1
|
Precha N, Chaisiri K, Worakhunpiset S, Limpanont Y, Yamamoto N, Suksong W, Kliengchuay W, Tantrakarnapa K. Comparison of airborne bacterial communities in PM2.5 between a dry-season haze period and a wet-season non-haze period in thailand. Sci Rep 2025; 15:12918. [PMID: 40234570 PMCID: PMC12000368 DOI: 10.1038/s41598-025-97966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Thailand experiencing severe air pollution for over a decade. Although the physical and chemical properties of particulate matter have been extensively studied, the biological aspects, particularly microorganisms present in fine particles during haze and non-haze periods, are still unclear. To address this gap, we aim to profile the bacterial communities in PM2.5 in Bangkok and Chiang Mai, Thailand. The samples were collected during the haze and non-haze periods in 2021-2022. Using 16 S rRNA gene sequencing, we identified a markedly higher number of bacterial genera in Chiang Mai (247) compared to Bangkok (31). In Bangkok, Actinobacteriota (80.4%) and Proteobacteria (18.3%) dominated, whereas Chiang Mai's samples were enriched with Firmicutes (52.2%) and Bacteroidota (13.0%). Interestingly, Bangkok's samples were dominated by Cutibacterium (68.4%) and Enhydrobacter (14.6%), while Chiang Mai had Bacillus (11.0%) and Blautia (7.6%). Despite substantially higher PM2.5 levels during haze, alpha diversity analyses showed that bacterial community structure was more strongly influenced by geographic location than by haze conditions. Chiang Mai consistently exhibited greater microbial richness and evenness than Bangkok. These findings highlight the importance of biological factors in urban air pollution studies and underscore the need to incorporate the biological aspects into health risk assessments and air quality management strategies.
Collapse
Affiliation(s)
- Nopadol Precha
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suwalee Worakhunpiset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Wantanasak Suksong
- Excellent Center of Waste Utilization and Management (ECoWASTE), Pilot Plant Development and Training Institute, King Mongkut's University and Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Wissanupong Kliengchuay
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Environment, Health & Social Impact Unit, Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Environment, Health & Social Impact Unit, Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Cao W, Huang H, Chang Z, Liang Z, Li H, Cheng Z, Sun B. Short-term air pollution exposure and risk of respiratory pathogen infections: an 11-year case-crossover study in Guangzhou, China. BMC Public Health 2025; 25:1411. [PMID: 40234787 PMCID: PMC11998126 DOI: 10.1186/s12889-025-22435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Limited epidemiological evidence exists on the relationship between short-term exposure to air pollutants and respiratory pathogen infections. This study investigates the association between short-term air pollution exposure and respiratory pathogen infections in Guangzhou, southern China. METHODS A time-stratified case-crossover study design was applied. Data from 96,927 patients with suspected respiratory pathogen infections between 2013 and 2023 were collected. The daily air pollutant concentration is obtained from the local environmental monitoring station. Logistic regression was used to assess the effect of air pollutant exposure included in the equation on the risk of respiratory pathogen infection. Generalized additive models were used to analyze the relationship between pollutant exposure and hospital visits, adjusting for potential confounders such as temperature and precipitation. Sub-group analysis was performed to estimate the reliability of the correlations among the subgroups. RESULTS The logistic regression model shows that PM2.5, NO2 and CO are included in the variable equation. Single-pollutant models indicate that there is a significant association between short-term exposure to NO2 and CO and an increased risk of hospital visits for respiratory infections, especially on lag day 0, while PM2.5 shows a non-linear relationship. In the multi-pollutant model, for each unit increase in NO2, the risk of hospital visits increased by 11.66%, and for CO, the risk increased by 0.64%. Subgroup analysis showed the effects were more pronounced in minors (< 18 years), while no significant gender differences were observed. Additionally, CO and NO2 interacted with PM2.5, amplifying the risk of infection. CONCLUSION This large-scale epidemiological study demonstrates significant associations between short-term air pollutant exposure and respiratory infections, particularly highlighting the risks of NO2 and CO exposure. The findings underscore the critical need for strengthening air quality monitoring and protection strategies in rapidly urbanizing regions, with special attention to vulnerable populations such as minors. These results provide evidence-based support for enhancing environmental health policies in metropolitan areas to better protect public health through improved air quality standards and early warning systems.
Collapse
Affiliation(s)
- Wenhan Cao
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huimin Huang
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenglin Chang
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Li
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai Cheng
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Park S, Lee G, Yoon KJ, Yoo K. Elucidating airborne bacterial communities and their potential pathogenic risks in urban metro environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117936. [PMID: 39987686 DOI: 10.1016/j.ecoenv.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Metros are the predominant mode of transportation for urban residents. Because of high passenger volume and pollutant concentrations, concern is growing regarding the potential health hazards of exposure to potential pathogenic airborne bacteria in metros. However, the risks of airborne bacterial communities in metros have not been assessed. Therefore, this study was conducted to explore the airborne bacterial communities and potential pathogenic risk of bacteria in the inner metro train (IM) and metro stations (MS) in Busan, South Korea. The concentrations of culturable total airborne bacteria (CABs) and culturable total airborne Staphylococcus (CAS) were higher in the MS samples than in the IM samples. Bacterial community analysis revealed that although the overall metro environment was dominated by human-associated bacteria, such as Corynebacterium and Staphylococcus genera, the IM and MS samples exhibited significantly distinct core bacterial taxa despite their similar bacterial communities; this is a result of human activity rather than the presence of passengers. Through multilocus sequence typing (MLST), the isolated S. epidermidis from both the IM and MS samples was identified as a human pathogen with four sequence types (ST190, ST54, ST992, and ST817). Furthermore, the MLST results were significantly positively correlated with the CABs and CASs in both the IM and MS samples. The S. aureus infection pathway was predicted in all samples using PICRUSt2 and was significantly higher in the IM samples than in the MS samples. The findings of this study can serve as a reference for developing microbial public health provisions for metro systems.
Collapse
Affiliation(s)
- Sena Park
- Department of Environmental Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Gihan Lee
- Department of Environmental Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Keum Ju Yoon
- Department of Environmental Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| |
Collapse
|
4
|
Yang Y, Hu X, Yang L, Zhang H, Zheng H, Shen Z. Novel insights into seasonal airborne bacterial interactions and potential threats to human health in a northwest city, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125611. [PMID: 39756569 DOI: 10.1016/j.envpol.2024.125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Bioaerosols significantly influence air quality and human health. This study investigated the diversity, structure, and interaction of bacterial communities in particulate matter (PM2.5) across four seasons in Xi'an. The results revealed that operational taxonomic units (OTUs) were the highest in autumn, reaching levels comparable to those in winter, but were 3.7 and 1.8 times higher than in summer and spring respectively. The Chao1 index was the highest in winter and the lowest in summer. Proteobacteria dominated in summer (38.8%) and spring (35.9%), while Actinobacteria was more abundant in autumn (43.1%) and winter (50.9%). Co-occurrence network analysis showed more complex microbial relationships in spring and summer, with increased bacterial competition observed in summer, evidenced by the highest negative edges ratio (8.7%). Potential pathogenic bacteria were most prevalent in winter (41.1%), compared to 12.1% in spring and 18.6% in summer. Notably, Rhodococcus and Gardnerella were significantly enriched in winter and autumn, while Acinetobacter and Bacteroides were more prevalent in spring and summer, as indicated by STAMP analysis. This study provides crucial insights into how seasonal changes affect bacterial interactions and the potential pathogenicity of airborne bacterial communities, highlighting their potential threats to human health.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Xiaoyan Hu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China.
| | - Hongai Zhang
- Department of Neonatology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Rd, Songjiang District, Shanghai, 201620, China
| | - Honghao Zheng
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Morgado-Gamero WB, Hernandez L, Medina J, De Moya I, Gallego-Cartagena E, Parody A, Agudelo-Castañeda D. Antibiotic-resistant bacteria aerosol in a Caribbean coastal city: Pre- and post- COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178158. [PMID: 39721525 DOI: 10.1016/j.scitotenv.2024.178158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
This study assessed the prevalence and spatial distribution of viable ultrafine and fine antibiotic-resistant bacteria aerosols (ARB) in the Metropolitan Area of Barranquilla, Colombia, pre- and post-lockdown (September 2019 to December 2020). Samples were systematically collected from urban, suburban, and rural sites using a six-stage viable cascade impactor. We employed logistic regression and Bayesian Neural Network Classifiers to analyze meteorological variables' influence on antibiotic resistance persistence. The lockdown led to a significant decrease (76 %) in overall bacterial aerosol concentrations, likely due to reduced human activity. The most significant reduction (82 %) was observed at Peace Square. Bacillus cereus was the most prevalent species, showing high concentrations at all sampling sites. Other species, like Leifsonia aquatica and Staphylococcus lentus, were linked to wastewater effluents and agricultural activities. Despite the overall decrease in bacterial aerosols, antibiotic-resistant bacteria remained high, particularly in highly impacted urban areas like the Barranquilla Riverwalk. Bacillus cereus exhibited resistance to multiple antibiotics, including commonly used ones like Ampicillin and Penicillin G. Resistance to newer antibiotics like Vancomycin was rare. Peace Square, a high-traffic urban area, showed elevated resistance rates in the deeper respiratory regions compared to other locations. Our findings indicate that while overall concentration levels decreased, the threat of antibiotic resistance in bacterial bioaerosols persists, emphasizing the need for continuous monitoring and targeted public health interventions in urban areas.
Collapse
Affiliation(s)
- Wendy B Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura Hernandez
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Faculty of Basic Sciences, Universidad del Atlantico, Puerto Colombia, Colombia
| | - Jhorma Medina
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | - Iuleder De Moya
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | | | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia.
| |
Collapse
|
6
|
Seki M, Iwamoto R, Hou J, Fujiyoshi S, Maruyama F, Furusawa Y, Kagaya S, Sakatoku A, Nakamura S, Tanaka D. Size Distribution and Pathogenic Potential of Culturable Airborne Clostridium spp. in a Suburb of Toyama City, Japan. Microbes Environ 2025; 40:ME24078. [PMID: 39909442 PMCID: PMC11946412 DOI: 10.1264/jsme2.me24078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 02/07/2025] Open
Abstract
Clostridium spp. are anaerobic, Gram-positive, spore-forming bacteria comprising more than 150 species, some of which are important pathogens of humans and animals. Members of this genus have been isolated from a number of environments, but are rarely found in the atmosphere. In the present study, we exami-ned culturable airborne Clostridium spp. and clarified their pathogenicity. We obtained 19 culturable Clostridium isolates from size-fractionated samples collected at a suburban site in Toyama, central Japan. Culturable Clostridium spp. were detected in particles larger than 1.1 μm, and the size distribution peaked at 2.1-3.3 μm, corresponding to the spore size of Clostridium spp. More Clostridium spp. were detected in coarse particles >2.1 μm not only by culture methods, but also by 16S rRNA gene amplicon sequencing. Whole-genome sequencing (WGS) identified seven Clostridium species, among which Clostridium perfringens was predominant. Moreover, WGS revealed that C. perfringens isolates harbored many virulence and antibiotic resistance genes with the potential to cause gas gangrene. The detection and characterization of potential airborne pathogens are crucial for preventing the spread of diseases caused by these pathogens. To the best of our knowledge, this is the first study to demonstrate that anaerobic Clostridium spp. may be transported under aerobic conditions in the atmosphere and pose potential risks to human health.
Collapse
Affiliation(s)
- Makoto Seki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Reika Iwamoto
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Jianjian Hou
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1–3–2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8511, Japan
| | - So Fujiyoshi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1–3–2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8511, Japan
| | - Fumito Maruyama
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1–3–2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8511, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939–0398, Japan
| | - Shigehiro Kagaya
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Akihiro Sakatoku
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Shogo Nakamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| |
Collapse
|
7
|
Elizabeth Roy R, K S N, Salim S, Sugathan S, John A. Two in One Gram Negative Antibacterial Agent and Organic Dye Photocatalyst from Green Synthesized Ocimum Sanctum-Based N and O Co-Doped Carbon Dot Silver Nanocomposite. Chem Biodivers 2025; 22:e202401350. [PMID: 39275924 DOI: 10.1002/cbdv.202401350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
This study reports, successful synthesis of Oxygen(O) and Nitrogen(N) co-doped Ocimum Sanctum plant-based or tulsi carbon dots-silver nanoparticle nanocomposites (TCD-AgNP) for the development of an efficient, highly active, low-cost fingerprint antibacterial agent against gram-negative organisms and a highly efficient photocatalyst for the degradation of methylene blue (MB). Green synthesized, high quantum yield (47 %), intensely blue fluorescent, highly stable N and O co-doped TCDs from carbonization technique of tulsi leaves is achieved without any chemical treatment or surface fascination which could act as an efficient green reducing agent for the development green TCD-AgNP nanocomposites. The novelty and advantage of this study is the development of highly stable, blue fluorescent, high quantum yield (40 %) environmental -friendly TCD-AgNP nanocomposite through reduction method by using green TCDs. TCD-AgNP nanocomposites were synthesized by varying the concentrations of AgNO3 into a fixed amount of green TCDs. Spectrochemical characteristics of synthesized TCDs and TCD-AgNP nanocomposites were investigated through UV-Vis absorbance, Photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential measurements confirming excellent fluorescence, unique stability and effective O and N doping. High-resolution transmission electron microscopy (HR-TEM) images confirms that the synthesized TCDs and TCD-AgNP nanocomposites were spherical in shape with an average size of 6.3 nm and 11.5 nm respectively. The antibacterial studies proved that TCD-AgNP nanocomposites ware highly effective against Gram-negative (Serratia marcescens, E. coli, and Pseudomonas aeruginosa) microbial organisms and showed zones of inhibition 12, 9 and 18 mm as compared to streptomycin sulphate. Besides, TCD-AgNP nanocomposite was used as a photocatalyst for the degradation of MB (10 ppm) under sunlight irradiation for regular intervals of time at room temperature with a photodegradation efficiency of 95.63 % and a photocatalytic rate constant of 0.0195 min-1.
Collapse
Affiliation(s)
| | - Nanda K S
- Christian College Chengannur, Alappuzha, Kerala, India
| | - Sajna Salim
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, Kerala, India
| | - Shiburaj Sugathan
- Department of Botany, University of Kerala, Karyavattom Campus, Thiruvananthapuram, Kerala, India
| | - Arun John
- St Thomas College Kozhencherry, Pathanamthitta, Kerala, India
| |
Collapse
|
8
|
Khan BA, Roy S, Tahsin N, Baidya K, Das KC, Islam MS, Ahsan N, Salam A. Antibiotic resistance of bioaerosols in particulate matter from indoor environments of the hospitals in Dhaka Bangladesh. Sci Rep 2024; 14:29884. [PMID: 39623045 PMCID: PMC11612278 DOI: 10.1038/s41598-024-81376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The emergence and spread of antibiotic resistance in microorganisms pose significant challenges to public health, especially in hospitals. This study investigated the existence or occurrence of bacterial bioaerosol and their antibiotic resistance patterns in particulate matter (PM) collected from hospitals in the greater Dhaka region, Bangladesh. The real-time particulate matter concentrations (PM1.0, PM2.5, and PM10) were measured in four hospitals and two ambient locations. Air sampling was conducted using a filter-based method with a low-volume air sampler, while AEROCET-531 S (USA) was employed to monitor particulate matter concentrations. Bacterial bioaerosol concentration was determined using a culture-based method, and eleven bacterial species, including nine individual species, i.e., Staphylococcus aureus, Pseudomonas aeruginosa, P. stutzeri, Bacillus cereus, Acinetobacter schindleri, Proteus vulgaris, B. subtilis, Escherichia coli, and B. aerius, were isolated. Antibiotic susceptibility testing was conducted using the Kirby-Bauer disk diffusion method with 21 antibiotics. Bacterial isolates were detected using partial sequencing of the 16 S rRNA gene. Bioaerosol concentration ranged from 194.65 ± 22.48 CFU/m3 to 948.39 ± 84.14 CFU/m3, showing significant correlations with PM1.0 and PM2.5 concentrations (R2 = 0.80 and 0.85, respectively). All bacterial isolates collected from the hospitals exhibited resistance against four or more antibiotics, indicating multidrug resistance (MDR). Notably, the bacterial isolates displayed the highest resistance rate against ampicillin (90.90%), azithromycin (81.81%), erythromycin (81.81%), cefixime (81.81%), and cotrimoxazole (54.54%), among the tested antibiotics. Except B. aerius, all other bacterial isolates were associated with hospital-acquired infections (HAIs). These findings highlight the high rates of antibiotic resistance, underscoring the pressing requirement for infection control measures and continuous surveillance strategies in hospital settings. These findings emphasize the necessity for global hospital infection control strategies focusing airborne multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Badhon Ali Khan
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shatabdi Roy
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nishat Tahsin
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Kalpana Baidya
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology (NIB), Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Md Safiqul Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Ahsan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
9
|
Zhou M, Liu Z, Zhang B, Hu B. Defense systems of soil microorganisms in response to compound contamination by arsenic and polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175364. [PMID: 39117226 DOI: 10.1016/j.scitotenv.2024.175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Arsenic and PAHs impose environmental stress on soil microorganisms, yet their compound effects remain poorly understood. While soil microorganisms possess the ability to metabolize As and PAHs, the mechanisms of microbial response are not fully elucidated. In our study, we established two simulated soil systems using soil collected from Xixi Wetland Park grassland, Hangzhou, China. The As-600 Group was contaminated with 600 mg/kg sodium arsenite, while the As-600-PAHs-30 Group received both 600 mg/kg sodium arsenite and 30 mg/kg PAHs (phenanthrene:fluoranthene:benzo[a]pyrene = 1:1:1). These systems were operated continuously for 270 days, and microbial responses were assessed using high-throughput sequencing and metagenomic analysis. Our findings revealed that compound contamination significantly promoted the abundance of microbial defense-related genes, with general defense genes increasing by 11.07 % ∼ 74.23 % and specific defense genes increasing by 44.13 % ∼ 55.74 %. The dominate species Rhodococcus adopts these general and specific defense mechanisms to resist compound pollution stress and gain ecological niche advantages, making it a candidate strain for soil remediation. Our study contributes to the assessment of ecological damage caused by As and PAHs from a microbial perspective and provides valuable insights for soil remediation.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zishu Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
10
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
11
|
Al-Shaarani AAQA, Pecoraro L. A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication. Front Microbiol 2024; 15:1428415. [PMID: 39364169 PMCID: PMC11446796 DOI: 10.3389/fmicb.2024.1428415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Airborne fungi and bacteria have been extensively studied by researchers due to their significant effects on human health. We provided an overview of the distribution and sources of airborne pathogenic microbes, and a detailed description of the detrimental effects that these microorganisms cause to human health in both outdoor and indoor environments. By analyzing the large body of literature published in this field, we offered valuable insights into how airborne microbes influence our well-being. The findings highlight the harmful consequences associated with the exposure to airborne fungi and bacteria in a variety of natural and human-mediated environments. Certain demographic groups, including children and the elderly, immunocompromised individuals, and various categories of workers are particularly exposed and vulnerable to the detrimental effect on health of air microbial pollution. A number of studies performed up to date consistently identified Alternaria, Cladosporium, Penicillium, Aspergillus, and Fusarium as the predominant fungal genera in various indoor and outdoor environments. Among bacteria, Bacillus, Streptococcus, Micrococcus, Enterococcus, and Pseudomonas emerged as the dominant genera in air samples collected from numerous environments. All these findings contributed to expanding our knowledge on airborne microbe distribution, emphasizing the crucial need for further research and increased public awareness. Collectively, these efforts may play a vital role in safeguarding human health in the face of risks posed by airborne microbial contaminants.
Collapse
Affiliation(s)
- Amran A. Q. A. Al-Shaarani
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
12
|
Zhang Y, Wang Y, Han Y, Zhu S, Yan X. Impact of haze on potential pathogens in surface bioaerosol in urban environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124164. [PMID: 38754692 DOI: 10.1016/j.envpol.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Air quality considerably affects bioaerosol dynamics within the atmosphere. Frequent haze events, with their associated alterations in bioaerosol composition, may pose potential health risks. This study investigated the microbial diversity, community structure, and factors of PM2.5 within an urban environment. We further examined the impact of haze on potentially pathogenic bacteria in bioaerosols, and analyzed the sources of haze pollution. Key findings revealed that the highest levels of microbial richness and diversity were associated with lightly polluted air conditions. While the overall bacterial community structure remained relatively consistent across different air quality levels, the relative abundance of specific bacterial taxa exhibited variations. Meteorological and environmental conditions, particularly sulfur dioxide, nitrogen dioxide, and carbon monoxide, exerted a greater influence on bacterial diversity and community structure compared to the physicochemical properties of the PM2.5 particles themselves. Notably, haze events were observed to strengthen interactions among airborne pathogens. Stable carbon isotope analysis suggested that coal combustion and automobile exhaust were likely to represent the primary source of haze during winter months. These findings indicate that adoption of clean energy alternatives such as natural gas and electricity, and the use of public transportation, is crucial to mitigate particle and harmful pollutant emissions, thereby protecting public health.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuai Zhu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
13
|
Zhu DM, Yan YS, Wang H, Zhong Y, Inam, Gao YH, Li GM, Mu GD, Dong HF, Li Y, Liu DK, Ma HX, Kong LC. Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. One Health 2024; 18:100765. [PMID: 38855194 PMCID: PMC11157275 DOI: 10.1016/j.onehlt.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM2.5) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM2.5 from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Dao Mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ya Song Yan
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Hao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Inam
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yun Hang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Gong Mei Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Guo Dong Mu
- Jilin Provincial Animal Disease Prevention and Control Center, Jilin Animal Husbandry Building, Xi'an Road No. 4510, Changchun, PR China
| | - Hui Feng Dong
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Yuan Li
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Ding Kuo Liu
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Hong Xia Ma
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ling Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| |
Collapse
|
14
|
Pan Y, Zhang W, Xu Z, Zuo Z, Yuan T. Fungal community shows more variations by season and particle size than bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171584. [PMID: 38492598 DOI: 10.1016/j.scitotenv.2024.171584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
The global concern regarding the health risk associated with airborne microorganisms has prompted research in this field. However, there is a lack of systematic investigation into the particle-size distribution of airborne bacterial and fungal communities associated with seasons, which determines where they are deposited in the human respiratory tract. To address this gap, we conducted a study in Nanchang, located in central China, where we collected both coarse and fine particles during summer and winter seasons. The results demonstrated that microbial community exhibited obvious seasonal and particle-size variations except bacterial community in fine particles. Certain taxa (e.g., Bacteroidales, Ktedonobacterales, Capnodiales) displayed either seasonal and/or particle-size preferences. Furthermore, airborne microorganisms in coarse particles were more sensitive to season and particle size compared to those in fine particles, with fungal community being more susceptible than bacterial community. The susceptibility can be attributed to their high vulnerability to air pollutants and meteorological conditions, primarily PM2.5 and PM10. Additionally, a greater relative abundance of pathogenic fungi was observed in fine particles, even though microbial diversity in coarse particles was noticeably higher than that in fine particles. Furthermore, some predominant pathogens such as Alternaria, Nigrospora, and Escherichia-Shigella not only had particle size and/or seasonal preferences, but also were strongly correlated with environmental factors. This study advances our understanding of atmospheric pathogenic microorganisms and highlights the fungal health threat.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China.
| | - Weijun Zhang
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Zhongji Xu
- Jiangxi Center for Patriotic Health and Health Promotion, Nanchang 330013, China
| | - Zhiwei Zuo
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Tao Yuan
- Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
15
|
Zhu L, Wang X, Liu L, Le B, Tan C, Dong C, Yao X, Hu B. Fungi play a crucial role in sustaining microbial networks and accelerating organic matter mineralization and humification during thermophilic phase of composting. ENVIRONMENTAL RESEARCH 2024; 254:119155. [PMID: 38754614 DOI: 10.1016/j.envres.2024.119155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Boyi Le
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunxu Tan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chifei Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
16
|
Kang S, Lee JY, Cho KS. Implications of PM 2.5 chemical composition in modulating microbial community dynamics during spring in Seoul. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123834. [PMID: 38518971 DOI: 10.1016/j.envpol.2024.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) harbors a diverse microbial community. To assess the ecological dynamics and potential health risks associated with airborne microorganisms, it is crucial to understand the factors influencing microbial communities within PM2.5. This study investigated the influence of abiotic parameters, including air pollutants, PM2.5 chemical composition (water-soluble ions and organics), and meteorological variables, on microbial communities in PM2.5 samples collected in Seoul during the spring season. Results revealed a significant correlation between air pollutants and water-soluble ions of PM2.5 with microbial α-diversity indices. Additionally, air pollutants exerted a dominant effect on the microbial community structure, with stronger correlations observed for fungi than bacteria, whereas meteorological variables including temperature, pressure, wind speed, and humidity exerted a limited influence on fungal α-diversity. Furthermore, the results revealed specific water-soluble ions, such as SO42-, NO3-, and NH4+, as important factors influencing fungal α-diversity, whereas K+ negatively correlated with both microbial α-diversity. Moreover, PM2.5 microbial diversity was affected by organic compounds within PM2.5, with fatty acids exhibited a positive correlation with fungal diversity, while dicarboxylic acids exhibited a negative correlation with it. Furthermore, network analysis revealed direct links between air pollutants and dominant bacterial and fungal genera. The air pollutants exhibited a strong correlation with bacterial genera, such as Arthrospira and Clostridium, and fungal genera, including Aureobasidium and Cladosporium. These results will contribute to our understanding of the ecological dynamics of airborne microorganisms and provide insights into the potential risks associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Sookyung Kang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
17
|
Myung H, Joung YS. Contribution of Particulates to Airborne Disease Transmission and Severity: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6846-6867. [PMID: 38568611 DOI: 10.1021/acs.est.3c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) has catalyzed great interest in the spread of airborne pathogens. Airborne infectious diseases are classified into viral, bacterial, and fungal infections. Environmental factors can elevate their transmission and lethality. Air pollution has been reported as the leading environmental cause of disease and premature death worldwide. Notably, ambient particulates of various components and sizes are harmful pollutants. There are two prominent health effects of particles in the atmosphere: (1) particulate matter (PM) penetrates the respiratory tract and adversely affects health, such as heart and respiratory diseases; and (2) bioaerosols of particles act as a medium for the spread of pathogens in the air. Particulates contribute to the occurrence of infectious diseases by increasing vulnerability to infection through inhalation and spreading disease through interactions with airborne pathogens. Here, we focus on the synergistic effects of airborne particulates on infectious disease. We outline the concepts and characteristics of bioaerosols, from their generation to transformation and circulation on Earth. Considering that microorganisms coexist with other particulates as bioaerosols, we investigate studies examining respiratory infections associated with airborne PM. Furthermore, we discuss four factors (meteorological, biological, physical, and chemical) that may impact the influence of PM on the survival of contagious pathogens in the atmosphere. Our review highlights the significant role of particulates in supporting the transmission of infectious aerosols and emphasizes the need for further research in this area.
Collapse
Affiliation(s)
- Hyunji Myung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
18
|
Li LJ, Xu F, Xu JX, Yan Y, Su JQ, Zhu YG, Li H. Spatiotemporal Changes of Antibiotic Resistance, Potential Pathogens, and Health Risk in Kindergarten Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3919-3930. [PMID: 38353611 DOI: 10.1021/acs.est.3c07935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The microorganisms present in kindergartens are extremely important for children's health during their three-year preschool education. To assess the risk of outdoor dust in kindergartens, the antibiotic resistome and potential pathogens were investigated in dust samples collected from 59 kindergartens in Xiamen, southeast China in both the winter and summer. Both high-throughput quantitative PCR and metagenome analysis revealed a higher richness and abundance of antibiotic resistance genes (ARGs) in winter (P < 0.05). Besides, the bloom of ARGs and potential pathogens was evident in the urban kindergartens. The co-occurrence patterns among ARGs, mobile genetic elements (MGEs), and potential pathogens suggested some bacterial pathogens were potential hosts of ARGs and MGEs. We found a large number of high-risk ARGs in the dust; the richness and abundance of high-risk ARGs were higher in winter and urban kindergartens compared to in summer and peri-urban kindergartens, respectively. The results of the co-occurrence patterns and high-risk ARGs jointly reveal that urbanization will significantly increase the threat of urban dust to human beings and their risks will be higher in winter. This study unveils the close association between ARGs/mobile ARGs and potential pathogens and emphasizes that we should pay more attention to the health risks induced by their combination.
Collapse
Affiliation(s)
- Li-Juan Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fei Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Xin Xu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
19
|
Huang Z, Yu X, Liu Q, Maki T, Alam K, Wang Y, Xue F, Tang S, Du P, Dong Q, Wang D, Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168818. [PMID: 38036132 DOI: 10.1016/j.scitotenv.2023.168818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the past few decades, especially since the outbreak of the coronavirus disease (COVID-19), the effects of atmospheric bioaerosols on human health, the environment, and climate have received great attention. To evaluate the impacts of bioaerosols quantitatively, it is crucial to determine the types of bioaerosols in the atmosphere and their spatial-temporal distribution. We provide a concise summary of the online and offline observation strategies employed by the global research community to sample and analyze atmospheric bioaerosols. In addition, the quantitative distribution of bioaerosols is described by considering the atmospheric bioaerosols concentrations at various time scales (daily and seasonal changes, for example), under various weather, and different underlying surfaces. Finally, a comprehensive summary of the reasons for the spatiotemporal distribution of bioaerosols is discussed, including differences in emission sources, the impact process of meteorological factors and environmental factors. This review of information on the latest research progress contributes to the emergence of further observation strategies that determine the quantitative dynamics of public health and ecological effects of bioaerosols.
Collapse
Affiliation(s)
- Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Xinrong Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiantao Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Yongkai Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanli Xue
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shihan Tang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengyue Du
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
20
|
Zhu L, Zhao Y, Chen S, Miao X, Fang Z, Yao X, Dong C, Hu B. Alternating ventilation accelerates the mineralization and humification of food waste by optimizing the temperature-oxygen-moisture distribution in the static composting reactor. BIORESOURCE TECHNOLOGY 2024; 393:130050. [PMID: 37989420 DOI: 10.1016/j.biortech.2023.130050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Traditional unidirectional ventilation often leads to the loss of heat and moisture during composting, disrupting the favorable microenvironment required for aerobic microbes. This study developed a pulse alternating ventilation composting reactor and investigated the effects of alternating ventilation on composting efficiency compared with upward ventilation and downward ventilation. The results demonstrated that alternating ventilation stabilized the moisture content at approximately 60 % while reducing the temperature and oxygen concentration range within the reactor. Moreover, it extended the duration of high-temperature (>50 °C) by 31 % and 75 % compared to other two groups. It improved the microbial cooperation intensity and stimulated the core microbe (Tepidimicrobium). Seed germination index (GI) of the compost was improved (GI = 91.27 %), and the humic acid content was 1.23 times and 1.37 times higher than other two groups. These results showed that alternating ventilation can be used for efficient resource disposal of food waste.
Collapse
Affiliation(s)
- Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyin Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyin Miao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhou Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chifei Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
21
|
Yang T, Wang X, Jiang L, Hui X, Bi X, Zheng X, Jiang B, Wang X. Mobility, bacterial hosts, and risks of antibiotic resistome in submicron bioaerosols from a full-scale wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119771. [PMID: 38071920 DOI: 10.1016/j.jenvman.2023.119771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Antibiotic resistome could be loaded by bioaerosols and escape from wastewater or sludge to atmosphere environments. However, until recently, their profile, mobility, bacterial hosts, and risks in submicron bioaerosols (PM1.0) remain unclear. Here, metagenomic sequencing and assembly were employed to conduct an investigation of antibiotic resistome associated with PM1.0 within and around a full-scale wastewater treatment plant (WWTP). More subtypes of antibiotic resistant genes (ARGs) with higher total abundance were found along the upwind-downwind-WWTP transect. ARGs in WWTP-PM1.0 were mainly mediated by plasmids and transposases were the most prevalent mobile genetic elements (MGEs) co-occurring with ARGs. A contig-based analysis indicated that very small proportions (15.32%-19.74%) of ARGs in WWTP-PM1.0 were flanked by MGEs. Proteobacteria was the most dominant host of ARGs. A total of 28 kinds of potential pathogens, such as Pseudomonas aeruginosa and Escherichia coli, carried multiple ARG types. Compared to upwind, WWTP and corresponding downwind were characterized by higher PM1.0 resistome risk. This study emphasizes the vital role of WWTPs in discharging PM1.0-loaded ARGs and antibiotic resistant pathogens to air, and indicates the need for active safeguard procedures, such as that employees wear masks and work clothes, covering the main emission sites, and collecting and destroying of bioaerosols.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Xiaoliang Hui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, PR China.
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
22
|
Chen Y, Fu X, Ou Z, Li J, Lin S, Wu Y, Wang X, Deng Y, Sun Y. Environmental determinants and demographic influences on global urban microbiomes, antimicrobial resistance and pathogenicity. NPJ Biofilms Microbiomes 2023; 9:94. [PMID: 38062054 PMCID: PMC10703778 DOI: 10.1038/s41522-023-00459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Urban microbiome plays crucial roles in human health and are related to various diseases. The MetaSUB Consortium has conducted the most comprehensive global survey of urban microbiomes to date, profiling microbial taxa/functional genes across 60 cities worldwide. However, the influence of environmental/demographic factors on urban microbiome remains to be elucidated. We collected 35 environmental and demographic characteristics to examine their effects on global urban microbiome diversity/composition by PERMANOVA and regression models. PM10 concentration was the primary determinant factor positively associated with microbial α-diversity (observed species: p = 0.004, β = 1.66, R2 = 0.46; Fisher's alpha: p = 0.005, β = 0.68, R2 = 0.43), whereas GDP per capita was negatively associated (observed species: p = 0.046, β = -0.70, R2 = 0.10; Fisher's alpha: p = 0.004, β = -0.34, R2 = 0.22). The β-diversity of urban microbiome was shaped by seven environmental characteristics, including Köppen climate type, vegetation type, greenness fraction, soil type, PM2.5 concentration, annual average precipitation and temperature (PERMANOVA, p < 0.001, R2 = 0.01-0.06), cumulatively accounted for 20.3% of the microbial community variance. Canonical correspondence analysis (CCA) identified microbial species most strongly associated with environmental characteristic variation. Cities in East Asia with higher precipitation showed an increased abundance of Corynebacterium metruchotii, and cities in America with a higher greenness fraction exhibited a higher abundance of Corynebacterium casei. The prevalence of antimicrobial resistance (AMR) genes were negatively associated with GDP per capita and positively associated with solar radiation (p < 0.005). Total pathogens prevalence was positively associated with urban population and negatively associated with average temperature in June (p < 0.05). Our study presents the first comprehensive analysis of the influence of environmental/demographic characteristics on global urban microbiome. Our findings indicate that managing air quality and urban greenness is essential for regulating urban microbial diversity and composition. Meanwhile, socio-economic considerations, particularly reducing antibiotic usage in regions with lower GDP, are paramount in curbing the spread of antimicrobial resistance in urban environments.
Collapse
Affiliation(s)
- Yang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Xi Fu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China.
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Simiao Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Yaoxuan Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Xuwei Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China.
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China.
| |
Collapse
|
23
|
Vishwakarma YK, Gogoi MM, Babu SNS, Singh RS. How dominant the load of bioaerosols in PM 2.5 and PM 10: a comprehensive study in the IGP during winter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112277-112289. [PMID: 37828262 DOI: 10.1007/s11356-023-29931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The winter period is most ideal for studying near-surface aerosols in the Indo-Gangetic plains (IGP) of India, since this period is inundated with significantly higher concentrations of aerosols across the unique geographical domain because of shallow atmospheric boundary layer. This study focuses on analysing the concentration of the biotic component of aerosols (bioaerosols) in a central location of the IGP and estimating their dominance in ambient particulate matter (PM) from 2021 to 2023. Observations showed that bioaerosol concentrations also increased significantly with the increasing concentrations of PM2.5 and PM10, suggesting that bioaerosols are a dominant component of the total aerosol load in the atmosphere. The total microbe's concentration (collectively fungi and bacteria) was found to be 94 to 226 cfu m-3 in PM2.5 and 167 to 375 cfu m-3 in PM10 where bacteria contributed 81.12 and 79.99%, respectively. The contribution of fungal spores in PM2.5 and PM10 remained as 18.88 and 20.01%, respectively, in the total microbes in the respective particulate matter. In the bioaerosols, fungi, namely Aspergillus, Cladosporium, and Penicillium, were dominant, and bacteria, namely E. coli, Mammaliicoccus and Enterobacter, were prevalent in both the PM size regimes. The most prominent microbial presence was observed when the temperature ranged between 16 and 20°C and relative humidity between 80 and 85%. The outcomes of the present study will be useful for further research on the health effect of the bioaerosols in the IGP.
Collapse
Affiliation(s)
- Yogesh Kumar Vishwakarma
- Department of Chemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Mukunda Madhab Gogoi
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Indian Space Research Organisation (ISRO), Trivandrum, 695 022, India
| | - Surendran Nair Suresh Babu
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Indian Space Research Organisation (ISRO), Trivandrum, 695 022, India
| | - Ram Sharan Singh
- Department of Chemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
24
|
Sajjad B, Hussain S, Rasool K, Hassan M, Almomani F. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122473. [PMID: 37659632 DOI: 10.1016/j.envpol.2023.122473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
While the study of bioaerosols has a long history, it has garnered heightened interest in the past few years, focusing on both culture-dependent and independent sampling and analysis approaches. Observations have been made regarding the seasonal fluctuations in microbial communities and their connection to particular ambient atmospheric factors. The study of airborne microbial communities is important in public health and atmospheric processes. Nevertheless, the establishment of standardized protocols for evaluating airborne microbial communities and utilizing microbial taxonomy as a means to identify distinct bioaerosols sources and seasonal patterns remains relatively unexplored. This article discusses the challenges and limitations of ambient bioaerosols sampling and analysis, including the lack of standardized methods and the heterogeneity of sources. Future prospects in the field of bioaerosols, including the use of high-throughput sequencing technologies, omics studies, spectroscopy and fluorescence-based monitoring to provide comprehensive incite on metabolic capacity, and activity are also presented. Furthermore, the review highlights the factors that affect bioaerosols composition, including seasonality, atmospheric conditions, and pollution levels. Overall, this review provides a valuable resource for researchers, policymakers, and stakeholders interested in understanding and managing bioaerosols in various environments.
Collapse
Affiliation(s)
- Bilal Sajjad
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Sabir Hussain
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Mujtaba Hassan
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| |
Collapse
|
25
|
Oluwasanya G, Omoniyi A, Perera D, Layi-Adigun B, Thuy L, Qadir M. Water quality, WASH, and gender: differential impacts on health and well-being in Abeokuta City, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1255. [PMID: 37773234 DOI: 10.1007/s10661-023-11833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
It is often assumed that humans experience the effect of poor water quality like multiple health and socioeconomic impacts in the same way. But these impacts are not gender neutral due to inequalities caused by physiological composition, age marginalization, and socioeconomic conditions, among others. A mixed method, comprising water quality assessment, a survey of 456 individuals, and medical record collection, was applied to examine the differential impacts of water quality and WASH practices in Abeokuta City, Nigeria. The assessment shows that without point-of-use water treatment, the water sources in the area are not safe for potable purposes, as the waters are hard in the sequence of borehole > surface water > hand-dug well > sachet water, with elevated levels of calcium (> 75 mg/L) and not free from microbial contamination. Among the area population segments, men and boys (relative to women and girls) may be more susceptible (55%) to the compounding health effects associated with the hardness and high calcium concentration in water. Girls are the most affected by the associated impacts of water collection. Men and boys are more vulnerable to the consequences of poor hygiene, while women are more susceptible to the health effects of toilet cleaning and the sharing of sanitation facilities, among others. We conclude that there are differential impacts of unsafe water, WASH services, and practices on human health. Gendered statistics through sex-disaggregated data is crucial to unmasking the differential impacts, which are neither gender neutral nor evenly distributed between women and men, and boys and girls.
Collapse
Affiliation(s)
- Grace Oluwasanya
- United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamilton, Ontario, Canada.
- School of Geography and Health Sciences, McMaster University, Hamilton, ON, Canada.
- Federal University of Agriculture, (FUNAAB), Abeokuta, Nigeria.
| | | | - Duminda Perera
- United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamilton, Ontario, Canada
- School of Geography and Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Civil Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurens Thuy
- United Nations Educational, Scientific and Cultural Organization World Water Assessment Programme (UNESCO WWAP), Perugia, Italy
| | - Manzoor Qadir
- United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamilton, Ontario, Canada
- School of Geography and Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Smith BL, King MD. Sampling and Characterization of Bioaerosols in Poultry Houses. Microorganisms 2023; 11:2068. [PMID: 37630628 PMCID: PMC10459659 DOI: 10.3390/microorganisms11082068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Two poultry Confined Animal Feeding Units (CAFUs), "House A" and "House B", were selected from the TAMU poultry facility for the study, and samples were collected over a five-day period. Bioaerosol sampling was conducted using a Wetted Wall Cyclone (WWC) bioaerosol collector at the two CAFU houses, in which House A housed approximately 720 broiler chickens and roosters, while House B remained unoccupied and served as a reference. Both houses consisted of 24 pens arranged on either side of a central walkway. Bacterial content analysis was conducted using microbial plating, real-time Polymerase Chain Reaction (PCR), and Fatty Acid Methyl Ester (FAME) analysis, while ambient temperature and relative humidity were also monitored. The concentrations of microorganisms in House A showed a highly dynamic range, ranging from 4000 to 60,000 colony forming units (CFU) per cubic meter of air. Second, the WWC samples contained approximately ten-fold more bacterial DNA than the filter samples, suggesting higher levels of viable cells captured by the WWC. Third, significant concentrations of pathogens, including Salmonella, Staphylococcus, and Campylobacter, were detected in the poultry facility. Lastly, the WWC system demonstrated effective functionality and continuous operation, even in the challenging sampling environment of the CAFU. The goal of this study was to characterize the resident population of microorganisms (pathogenic and non-pathogenic) present in the CAFUs and to evaluate the WWC's performance in such an environment characterized by elevated temperature, high dust content, and feathers. This knowledge could then be used to improve understanding microorganism dynamics in CAFUs including the spread of bacterial infections between animals and from animals to humans that work in these facilities, as well as of the WWC performance in this type of environment (elevated temperature, high content of dust and feathers). A more comprehensive understanding can aid in improving the management of bacterial infections in these settings.
Collapse
Affiliation(s)
| | - Maria D. King
- Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
27
|
Nie C, Geng X, Zhang R, Wang L, Li L, Chen J. Abundant Cyanobacteria in Autumn Adhering to the Heating, Ventilation, and Air-Conditioning (HVAC) in Shanghai. Microorganisms 2023; 11:1835. [PMID: 37513007 PMCID: PMC10386019 DOI: 10.3390/microorganisms11071835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cyanobacteria are ever-present, mainly flourishing in aquatic environments and surviving virtually in other habitats. The microbiota of indoor dust on the pre-filter of heating, ventilation, and air-conditioning (HVAC) systems, which reflect indoor microbial contamination and affect human health, has attracted attention. Contemporary studies on cyanobacteria deposited on the pre-filter of HVAC remain scant. By the culture-independent approach of qPCR and high throughput sequencing technologies, our results documented that the cyanobacterial concentrations were highest in autumn, occurred recurrently, and were about 2.60 and 10.57-fold higher than those in winter and summer. We proposed that aquatic and terrestrial cyanobacteria contributed to the pre-filter of HVAC by airborne transportation produced by wave breaks, bubble bursts, and soil surface by wind force, owing to the evidence that cyanobacteria were commonly detected in airborne particulate matters. The cyanobacteria community structure was characterized in Shanghai, where Chroococcidiopsaceae, norank_cyanobacteriales, Nostocaceae, Paraspirulinaceae, and others dominated the dust on the pre-filter of HVAC. Some detected genera, including Nodularia sp., Pseudanabaena sp., and Leptolyngbya sp., potentially produced cyanobacterial toxins, which need further studying to determine their potential threat to human health. The present work shed new insight into cyanobacteria distribution in the specific environment besides aquatic habitats.
Collapse
Affiliation(s)
- Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Xueyun Geng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Runqi Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 200062, China
| |
Collapse
|
28
|
Abubakar-Waziri H, Kalaiarasan G, Wawman R, Hobbs F, Adcock I, Dilliway C, Fang F, Pain C, Porter A, Bhavsar PK, Ransome E, Savolainen V, Kumar P, Chung KF. SARS-CoV2 in public spaces in West London, UK during COVID-19 pandemic. BMJ Open Respir Res 2023; 10:10/1/e001574. [PMID: 37202121 DOI: 10.1136/bmjresp-2022-001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Spread of SARS-CoV2 by aerosol is considered an important mode of transmission over distances >2 m, particularly indoors. OBJECTIVES We determined whether SARS-CoV2 could be detected in the air of enclosed/semi-enclosed public spaces. METHODS AND ANALYSIS Between March 2021 and December 2021 during the easing of COVID-19 pandemic restrictions after a period of lockdown, we used total suspended and size-segregated particulate matter (PM) samplers for the detection of SARS-CoV2 in hospitals wards and waiting areas, on public transport, in a university campus and in a primary school in West London. RESULTS We collected 207 samples, of which 20 (9.7%) were positive for SARS-CoV2 using quantitative PCR. Positive samples were collected from hospital patient waiting areas, from hospital wards treating patients with COVID-19 using stationary samplers and from train carriages in London underground using personal samplers. Mean virus concentrations varied between 429 500 copies/m3 in the hospital emergency waiting area and the more frequent 164 000 copies/m3 found in other areas. There were more frequent positive samples from PM samplers in the PM2.5 fractions compared with PM10 and PM1. Culture on Vero cells of all collected samples gave negative results. CONCLUSION During a period of partial opening during the COVID-19 pandemic in London, we detected SARS-CoV2 RNA in the air of hospital waiting areas and wards and of London Underground train carriage. More research is needed to determine the transmission potential of SARS-CoV2 detected in the air.
Collapse
Affiliation(s)
| | - Gopinath Kalaiarasan
- Department of Civil and Environmental Engineering, Global Centre for Clean Air Research, Surrey, UK
| | - Rebecca Wawman
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Faye Hobbs
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian Adcock
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Claire Dilliway
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Fangxin Fang
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Christopher Pain
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Alexandra Porter
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Pankaj K Bhavsar
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Emma Ransome
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Vincent Savolainen
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Prashant Kumar
- Department of Civil and Environmental Engineering, Global Centre for Clean Air Research, Surrey, UK
| | - Kian Fan Chung
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
29
|
Li Z, Lu J, Tong Y, Li S, He F. Differences in microbial community composition and factors affecting different particulate matter during autumn in three cities of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161275. [PMID: 36587705 DOI: 10.1016/j.scitotenv.2022.161275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Environmental pollution has become an issue of increasing concern in China, owing to the country's rapid economic development. Atmospheric particulate matter (PM) is known to be an important parameter in air quality monitoring; further, bioaerosol forms a crucial component of PM. As the climatic environments in the north and south of Xinjiang, China, are significantly different, here, atmospheric PM samples collected from three cities, Shihezi, Yining, and Tumushuk, located in different directions, were analysed for a better understanding of the spatial distribution patterns of microbial community composition of Xinjiang. The16s rDNA and 18 s rDNA were used to locate bacteria and fungi in PM2.5, PM10, and total suspended particulate matter (TSP) at the species level and genus level, and the microbial communities with the top 15 abundances were selected for analysis. The reports indicate that the most abundant group in Shihezi and Yining was Cenchrus_americanus, which belongs to Proteobacteria. The remaining 14 dominant species had their own distribution pattern in each city. The most dominant strain in Tumushuk was Bacillus_taeanensis, but this strain was not detected in Yining and Shihezi. Similarly, the most predominant fungus in Tumushuk (Microdorylaimus_miser under Myriophyllum) was not detected in the other two cities. The analysis of the effect of environmental impact factors on bacteria and fungi revealed that the impact factors such as temperature, humidity, and wind speed had a greater effect on microorganisms, while O3 had a negative correlation with most microorganisms, owing to its toxicity. Overall, the results of this study show that short-range transported air masses have a greater impact on local pollutants and microorganisms.
Collapse
Affiliation(s)
- Zhuoying Li
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China.
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| | - Shanman Li
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| | - Feifei He
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| |
Collapse
|
30
|
Kwaśny M, Bombalska A, Kaliszewski M, Włodarski M, Kopczyński K. Fluorescence Methods for the Detection of Bioaerosols in Their Civil and Military Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:3339. [PMID: 36992050 PMCID: PMC10054245 DOI: 10.3390/s23063339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The article presents the history of the development and the current state of the apparatus for the detection of interferents and biological warfare simulants in the air with the laser-induced fluorescence (LIF) method. The LIF method is the most sensitive spectroscopic method and also enables the measurement of single particles of biological aerosols and their concentration in the air. The overview covers both the on-site measuring instruments and remote methods. The spectral characteristics of the biological agents, steady-state spectra, excitation-emission matrices, and their fluorescence lifetimes are presented. In addition to the literature, we also present our own detection systems for military applications.
Collapse
|
31
|
Peng S, Luo M, Long D, Liu Z, Tan Q, Huang P, Shen J, Pu S. Full-length 16S rRNA gene sequencing and machine learning reveal the bacterial composition of inhalable particles from two different breeding stages in a piggery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114712. [PMID: 36863163 DOI: 10.1016/j.ecoenv.2023.114712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Bacterial loading aggravates the harm of particulate matter (PM) to public health and ecological systems, especially in operations of concentrated animal production. This study aimed to explore the characteristics and influencing factors of bacterial components of inhalable particles at a piggery. The morphology and elemental composition of coarse particles (PM10, aerodynamic diameter ≤ 10 µm) and fine particles (PM2.5, aerodynamic diameter ≤ 2.5 µm) were analyzed. Full-length 16 S rRNA sequencing technology was used to identify bacterial components according to breeding stage, particle size, and diurnal rhythm. Machine learning (ML) algorithms were used to further explore the relationship between bacteria and the environment. The results showed that the morphology of particles in the piggery differed, and the morphologies of the suspected bacterial components were elliptical deposited particles. Full-length 16 S rRNA indicated that most of the airborne bacteria in the fattening and gestation houses were bacilli. The analysis of beta diversity and difference between samples showed that the relative abundance of some bacteria in PM2.5 was significantly higher than that in PM10 at the same pig house (P < 0.01). There were significant differences in the bacterial composition of inhalable particles between the fattening and gestation houses (P < 0.01). The aggregated boosted tree (ABT) model showed that PM2.5 had a great influence on airborne bacteria among air pollutants. Fast expectation-maximization microbial source tracking (FEAST) showed that feces was a major potential source of airborne bacteria in pig houses (contribution 52.64-80.58 %). These results will provide a scientific basis for exploring the potential risks of airborne bacteria in a piggery to human and animal health.
Collapse
Affiliation(s)
- Siyi Peng
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Min Luo
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing 402460, China; Innovation and Entrepreneurship Team for Livestock Environment Control and Equipment R&D, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China; College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Qiong Tan
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Ping Huang
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Jie Shen
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing 402460, China; Innovation and Entrepreneurship Team for Livestock Environment Control and Equipment R&D, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China.
| |
Collapse
|
32
|
Collivignarelli MC, Bellazzi S, Caccamo FM, Carnevale Miino M. Discussion about the Latest Findings on the Possible Relation between Air Particulate Matter and COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20065132. [PMID: 36982044 PMCID: PMC10049697 DOI: 10.3390/ijerph20065132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Since SARS-CoV-2 was identified, the scientific community has tried to understand the variables that can influence its spread. Several studies have already highlighted a possible link between particulate matter (PM) and COVID-19. This work is a brief discussion about the latest findings on this topic, highlighting the gaps in the current results and possible tips for future studies. Based on the literature outcomes, PM is suspected to play a double role in COVID-19: a chronic and an acute one. The chronic role is related to the possible influence of long-term and short-term exposure to high concentrations of PM in developing severe forms of COVID-19, including death. The acute role is linked to the possible carrier function of PM in SARS-CoV-2. The scientific community seems sure that the inflammatory effect on the respiratory system of short-term exposure to a high concentration of PM, and other additional negative effects on human health in cases of longer exposure, increases the risk of developing a more severe form of COVID-19 in cases of contagion. On the contrary, the results regarding PM acting as a carrier of SARS-CoV-2 are more conflicting, especially regarding the possible inactivation of the virus in the environment, and no final explanation on the possible acute role of PM in the spread of COVID-19 can be inferred.
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Correspondence: (M.C.C.); (M.C.M.)
| | - Stefano Bellazzi
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Correspondence: (M.C.C.); (M.C.M.)
| |
Collapse
|
33
|
Xiong Z, Zhang X, White JC, Liu L, Sun W, Zhang S, Zeng J, Deng S, Liu D, Zhao X, Wu F, Zhao Q, Xing B. Transcriptome Analysis Reveals the Growth Promotion Mechanism of Enteropathogenic Escherichia coli Induced by Black Phosphorus Nanosheets. ACS NANO 2023; 17:3574-3586. [PMID: 36602915 DOI: 10.1021/acsnano.2c09964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 μg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Liwei Liu
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Qian F, Huang X, Bao Y. Heavy metals reshaping the structure and function of phylloplane bacterial community of native plant Tamarix ramosissima from Pb/Cd/Cu/Zn smelting regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114495. [PMID: 36640572 DOI: 10.1016/j.ecoenv.2022.114495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal (HM) is noxious element that cannot be biodegraded, thus accumulating in the environment and posing a serious threat to the ecology. Plant phylloplane harbors diverse microbial communities that profoundly influence ecosystem functioning and host health. With more HM accumulating around smelters, native plants and microbes in various habitats tend to suffer from HM. However, the response of phylloplane bacteria of native plants to HM remains unclear. Thus, this study aimed to explain the response of Tamarix ramosissima, a phylloplane bacterial community to HM as well as the effect of the process on host growth in situ by investigating the potential source of HM and bacterial community shift. Results showed that, in most cases, the contaminated site with high HM level caused more accumulation of HM in phylloplane and leaves. Moreover, HM in the phylloplane was not from the internal transport of the plant but it could be due to the wind action or rains. Bacteria in phylloplane may have come from the soil due to their strong positive correlation with corresponding soil at the genus level. High HM level inhibited the relative abundance of dominant bacteria, increased the diversity and species richness of bacterial community in phylloplane, and induced more special bacteria to maintain higher productivity of the host plant, for which, Cu and Pb were the major contributors. Meanwhile, bacteria in phylloplane showed a universal positive correlation in the co-occurrence network, which showed less stability than that in corresponding soil in the smelting region, and it is helpful to regulate the growth of plants more rapidly. Nearly 25% of KEGG pathways were modulated by high HM level and bacterial function tended to stabilize HM to avoid the potential process of leaf absorption. The study illustrated that HM in phylloplane played an important role in shaping the bacterial community of phylloplane as compared to HM in leaves or phyllosphere, and the resulting increase of diversity and richness of bacterial community and special bacteria further maintained the growth of the host plant suffering from HM stress.
Collapse
Affiliation(s)
- Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinjian Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
35
|
Nie C, Geng X, Ouyang H, Wang L, Li Z, Wang M, Sun X, Wu Y, Qin Y, Xu Y, Tang X, Chen J. Abundant bacteria and fungi attached to airborne particulates in vegetable plastic greenhouses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159507. [PMID: 36257421 DOI: 10.1016/j.scitotenv.2022.159507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The proliferation of modern vegetable plastic greenhouses (VPGS) supplies more and more vegetables for food all over the world. The airborne bacteria and fungi induce more exposure opportunities for workers toiling in confined plastic greenhouses. Culture-independent approaches by qPCR and high-throughput sequencing technology were used to study the airborne particulates microbiota in typic VPGS in Shandong, a large base of vegetables in China. The result revealed the mean airborne bacteria concentrations reached 1.67 × 103 cells/m3 (PM2.5) and 2.38 × 103 cells/m3 (PM10), and the mean airborne fungal concentrations achieved 1.49 × 102 cells/m3 (PM2.5) and 3.19 × 102 cells/m3 (PM10) in VPGS. The predominant bacteria in VPGS included Ralstonia, Alcanivorax, Pseudomonas, Bacillus, and Acinetobacter. Botrytis, Alternaria, Fusarium, Sporobolomyces, and Cladosporium were frequently detected fungal genera in VPGS. A higher Chao1 of bacteria in PM10 was significantly different from PM2.5 in VPGS. The potential pathogens in VPGS include Raltonia picketti, Acinetobacter lwoffii, Bacillus anthracis, Botrytis cinerea, and Cladosporium sphaerospermum. The network analysis indicated that airborne microbiota was associated with soil microbiota which was affected by anthropologic activities. The predicted gene functions revealed that bacterial function mainly involved metabolism, neurodegenerative diseases, and fungal trophic mode dominated by Pathotroph-Saprotroph in VPGS. These findings unveiled airborne microbiomes in VPGS so that a strategy for improving air quality can be applied to safeguard health and vegetation.
Collapse
Affiliation(s)
- Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xueyun Geng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huiling Ouyang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China
| | - Zongzhen Li
- Weifang University of Science and Technology, Weifang 262700, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yunhan Qin
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Youxin Xu
- Weifang University of Science and Technology, Weifang 262700, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xu Tang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
36
|
Long T, Ye Z, Tang Y, Shi J, Wen J, Chen C, Huo Q. Comparison of bacterial community structure in PM 2.5 during hazy and non-hazy periods in Guilin, South China. AEROBIOLOGIA 2023; 39:87-103. [PMID: 36568442 PMCID: PMC9762634 DOI: 10.1007/s10453-022-09777-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/09/2022] [Indexed: 05/19/2023]
Abstract
UNLABELLED In recent years, significant efforts have been made to study changes in the levels of air pollutants at regional and urban scales, and changes in bioaerosols during air pollution events have attracted increasing attention. In this study, the bacterial structure of PM2.5 was analysed under different environmental conditions during hazy and non-hazy periods in Guilin. A total of 32 PM2.5 samples were collected in December 2020 and July 2021, and the microbial community structures were analysed using high-throughput sequencing methods. The results show that air pollution and climate change alter the species distribution and community diversity of bacteria in PM2.5, particularly Sphingomonas and Pseudomonas. The structure of the bacterial community composition is related to diurnal variation, vertical height, and urban area and their interactions with various environmental factors. This is a comprehensive study that characterises the variability of bacteria associated with PM2.5 in a variety of environments, highlighting the impacts of environmental effects on the atmospheric microbial community. The results will contribute to our understanding of haze trends in China, particularly the relationship between bioaerosol communities and the urban environment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09777-0.
Collapse
Affiliation(s)
- Tengfa Long
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Ziwei Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Yanchun Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jiaxin Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jianhui Wen
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
- Guilin Ecological Environmental Monitoring Center, Guilin, 541004 China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Qiang Huo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| |
Collapse
|
37
|
Xin H, Qiu T, Guo Y, Gao H, Zhang L, Gao M. Aerosolization behavior of antimicrobial resistance in animal farms: a field study from feces to fine particulate matter. Front Microbiol 2023; 14:1175265. [PMID: 37152737 PMCID: PMC10157163 DOI: 10.3389/fmicb.2023.1175265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in animal feces can be released into the atmosphere via aerosolization, posing a high health risk to farm workers. So far, little attention has been paid to the characterization of the aerosolization process. In this study, fecal and fine particulate matter (PM2.5) samples were collected from 20 animal farms involving swine, cattle, layers, and broilers, and the ARGs, ARB, and human pathogenic bacteria (HPB) were loaded in these two media. The results showed that approximately 70% of ARGs, 60% of ARBs, and 43% of HPBs were found to be preferential aerosolization. The bioaerosolization index (BI) of target 30 ARGs varied from 0.04 to 460.07, and the highest value was detected from tetW. The highest BI values of erythromycin- and tetracycline-resistant bacteria were for Kocuria (13119) and Staphylococcus (24746), respectively, and the distribution of BI in the two types of dominant ARB was similar. Regarding the bioaerosolization behavior of HPB, Clostridium saccharolyticum WM1 was the most easily aerosolized pathogen in swine and broiler farms, and Brucella abortus strain CNM 20040339 had the highest value in cattle and layer farms. Notably, the highest BI values for ARGs, ARB, and HPB were universally detected on chicken farms. Most ARGs, ARB, and HPB positively correlated with animal age, stocking density, and breeding area. Temperature and relative humidity have significant effects on the aerosolization behavior of targets, and the effects of these two parameters on the same target are usually opposite. The results of this study provide a basis for a better understanding of the contribution of animal feces to airborne ARGs and HPBs in farms, as well as for controlling the transport of the fecal microbiome to the environment through the aerosolization pathway.
Collapse
Affiliation(s)
- Huibo Xin
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, China
- *Correspondence: Liqiu Zhang
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Min Gao
| |
Collapse
|
38
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
39
|
Korneykova MV, Soshina AS, Gavrichkova OV. Opportunistic Mycobiota of Dust in Cities of Different Climate Zones: Murmansk and Moscow. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:428-440. [PMID: 36781538 DOI: 10.1134/s0012496622060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 02/15/2023]
Abstract
For the first time, mycological analysis of dust, including assessment of opportunistic fungal species, was carried out for the urban ecosystems of air, vegetation, and paved surfaces in different climate areas (the cities of Murmansk and Moscow). The combined effect of environmental factors (climate, functional zone, and substrate type) on qualitative and quantitative parameters of micromycete communities was assessed using MANOVA and cluster analysis. It was found that the abundance of culturable mycobiota in the air, on tree leaves, and on paved surfaces was lower in Murmansk than in Moscow. In both cities, approximately a half of fungal species were opportunistic pathogens. The relative abundance of opportunistic fungi of the BSL-2 group was higher in the air of the traffic zone in both cities and of the residential zone in Moscow. In the residential and traffic zones of Moscow, the most abundant species in the air in on the road dust were Aspergillus fumigatus and A. niger, while in Murmansk communities were dominated by members of the genera Cephalosporium, Scopulariopsis, and Trichoderma, which are less pathogenic for humans. The most significant factors affecting the abundance and species diversity of micromycetes, including opportunistic fungi, were the substrate type (air, leaves, or paved surfaces) and the climate, while the effect of the functional zone was not significant. The recreation zones of cities located in different climate regions are the most favorable for humans due to lower abundance of opportunistic fungi in the air and to lack of micromycetes of the BSL-2 and BSL-3 groups. However, the abundance of potentially pathogenic species on the surfaces of leaves and roads in this zone was higher than in the air. Therefore, it can be recommended that city residents minimize their contact with the leaves surface and road pavements, which is especially relevant for toddlers, so as to diminish the probability of encountering opportunistic mycobiota that potentially represents a health hazard.
Collapse
Affiliation(s)
- M V Korneykova
- RUDN University, Moscow, Russia. .,Institute of Problems of Industrial Ecology of the North, Kola Research Center of the Russian Academy of Sciences, Apatity, Russia.
| | - A S Soshina
- Institute of Problems of Industrial Ecology of the North, Kola Research Center of the Russian Academy of Sciences, Apatity, Russia.
| | - O V Gavrichkova
- Research Institute on Terrestrial Ecosystems, National Research Council, Porano, Italy.
| |
Collapse
|
40
|
Xu X, Zhou W, Xie C, Zhu Y, Tang W, Zhou X, Xiao H. Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157420. [PMID: 35850323 DOI: 10.1016/j.scitotenv.2022.157420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were blaTEM, tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH3 and H2S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH3 and H2S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter.
Collapse
Affiliation(s)
- Xing Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weidong Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chuanqi Xie
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wensheng Tang
- Institute of Animal Husbandry and Veterinary Science, Huangyan Bureau of Agriculture and Rural Affairs, Taizhou 318020, China
| | - Xin Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
41
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
42
|
de la Fuente J, Armas O, Barroso-Arévalo S, Gortázar C, García-Seco T, Buendía-Andrés A, Villanueva F, Soriano JA, Mazuecos L, Vaz-Rodrigues R, García-Contreras R, García A, Monsalve-Serrano J, Domínguez L, Sánchez-Vizcaíno JM. Good and bad get together: Inactivation of SARS-CoV-2 in particulate matter pollution from different fuels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157241. [PMID: 35817121 PMCID: PMC9264720 DOI: 10.1016/j.scitotenv.2022.157241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 05/15/2023]
Abstract
Air pollution and associated particulate matter (PM) affect environmental and human health worldwide. The intense vehicle usage and the high population density in urban areas are the main causes of this public health impact. Epidemiological studies have provided evidence on the effect of air pollution on airborne SARS-CoV-2 transmission and COVID-19 disease prevalence and symptomatology. However, the causal relationship between air pollution and COVID-19 is still under investigation. Based on these results, the question addressed in this study was how long SARS-CoV-2 survives on the surface of PM from different origin to evaluate the relationship between fuel and atmospheric pollution and virus transmission risk. The persistence and viability of SARS-CoV-2 virus was characterized in 5 engine exhaust PM and 4 samples of atmospheric PM10. The results showed that SARS-CoV-2 remains on the surface of PM10 from air pollutants but interaction with engine exhaust PM inactivates the virus. Consequently, atmospheric PM10 levels may increase SARS-CoV-2 transmission risk thus supporting a causal relationship between these factors. Furthermore, the relationship of pollution PM and particularly engine exhaust PM with virus transmission risk and COVID-19 is also affected by the impact of these pollutants on host oxidative stress and immunity. Therefore, although fuel PM inactivates SARS-CoV-2, the conclusion of the study is that both atmospheric and engine exhaust PM negatively impact human health with implications for COVID-19 and other diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Octavio Armas
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla - La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Aránzazu Buendía-Andrés
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Florentina Villanueva
- Instituto de Investigación en Combustión y Contaminación Atmosférica, Universidad de Castilla La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla La Mancha, Paseo de La Innovación 1, 02006 Albacete, Spain
| | - José A Soriano
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla - La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Reyes García-Contreras
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla - La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Antonio García
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Monsalve-Serrano
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
43
|
Tan H, Liu X, Yin S, Zhao C, Su L, Wang S, Khalid M, Setälä H, Hui N. Soil microbiota associated with immune-mediated disease was influenced by heavy metal stress in roadside soils of Shanghai. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129338. [PMID: 35785742 DOI: 10.1016/j.jhazmat.2022.129338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and total petroleum hydrocarbons (TPHs) in soils can be detrimental to both soil microorganisms and public health. However, the effects of HMs and TPHs on microbes as well as the consequent microbial-derived health risk remains unclear in soils by local roads where citizens are clearly accessible to traffic-derived pollutants. Herein, we sampled 84 roadside soils throughout Shanghai. We measured the levels of soil edaphic factors, 6 HMs, and alkane TPHs. We further focused on the responses of bacterial and fungal communities assessed via sequencing and network analysis. Results showed that all soil HMs exceeded background levels of Shanghai soil, while the levels of TPHs are comparable to unpolluted sites. Bacterial network nodes and links decreased sharply under HM stress whereas that of fungal networks remained unchanged. The differential pattern was attributed to the asynchronous response of key classes that fungal key classes were more resistant to HMs than bacteria. In addition, 66.8 % of fungal genera associated with immune-mediated disease increased with increased HM stress for its HM tolerance. Together our findings indicate that despite the relatively stable fungal community in response to environmental stresses, the elevation of harmful fungi likely pose threats to health of urban dwellers.
Collapse
Affiliation(s)
- Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Instrumental analysis center, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Song Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Heikki Setälä
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| |
Collapse
|
44
|
Barkhordari A, I Guzman M, Ebrahimzadeh G, Sorooshian A, Delikhoon M, Jamshidi Rastani M, Golbaz S, Fazlzadeh M, Nabizadeh R, Norouzian Baghani A. Characteristics and health effects of particulate matter emitted from a waste sorting plant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:244-256. [PMID: 35868092 DOI: 10.1016/j.wasman.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Solid waste components can be recycled in waste paper and cardboard sorting plants (WPCSP) through a multistep process. This work collected 15 samples every six days from each of the 9 points selected to study the processes taking place in a WPCSP (135 particulate matter samples total). Examining the concentration and size fraction of particulate matter (i.e., PM1, PM2.5 and PM10) in WPCSP is an essential issue to notify policy makers about the health impacts on exposed workers. The major activities for increasing of the concentration of PM in various processing units in the WPCSP, especially in hand-picking routes I and II were related to manual dismantling, mechanical grinding, mechanical agitation, and separation and movement of waste. The results of this work showed that a negative correlation between temperature and particulate matter size followed the order PM10 > PM2.5 > PM1. Exposure to PM2.5 and PM10 in the WPCSP lead to possible risk (HI = 5.561 and LTCRs = 3.41 × 10-6 to 9.43 × 10-5 for PM2.5 and HI = 7.454 for PM10). The exposure duration and the previous concentrations had the most effect on the ILCRs and HQs for PM2.5 and PM10 in all sampling sites. Hence, because WPCSP are infected indoor environments (I/O ratio > 1), the use of control methods such as isolation of units, misting systems, blower systems equipped with bag houses, protective equipment, a mechanical ventilation system, and additional natural ventilation can reduce the amount of suspended PM, enhance worker safety, and increase the recycling rate.
Collapse
Affiliation(s)
- Abdullah Barkhordari
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marcelo I Guzman
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Gholamreza Ebrahimzadeh
- Department of Environmental Health Engineering, Faculty of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Mahdieh Delikhoon
- Department of Occupational Health Engineering, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Jamshidi Rastani
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Golbaz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Urban Aerobiome and Effects on Human Health: A Systematic Review and Missing Evidence. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome signature in the air environment (aerobiome). Despite the large number of exposed people, urban aerobiomes are still weakly described even if recently advanced literature has been published. This paper aims to systematically review the state of knowledge on the urban aerobiome and human health effects. A total of 24 papers that used next generation sequencing (NGS) techniques for characterization and comprised a seasonal analysis have been included. A core of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroides and various factors that influenced the community structure were detected. Heterogenic methods and results were reported, for both sampling and aerobiome diversity analysis, highlighting the necessity of in-depth and homogenized assessment thus reducing the risk of bias. The aerobiome can include threats for human health, such as pathogens and resistome spreading; however, its diversity seems to be protective for human health and reduced by high levels of air pollution. Evidence of the urban aerobiome effects on human health need to be filled up quickly for urban public health purposes.
Collapse
|
46
|
Jiang S, Sun B, Zhu R, Che C, Ma D, Wang R, Dai H. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154665. [PMID: 35314242 DOI: 10.1016/j.scitotenv.2022.154665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a vital component of airborne bioaerosols, bacteria and fungi seriously endanger human health as pathogens and allergens. However, comprehensive effects of environmental variables on airborne microbial community structures remain poorly understood across the PM sizes and seasons. We collected atmospheric PM1.0, PM2.5, and PM10 samples in Hefei, a typical rapidly-developing city in East China, across three seasons, and performed a comprehensive analysis of airborne microbial community structures using qPCR and high-throughput sequencing. Overall the bacterial and fungal abundances in PM1.0 were one to two orders of magnitude higher than those in PM2.5 and PM10 across seasons, but their α-diversity tended to increase from PM1.0 to PM10. The bacterial gene abundances showed a strong positive correlation (P < 0.05) with atmospheric SO2 and NO2 concentrations and air quality index. The bacterial gene abundances were significantly higher (P = 0.001) than fungi, and the bacterial diversity showed stronger seasonality. The PM sizes influenced distribution patterns for airborne microbial communities within the same season. Source-tracking analysis indicated that soils, plants, human and animal feces represented important sources of airborne bacteria with a total relative abundance of more than 60% in summer, but total abundance from the unidentified sources surpassed in fall and winter. Total 10 potential bacterial and 12 potential fungal pathogens were identified at the species level with the highest relative abundances in summer, and their abundances increased with the PM sizes. Together, our results indicated that a complex set of environmental factors, including water-soluble ions in PM, changes in air pollutant levels and meteorological conditions, and shifts in the relative importance of available microbial sources, acted to control the seasonal compositions of microbial communities in the urban atmosphere.
Collapse
Affiliation(s)
- Shaoyi Jiang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Chenshuai Che
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Ma
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Runfang Wang
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Haitao Dai
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
47
|
Xue Y, Wang L, Zhang Y, Zhao Y, Liu Y. Air pollution: A culprit of lung cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128937. [PMID: 35452993 DOI: 10.1016/j.jhazmat.2022.128937] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a global health problem, especially in the context of rapid economic development and the expansion of urbanization. Herein, we discuss the harmful effects of outdoor and indoor pollution on the lungs. Ambient particulate matters (PMs) from industrial and vehicle exhausts is associated with lung cancer. Workers exposed to asbestos, polycyclic aromatic hydrocarbons (PAHs), and toxic metals are also likely to develop lung cancer. Indoors, cooking fumes, second-hand smoke, and radioactive products from house decoration materials play roles in the development of lung cancer. Bacteria and viruses can also be detrimental to health and are important risk factors in lung inflammation and cancer. Specific effects of lung cancer caused by air pollution are discussed in detail, including inflammation, DNA damage, and epigenetic regulation. In addition, advanced materials for personal protection, as well as the current government policies to prevent air pollution, are summarized. This review provides a basis for future research on the relationship between lung cancer and air pollution.
Collapse
Affiliation(s)
- Yueguang Xue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Liuxiang Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| | - Ying Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| |
Collapse
|
48
|
Effects of Yellow Light on Airborne Microbial Composition and on the Transcriptome of Typical Marker Strain in Ward. DISEASE MARKERS 2022; 2022:8762936. [PMID: 35634440 PMCID: PMC9132710 DOI: 10.1155/2022/8762936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
Airborne diseases are transmitted by pathogens in the air. The complex microbial environment in wards is usually considered a major cause of nosocomial infection of various diseases which greatly influences the health of patients with chronic diseases, whereas the illuminant of wards impacts on the microbe especially the disease marker strain is seldom studied. In the present study, high-throughput sequencing was used to study the effect of yellow light on airborne microbial composition, and changes of transcriptome of marker strains Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which were isolated from wards, were further studied after the irradiation by yellow light. High-throughput sequencing results indicated that yellow light significantly decreased α-diversity. The relative abundance of Firmicutes at the phylum level, and Clostridium sensu stricto 1, Paraclostridium at the genus level were significantly reduced. RNA sequencing results declared that yellow light significantly downregulated the genes associated with flagella, heme transport system and carbohydrate, amino acid metabolism in E. coli, and the genes related to arginine biosynthesis and the biosynthesis of isoleucine, leucine, and valine in S. aureus. Meanwhile, yellow light significantly upregulated the genes relating to porphyrin metabolism in P. aeruginosa. In conclusion, our work reveals the impacts of yellow light on the microbe in wards, pointing out the application value of yellow light in the prevention of infectious diseases in clinical practice.
Collapse
|
49
|
Wu J, Danko D, Afshinnekoo E, Bezdan D, Bhattacharyya M, Castro-Nallar E, Chmielarczyk A, Hazrin-Chong NH, Deng Y, Dias-Neto E, Frolova A, Mason-Buck G, Iraola G, Jang S, Łabaj P, Lee PKH, Nieto-Caballero M, Osuolale OO, Ouzounis CA, Perlin MH, Prithiviraj B, Rascovan N, Różańska A, Schriml LM, Semmler T, Suzuki H, Ugalde JA, Young B, Werner J, Zambrano MM, Zhao Y, Mason C, Shi T. Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association. ENVIRONMENTAL RESEARCH 2022; 207:112183. [PMID: 34637759 DOI: 10.1016/j.envres.2021.112183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co-occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment.
Collapse
Affiliation(s)
- Jun Wu
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - David Danko
- Weill Cornell Medicine, USA; The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, USA
| | - Ebrahim Afshinnekoo
- Weill Cornell Medicine, USA; The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, USA
| | - Daniela Bezdan
- Weill Cornell Medicine, USA; The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, USA
| | - Malay Bhattacharyya
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India; Centre for Artificial Intelligence and Machine Learning, Indian Statistical Institute, Kolkata, India
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Argentina
| | | | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Youping Deng
- University of Hawaii, John A. Burns School of Mecidine, USA
| | - Emmanuel Dias-Neto
- Medical Genomics Group, A.C. Camargo Cancer Center and LIM-27 Faculdade de Medicina, USP, São Paulo, Brazil
| | - Alina Frolova
- Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, Ukraine
| | - Gabriella Mason-Buck
- Department of Analytical, Environmental and Forensic Sciences, King's College London, UK
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Uruguay; Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile; Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Paweł Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Poland
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marina Nieto-Caballero
- University of Colorado at Boulder, Civil, Environmental and Architectural Department, Boulder, 80303, USA
| | - Olayinka O Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research (AEMIDR), Department of Biological Sciences, Elizade University, Nigeria
| | - Christos A Ouzounis
- BCPL-CPERI, Centre for Research & Technology Hellas, Thessalonica, GR, 57001, Greece
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA
| | - Bharath Prithiviraj
- Reckitt Health, Montvale, NJ, USA; Dept. of Biology, City University of New York, Brooklyn, 11210, NY, USA
| | - Nicolás Rascovan
- Aix-Marseille Université, IRD, AP-HM, IHU Méditerranée Infection, France
| | - Anna Różańska
- Jagiellonian University, Faculty of Medicine, Department of Microbiology, Poland
| | - Lynn M Schriml
- University of Maryland School of Medicine, Institute for Genome Sciences, USA
| | | | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Juan A Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance, Germany
| | - Ben Young
- Weill Cornell Medicine, USA; The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, USA
| | - Johannes Werner
- High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), Eberhard Karls University of Tübingen, Wächterstraße 76, 72074, Tübingen, Germany
| | | | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Christopher Mason
- Weill Cornell Medicine, USA; The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, USA
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China.
| |
Collapse
|
50
|
Liao ZN, Xu HJ, Ma J, Li M, He C, Zhang Q, Xu S. Seasonal and vegetational variations of culturable bacteria concentrations in air from urban forest parks: a case study in Hunan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28933-28945. [PMID: 34988785 DOI: 10.1007/s11356-021-17532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
It is important to investigate the airborne bacterial air quality in urban forest parks as tree bacteriostasis practices are being increasingly advocated as measures to improve the air quality and public health in urban green spaces around the world. The aim of the study was to quantitatively investigate airborne culturable bacteria (ACB) concentration levels based on field measurements in every season in five selected forest communities and the uncovered space in an urban forest park, as well as the effects of several factors on the culturability of airborne bacteria. Results suggested that the airborne bacterial levels of all the forest communities reached the clean air quality standard with regard to the airborne bacteria content, with the highest concentration of ACB showing in the uncovered space (1658 ± 1298 CFU/m3) and the lowest showing in the mixed community (907 ± 567 CFU/m3). The temporal distribution analysis showed that the airborne bacteria were mostly concentrated in summer, as well as in the morning and afternoon. The bacteriostatic rates of the mixed community were significantly different with seasonal variation (p < 0.05). Spearman's correlations revealed that the concentration of ACB was significantly positively correlated with the season, wind speed (WS), temperature (T), ultraviolet light (UV), negative air ion (NAI), and total suspended particles (TSP) (p<0.05) but significantly negatively correlated with the forest community type (p < 0.05). Overall, the selection of tree species plays a key role in shaping the forest structure and improving air quality, and the urban forest highlights key priorities for future efforts toward a cleaner, healthier, and more diverse regional forest environment.
Collapse
Affiliation(s)
- Zhen-Ni Liao
- School of Geography, South China Normal University, Guangzhou, 510631, China
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Hui-Juan Xu
- College of National Resources & Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaojiao Ma
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Maojuan Li
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Caisheng He
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Qiongrui Zhang
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Songjun Xu
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|