higher in the former group compared to the later. We, thus found that one group was more susceptible than the other, even with similar levels of arsenic exposure. We have tried to identify and discuss the probable reasons for this observation with reference to our previous works in the exposed population from West Bengal, India.
Collapse
Affiliation(s)
- Ashok Kumar Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nilanjana Banerjee
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Jadavpur, Kolkata 700032, India; Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra Rehabilitation and Research Institute for the Handicapped, 482, Madudah, Sec. J, Plot I-24, EM Bypass, Kolkata 700107, India.
| |
Collapse
|
6
|
Ganie SY, Javaid D, Hajam YA, Reshi MS. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb) 2024; 13:tfad111. [PMID: 38178998 PMCID: PMC10762673 DOI: 10.1093/toxres/tfad111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Arsenic is a naturally occurring element that poses a significant threat to human health due to its widespread presence in the environment, affecting millions worldwide. Sources of arsenic exposure are diverse, stemming from mining activities, manufacturing processes, and natural geological formations. Arsenic manifests in both organic and inorganic forms, with trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) being the most common inorganic forms. The trivalent state, in particular, holds toxicological significance due to its potent interactions with sulfur-containing proteins. Objective The primary objective of this review is to consolidate current knowledge on arsenic toxicity, addressing its sources, chemical forms, and the diverse pathways through which it affects human health. It also focuses on the impact of arsenic toxicity on various organs and systems, as well as potential molecular and cellular mechanisms involved in arsenic-induced pathogenesis. Methods A systematic literature review was conducted, encompassing studies from diverse fields such as environmental science, toxicology, and epidemiology. Key databases like PubMed, Scopus, Google Scholar, and Science Direct were searched using predetermined criteria to select relevant articles, with a focus on recent research and comprehensive reviews to unravel the toxicological manifestations of arsenic, employing various animal models to discern the underlying mechanisms of arsenic toxicity. Results The review outlines the multifaceted aspects of arsenic toxicity, including its association with chronic diseases such as cancer, cardiovascular disorders, and neurotoxicity. The emphasis is placed on elucidating the role of oxidative stress, genotoxicity, and epigenetic modifications in arsenic-induced cellular damage. Additionally, the impact of arsenic on vulnerable populations and potential interventions are discussed. Conclusions Arsenic toxicity represents a complex and pervasive public health issue with far-reaching implications. Understanding the diverse pathways through which arsenic exerts its toxic effects is crucial to developing effective mitigation strategies and interventions. Further research is needed to fill gaps in our understanding of arsenic toxicity and to inform public health policies aimed at minimising exposure.Arsenic toxicity is a crucial public health problem influencing millions of people around the world. The possible sources of arsenic toxicity includes mining, manufacturing processes and natural geological sources. Arsenic exists in organic as well as in inorganic forms. Trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) are two most common inorganic forms of arsenic. Trivalent oxidation state is toxicologically more potent due to its potential to interact with sulfur containing proteins. Humans are exposed to arsenic in many ways such as environment and consumption of arsenic containing foods. Drinking of arsenic-contaminated groundwater is an unavoidable source of poisoning, especially in India, Bangladesh, China, and some Central and South American countries. Plenty of research has been carried out on toxicological manifestation of arsenic in different animal models to identify the actual mechanism of aresenic toxicity. Therefore, we have made an effort to summarize the toxicology of arsenic, its pathophysiological impacts on various organs and its molecular mechanism of action.
Collapse
Affiliation(s)
- Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
7
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
8
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
9
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
10
|
Wang CW, Chen SC, Hung CH, Kuo CH. Arsenic exposure was associated with lung fibrotic changes in individuals living near a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111498-111510. [PMID: 37814049 DOI: 10.1007/s11356-023-29952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Individuals residing near petrochemical complexes have been found to have increasing the risk of respiratory distress and diseases. On visit 1 in 2016, all participants underwent urinary arsenic measurement and low-dose computed tomography (LDCT). The same participants had LDCT performed at visit 2 in 2018. Our study revealed that individuals with lung fibrotic changes had significantly higher levels of urinary arsenic compared to the non-lung fibrotic changes group. Moreover, we found that participants with urinary arsenic levels in the highest sextile (> 209.7 μg/g creatinine) had a significantly increased risk of lung fibrotic changes in both visit 1 (OR = 1.87; 95% CI= 1.16-3.02; P = 0.010) and visit 2 (OR = 1.74; 95% CI = 1.06-2.84; P = 0.028) compared to those in the lowest sextile (≤ 41.4 μg/g creatinine). We also observed a significantly increasing trend across urinary arsenic sextile in both visits (Ptrend = 0.015 in visit 1 and Ptrend = 0.026 in visit 2). Furthermore, participants with urinary arsenic levels in the highest sextile had a significantly increased risk of lung fibrotic positive to positive (OR = 2.18; 95% CI: 1.24, 3.82; P = 0.007) compared to the lowest sextile (reference category: lung fibrotic negative to negative). Our findings provide support for the hypothesis that arsenic exposure is significantly associated with an increased risk of lung fibrotic changes. It is advisable to reduce the levels of arsenic exposure for those residing near such petrochemical complexes.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist., 812, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Wang CW, Chen SC, Wu DW, Lin HH, Chen HC, Hung CH, Kuo CH. Arsenic exposure associated with lung interstitial changes in non-smoking individuals living near a petrochemical complex: A repeated cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121844. [PMID: 37230174 DOI: 10.1016/j.envpol.2023.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Arsenic exposure is associated with airway inflammation and decreased lung function tests. Whether arsenic exposure associated with lung interstitial changes remains unknown. We conducted this population-based study in southern Taiwan during 2016 and 2018. Our study recruited individuals aged over 20 years, residing in the vicinity of a petrochemical complex and with no history of cigarette smoking. In both the 2016 and 2018 cross-sectional studies, we conducted chest low-dose computed tomography (LDCT) scans, as well as urinary arsenic and blood biochemistry analyses. Lung interstitial changes included lung fibrotic changes that were defined as the presence of curvilinear or linear densities, fine lines, or plate opacity in specific lobes; additionally, other interstitial changes were defined as the presence of ground-glass opacity (GGO) or bronchiectasis on the LDCT images. In both cross-sectional studies conducted in 2016 and 2018, participants with lung fibrotic changes exhibited a statistically significant increase in the mean urinary arsenic concentrations compared to those without fibrotic changes (geometric mean = 100.1 vs. 82.8 μg/g creatinine, p < 0.001 for cross-sectional study 2016, and geometric mean = 105.6 vs. 71.0 μg/g creatinine, p < 0.001 for cross-sectional study 2018). After controlling for age, gender, body mass index, platelet counts, hypertension, aspartate aminotransferase, cholesterol, HbA1c, and educational levels, we observed a significant positive association between a unit increase in log urinary arsenic concentrations and the risk of lung fibrotic changes in both cross-sectional study 2016 (odds ratio [OR] = 1.40, 95% confidence interval [CI] = 1.04-1.90, p = 0.028) and cross-sectional study 2018 (OR = 3.03, 95% CI = 1.38-6.63, p = 0.006). Our study did not find a significant association between arsenic exposure and bronchiectasis or GGO. It is imperative for the government to take significant measures to reduce arsenic exposure levels among individuals living near petrochemical complexes.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Department of Laboratory Technology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Wu Y, Wang R, Liu R, Ba Y, Huang H. The Roles of Histone Modifications in Metal-Induced Neurological Disorders. Biol Trace Elem Res 2023; 201:31-40. [PMID: 35129806 DOI: 10.1007/s12011-022-03134-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
Increasing research is illuminating the intricate roles of metal ions in neural development as well as neurological disorders, which may stem from misregulation or dysfunction of epigenetic modifiers. Lead (Pb), cadmium (Cd), aluminum (Al), and arsenic were chosen for critical review because they have become serious public health concerns due to globalization and industrialization. In this review, we will introduce various modes of action of metals and consider the role of two posttranslational modifications: histone acetylation and methylation and how each of them affects gene expression. We then summarize the findings from previous studies on the neurological outcomes and histone alterations in response to the metals on each of the previously described histone modifications mechanisms. Understanding metal-induced histone modifications changes could provide better insight on the mechanism through which neurotoxicity occurs, to propose and validate these modifications as possible biomarkers for early identification of neurological damage, and can help model targeted therapies for the diseases of the brain.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Yu CH, Yang SQ, Li L, Xin Y, Zhang F, Liu XF, Yi ZC. Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC Pharmacol Toxicol 2022; 23:20. [PMID: 35366954 PMCID: PMC8976366 DOI: 10.1186/s40360-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hydroquinone (HQ) is a phenolic metabolite of benzene with a potential risk for hematological disorders and hematotoxicity in humans. In the present study, an integrative analysis of microRNA (miRNA) and mRNA expressions was performed to identify potential pathways and miRNA-mRNA network associated with benzene metabolite hydroquinone-induced hematotoxicity. METHODS K562 cells were treated with 40 μM HQ for 72 h, mRNA and miRNA expression changes were examined using transcriptomic profiles and miRNA microarray, and then bioinformatics analysis was performed. RESULTS Out of all the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) induced by HQ, 1482 DEGs and 10 DEMs were up-regulated, and 1594 DEGs and 42 DEMs were down-regulated. HQ-induced DEGs were involved in oxidative stress, apoptosis, DNA methylation, histone acetylation and cellular response to leukemia inhibitory factor GO terms, as well as metabolic, Wnt/β-catenin, NF-κB, and leukemia-related pathways. The regulatory network of mRNAs and miRNAs includes 23 miRNAs, 1108 target genes, and 2304 potential miRNAs-mRNAs pairs. MiR-1246 and miR-224 had the potential to be major regulators in HQ-exposed K562 cells based on the miRNAs-mRNAs network. CONCLUSIONS This study reinforces the use of in vitro model of HQ exposure and bioinformatic approaches to advance our knowledge on molecular mechanisms of benzene hematotoxicity at the RNA level.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu Xin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Fang Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xiao-Fan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
14
|
Gowda BR, Prakash N, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, Rao S, Waghe P, Kumar KRA, Shivaprasad GR, Muralidhar Y. Effect of Telmisartan on Arsenic-Induced (Sub-chronic) Perturbations in Redox Homeostasis, Pro-inflammatory Cascade and Aortic Dysfunction in Wistar Rats. Biol Trace Elem Res 2022; 200:1776-1790. [PMID: 34339004 DOI: 10.1007/s12011-021-02804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
An experimental study was conducted in male Wistar rats to explore the antioxidant potential of telmisartan (an AT1 receptor blocker) to overcome arsenic ('As')-induced perturbations in redox homeostasis pro-inflammatory cytokines, prostaglandin-E2 levels and aortic dysfunction in Wistar rats. Wistar rats were randomly divided into four groups of six each. Group-I served as untreated control, while group-II received sodium (meta) arsenite (NaAsO2) (10 mg/kg b.wt. p.o) for a period of 60 days. Experimental rats in group-III received treatment similar to group-II, but in addition received telmisartan (with 1% aqueous solution of Tween 80) @ 10 mg/kg b.wt. (p.o) for a similar duration, while rats in group-IV received telmisartan alone. Arsenic exposure resulted in significant (p < 0.05) elevation in the levels of superoxide anion ([Formula: see text]) radicals (control: 768.20 ± 126.77 vs group-II: 1232.75 ± 97.85 pmol of NBT reduced/min/mg protein). Telmisartan administration showed significant (p < 0.05) reduction in [Formula: see text] generation (815.34 ± 43.41 pmol of NBT reduced/min/mg protein). Sub-chronic exposure to 'As' significantly (p < 0.05) decreased the activities of SOD, CAT, GPx and GR activity and GSH levels in the aorta, thus induced lipid peroxidation (LPO) measured as measured in terms of thiobarbituric acid reactive substances (TBARS) called as malondialdehyde (MDA). However, the administration of telmisartan effectively countered the LPO (24.03 ± 1.18 nmol of MDA/g) on account of restoring the levels of aforesaid antioxidant defense system. Telmisartan administration effectively attenuated the 'As'-induced surge in pro-inflammatory cytokines (viz., IL-1β, IL-6 and TNF-α) levels, as well as countered the activity of cyclooxygenase (COX2) as indicated by a significant (p < 0.05) decrease in PGE2 level in the aorta. In addition to it, there was a significant (p < 0.05) decrease in plasma angiotensin II (Ang-II) levels in experimental rats receiving telmisartan. Quantitative RT-PCR studies revealed that sub-chronic exposure to 'As' upregulated the Nox2 mRNA expression, but there was a 1.2-fold reduction in expression level upon co-administration of telmisartan. Histopathological examination revealed marked recovery from 'As'-induced disruption of tunica adventitia and loss of connective tissue in experimental rats receiving telmisartan. The study concludes that telmisartan can overcome aortic dysfunction induced by sub-chronic exposure to arsenic through drinking water in experimental rats through restoration of redox balance, attenuation of pro-inflammatory cytokines and mediators and downregulation of Nox2 mRNA expression.
Collapse
Affiliation(s)
- B Rudresh Gowda
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - N Prakash
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Vinobanagar, Shivamogga, Karnataka, 577 204, India.
| | - C R Santhosh
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Rashmi Rajashekaraiah
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - M L Sathyanarayana
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Suguna Rao
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Nandinagar, Bidar, Karnataka, 585 226, India
| | - K R Anjan Kumar
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G R Shivaprasad
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Y Muralidhar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| |
Collapse
|
15
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
16
|
Singh V, Kushwaha S, Ansari JA, Gangopadhyay S, Mishra SK, Dey RK, Giri AK, Patnaik S, Ghosh D. MicroRNA-129-5p-regulated microglial expression of the surface receptor CD200R1 controls neuroinflammation. J Biol Chem 2021; 298:101521. [PMID: 34952004 PMCID: PMC8762073 DOI: 10.1016/j.jbc.2021.101521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
CD200R1 is an inhibitory surface receptor expressed in microglia and blood macrophages. Microglial CD200R1 is known to control neuroinflammation by keeping the microglia in resting state, and therefore, tight regulation of its expression is important. CCAAT/enhancer-binding protein β (CEBPβ) is the known regulator of CD200R1 transcription. In the present study, our specific intention was to find a possible posttranscriptional regulatory mechanism of CD200R1 expression. Here we investigated a novel regulatory mechanism of CD200R1 expression following exposure to an environmental stressor, arsenic, combining in silico analysis, in vitro, and in vivo experiments, as well as validation in human samples. The in silico analysis and in vitro studies with primary neonatal microglia and BV2 microglia revealed that arsenic demethylates the promoter of a microRNA, miR-129-5p, thereby increasing its expression, which subsequently represses CD200R1 by binding to its 3′-untranslated region and shuttling the CD200R1 mRNA to the cytoplasmic-processing body in mouse microglia. The role of miR-129-5p was further validated in BALB/c mouse by stereotaxically injecting anti-miR-129. We found that anti-miR-129 reversed the expression of CD200R1, as well as levels of inflammatory molecules IL-6 and TNF-α. Experiments with a CD200R1 siRNA-induced loss-of-function mouse model confirmed an miR-129-5p→CD200R1→IL-6/TNF-α signaling axis. These main findings were replicated in a human cell line and validated in human samples. Taken together, our study revealed miR-129-5p as a novel posttranscriptional regulator of CD200R1 expression with potential implications in neuroinflammation and related complications.
Collapse
Affiliation(s)
- Vikas Singh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shaivya Kushwaha
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamal Ahmad Ansari
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Siddhartha Gangopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shubhendra K Mishra
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Rajib K Dey
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok K Giri
- CSIR-Indian Institute of Chemical Biology, 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Impact of epigenetics on human health and possible tool for remediation. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
18
|
Joardar M, Das A, Chowdhury NR, Mridha D, De A, Majumdar KK, Roychowdhury T. Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3027-3053. [PMID: 33492569 DOI: 10.1007/s10653-021-00823-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Health exposure and perception of risk assessment have been evaluated on the populations exposed to different arsenic levels in drinking water (615, 301, 48, 20 µg/l), rice grain (792, 487, 588, 569 µg/kg) and vegetables (283, 187, 238, 300 µg/kg) from four villages in arsenic endemic Gaighata block, West Bengal. Dietary arsenic intake rates for the studied populations from extremely highly, highly, moderately, and mild arsenic-exposed areas were 56.03, 28.73, 11.30, and 9.13 μg/kg bw/day, respectively. Acute and chronic effects of arsenic toxicity were observed in ascending order from mild to extremely highly exposed populations. Statistical interpretation using 'ANOVA' proves a significant relationship between drinking water and biomarkers, whereas "two-tailed paired t test" justifies that the consumption of arsenic-contaminated dietary intakes is the considerable pathway of health risk exposure. According to the risk thermometer (SAMOE), drinking water belongs to risk class 5 (extremely highly and highly exposed area) and 4 (moderately and mild exposed area) category, whereas rice grain and vegetables belong to risk class 5 and 4, respectively, for all the differently exposed populations. The carcinogenic (ILCR) and non-carcinogenic risks (HQ) through dietary intakes for adults were much higher than the recommended threshold level, compared to the children. Supplementation of arsenic-safe drinking water and nutritional food is strictly recommended to overcome the severe arsenic crisis.
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College & Hospital, Jadavpur, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
19
|
Xiao T, Zou Z, Xue J, Syed BM, Sun J, Dai X, Shi M, Li J, Wei S, Tang H, Zhang A, Liu Q. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115810. [PMID: 33162208 DOI: 10.1016/j.envpol.2020.115810] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a potent toxicant, and long-term exposure to inorganic arsenic causes lung damage. M2 macrophages play an important role in the pathogenesis of pulmonary fibrosis. However, the potential connections between arsenic and M2 macrophages in the development of pulmonary fibrosis are elusive. C57BL/6 mice were fed with drinking water containing 0, 10 and 20 ppm arsenite for 12 months. We have found that, in lung tissues of mice, arsenite, a biologically active form of arsenic, elevated H19, c-Myc, and Arg1; decreased let-7a; and caused pulmonary fibrosis. For THP-1 macrophages (THP-M) and bone-marrow-derived macrophages (BMDMs), 8 μM arsenite increased H19, c-Myc, and Arg1; decreased let-7a; and induced M2 polarization of macrophages, which caused secretion of the fibrogenic cytokine, TGF-β1. Down-regulation of H19 or up-regulation of let-7a reversed the arsenite-induced M2 polarization of macrophages. Arsenite-treated THP-M and BMDMs co-cultured with MRC-5 cells or primary lung fibroblasts (PLFs) elevated levels of p-SMAD2/3, SMAD4, α-SMA, and collagen I in lung fibroblasts and resulted in the activation of lung fibroblasts. Knockout of H19 or up-regulation of let-7a in macrophages reversed the effects. The results indicated that H19 functioned as an miRNA sponge for let-7a, which was involved in arsenite-induced M2 polarization of macrophages and induced the myofibroblast differentiation phenotype by regulation of c-Myc. In the sera of arseniasis patients, levels of hydroxyproline and H19 were higher, and levels of let-7a were lower than levels in the controls. These observations elucidate a possible mechanism for arsenic exposure-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
21
|
Li S, Ren Q. Effects of Arsenic on wnt/β-catenin Signaling Pathway: A Systematic Review and Meta-analysis. Chem Res Toxicol 2020; 33:1458-1467. [PMID: 32307979 DOI: 10.1021/acs.chemrestox.0c00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We aimed to systematically evaluate the regulatory effect of arsenic on wnt/β-catenin signaling pathway and to provide theoretical basis for revealing the mechanism of the relationship between arsenic and cell proliferation. The meta-analysis was carried out using Revman5.2 and Stata13.0 to describe the differences between groups with standard mean difference. We found in normal cells that the levels of wnt3a, β-catenin, glycogen synthase kinase-3β phosphorylated at serine 9 (p-GSK-3β(Ser9)), cyclinD1, proto-oncogene c-myc, and vascular endothelial growth factor (VEGF) in the arsenic intervention group were higher than those in the control group, and the level of glycogen synthase kinase-3β (GSK-3β) was lower than that in the control group (P < 0.05, respectively). Subgroup analysis showed that for a long time period (>24 h), the level of β-catenin in the arsenic intervention group was higher than that in the control group, and the level of GSK-3β of the same long-time period (>24 h) with low-dose (≤5 μM) intervention was lower than those in the control group (P < 0.05, respectively). In cancer cells, the levels of β-catenin, cyclinD1, c-myc, and VEGF in the arsenic intervention group were lower than those in the control group, while the level of GSK-3β in the arsenic intervention group was higher than that in the control group (P < 0.05, respectively). Subgroup analysis showed that the levels of β-catenin, cyclinD1, and c-myc in the high-dose (>5 μM) arsenic intervention group were lower than those in the control group, and the levels of β-catenin and cyclinD1 in the high-dose (>5 μM) arsenic intervention group were lower than those in the low-dose (≤5 μM) arsenic intervention group (P < 0.05, respectively). In addition, the regulation of arsenic on β-catenin was dose-dependent in the range of arsenic concentration from 0 to 7.5 μM. This study revealed that arsenic could upregulate wnt/β-catenin signaling pathway in normal cells and downregulate it in cancer cells, and its effect was affected by time and dose.
Collapse
Affiliation(s)
- Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang China
| |
Collapse
|
22
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 2019; 24:1305-1316. [PMID: 31748979 DOI: 10.1007/s00775-019-01740-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Arsenic is a metalloid found in groundwater as a byproduct of soil/rock erosion and industrial and agricultural processes. This xenobiotic elicits its toxicity through different mechanisms, and it has been identified as a toxicant that affects virtually every organ or tissue in the body. In the central nervous system, exposure to arsenic can induce cognitive dysfunction. Furthermore, iAs has been linked to several neurological disorders, including neurodevelopmental alterations, and is considered a risk factor for neurodegenerative disorders. However, the exact mechanisms involved are still unclear. In this review, we aim to appraise the neurotoxic effects of arsenic and the molecular mechanisms involved. First, we discuss the epidemiological studies reporting on the effects of arsenic in intellectual and cognitive function during development as well as studies showing the correlation between arsenic exposure and altered cognition and mental health in adults. The neurotoxic effects of arsenic and the potential mechanisms associated with neurodegeneration are also reviewed including data from experimental models supporting epidemiological evidence of arsenic as a neurotoxicant. Next, we focused on recent literature regarding arsenic metabolism and the molecular mechanisms that begin to explain how arsenic damages the central nervous system including, oxidative stress, energy failure and mitochondrial dysfunction, epigenetics, alterations in neurotransmitter homeostasis and synaptic transmission, cell death pathways, and inflammation. Outlining the specific mechanisms by which arsenic alters the cell function is key to understand the neurotoxic effects that convey cognitive dysfunction, neurodevelopmental alterations, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
23
|
Potential facet for prenatal arsenic exposure paradigm: linking endocrine disruption and epigenetics. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00274-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|