1
|
Yoon SJ, Hong S, Lee J, Lee J, Kim Y, Lee MJ, Ryu J, Choi K, Kwon BO, Hu W, Wang T, Khim JS. Historical trends of traditional, emerging, and halogenated polycyclic aromatic hydrocarbons recorded in core sediments from the coastal areas of the Yellow and Bohai seas. ENVIRONMENT INTERNATIONAL 2023; 178:108037. [PMID: 37354882 DOI: 10.1016/j.envint.2023.108037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Historical trends of polycyclic aromatic hydrocarbons (PAHs) contamination were reconstructed from eleven sediment cores located in intertidal zones of the Yellow and Bohai seas for a period encompassing the last 80 years. The analysis encompassed 15 traditional PAHs (t-PAHs), 9 emerging PAHs (e-PAHs), and 30 halogenated PAHs (Hl-PAHs), including 10 chlorinated PAHs (Cl-PAHs) and 20 brominated PAHs (Br-PAHs). Concentrations of target PAHs were highest in industrial and municipal areas situated along the coast of the Bohai Sea, including Huludao, Yingkou, Tianjin, and Dandong, constituting a substantial mass inventory. All target PAHs showed increasing trends since the 1950s, reflecting the development history of South Korea and China. High molecular weight PAHs accumulated in sampling sites more than low molecular weight PAHs. A positive matrix factorization model showed that the PAH sources were coal and gasoline combustion (35%), diesel combustion (33%), and biomass combustion (32%). Over the last 80 years, the contribution of coal and gasoline combustion increased in all regions, while diesel combustion and biomass combustion varied across regions and over time. Toxicity equivalence values were highest for t-PAHs (>99% contribution), followed by Cl-PAHs, Br-PAHs, and e-PAHs. Concentrations of t-PAHs in Eastern Asia seas have increased since the 1900s, particularly in intertidal areas compared to subtidal areas. The intertidal zone removed 83% of the total flux of PAHs originating from land and thus appears to serve as a buffer zone against marine pollution. Overall, this study provides novel knowledge on the historical trends and sources of PAHs on a large scale, along with insights for future coastal management.
Collapse
Affiliation(s)
- Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmin Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moo Joon Lee
- Department of Marine Biotechnology, Anyang University, Incheon, Ganghwagun 23038, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Incheon, Ganghwagun 23038, Republic of Korea
| | - Kyungsik Choi
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tieyu Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Byers JE, Blaze JA, Dodd AC, Hall HL, Gribben PE. Exotic asphyxiation: interactions between invasive species and hypoxia. Biol Rev Camb Philos Soc 2023; 98:150-167. [PMID: 36097368 PMCID: PMC10087183 DOI: 10.1111/brv.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023]
Abstract
Non-indigenous species (NIS) and hypoxia (<2 mg O2 l-1 ) can disturb and restructure aquatic communities. Both are heavily influenced by human activities and are intensifying with global change. As these disturbances increase, understanding how they interact to affect native species and systems is essential. To expose patterns, outcomes, and generalizations, we thoroughly reviewed the biological invasion literature and compiled 100 studies that examine the interaction of hypoxia and NIS. We found that 64% of studies showed that NIS are tolerant of hypoxia, and 62% showed that NIS perform better than native species under hypoxia. Only one-quarter of studies examined NIS as creators of hypoxia; thus, NIS are more often considered passengers associated with hypoxia, rather than drivers of it. Paradoxically, the NIS that most commonly create hypoxia are primary producers. Taxa like molluscs are typically more hypoxia tolerant than mobile taxa like fish and crustaceans. Most studies examine individual-level or localized responses to hypoxia; however, the most extensive impacts occur when hypoxia associated with NIS affects communities and ecosystems. We discuss how these influences of hypoxia at higher levels of organization better inform net outcomes of the biological invasion process, i.e. establishment, spread, and impact, and are thus most useful to management. Our review identifies wide variation in the way in which the interaction between hypoxia and NIS is studied in the literature, and suggests ways to address the number of variables that affect their interaction and refine insight gleaned from future studies. We also identify a clear need for resource management to consider the interactive effects of these two global stressors which are almost exclusively managed independently.
Collapse
Affiliation(s)
- James E. Byers
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Julie A. Blaze
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Alannah C. Dodd
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Hannah L. Hall
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Paul E. Gribben
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental ScienceUniversity of New South WalesRm 4115, Building E26SydneyNew South Wales2052Australia
- Sydney Institute of Marine ScienceChowder Bay RdMosmanNew South Wales2088Australia
| |
Collapse
|
3
|
Park SY, Lee J, Hong S, Kim T, Yoon SJ, Lee C, Kwon BO, Hu W, Wang T, Khim JS. Evaluation of ecotoxicological effects associated with coastal sediments of the Yellow Sea large marine ecosystem using the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2022; 181:113937. [PMID: 35850088 DOI: 10.1016/j.marpolbul.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A copepod bioassay with Tigriopus japonicus was applied to evaluate the relative ecotoxicity of sediments in the Yellow and Bohai seas, and contributions of individual PAHs to copepod toxicity were evaluated. Mean toxicity was greatest in the Yellow Sea of China, followed by the Bohai Sea and Yellow Sea of Korea. Elevated concentrations of sedimentary PAHs, alkylphenols, and styrene oligomers back-supported the significant toxicities observed in bioassay. Copepod toxicity in relation to PAHs indicated the greatest contribution by indeno[1,2,3-c,d]pyrene. However, lacked contribution by PAHs, viz., 2.4 and 3.0 % for the total immobilization and mortality, respectively, indicated a large proportion of unknown toxicants being widely distributed along the Yellow Sea Large Marine Ecosystem (YSLME) coastline. Overall, the present study provides useful baseline information for evaluating the potential sedimentary toxicants, with emphasizing further investigation to identify the unknown toxicants at an LME scale, and elsewhere.
Collapse
Affiliation(s)
- Shin Yeong Park
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Wenyou Hu
- Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Kwon I, Lee C, Lee J, Kim B, Park SY, Kim J, Lee J, Noh J, Kwon BO, Son S, Yoon HJ, Nam J, Choi K, Khim JS. The first national scale evaluation of total nitrogen stocks and burial rates of intertidal sediments along the entire coast of South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154320. [PMID: 35259370 DOI: 10.1016/j.scitotenv.2022.154320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The regulating ecosystem services, such as water purification, that tidal flats provide by nitrogen (N) burial are being increasingly recognized; yet, quantitative estimates remain limited. Here, we first present nationwide evaluation of total N stocks and burial rates in the Korean tidal flats, based on a 3 year long monitoring assessment combined with remote sensing approach. A total of 20 intertidal flats representing 7 provinces of South Korea were extensively surveyed in 2018-20. The sediment textural type (sand, mixed, and mud) classified from remotely sensed imagery was significantly correlated to that identified from field data (p < 0.01), warranting a nationwide estimate of total N stocks. The estimated total N stocks and burial rates in the tidal flats of Korea were 1.5 Tg N and 8,192 Mg N yr-1, respectively. Total N stocks significantly varied by region, province, morphology, salinity, and land use type adjacent to the corresponding tidal flats. In general, the N stocks of tidal flats were influenced by the degree of terrestrial N inputs to the ocean. The N stocks were significantly correlated with several physical parameters, such as precipitation (p < 0.05) and tide (p < 0.01). Among the sediment properties, the mud content was found to be the key factor determining the total N stocks across the 20 intertidal flats (p < 0.01). Finally, by applying the environmental value for N removal (USD km-2 yr-1) to the tidal flat area (km2), the economic value of the total N removal was estimated as ~233 Million USD yr-1 in Korea and ~15 Billion USD yr-1 globally. Overall, the present work confirms the valuable ecosystem service of tidal flat's cost-efficient N removal capacity, highlighting marine ecosystem service.
Collapse
Affiliation(s)
- Inha Kwon
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmin Lee
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomgi Kim
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Shin Yeong Park
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongsoo Kim
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Sujin Son
- Department of GeoAI, Sundosoft Ltd., Seoul 08503, Republic of Korea
| | - Hoon Joo Yoon
- Department of GeoAI, Sundosoft Ltd., Seoul 08503, Republic of Korea
| | - Jungho Nam
- Marine Policy Research Division, Korea Maritime Institute, Busan 49111, Republic of Korea
| | - Kyungsik Choi
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Exploring the Marine Ecological Environment Management in China: Evolution, Challenges and Prospects. SUSTAINABILITY 2022. [DOI: 10.3390/su14020912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
China’s management of marine ecological environments has experienced a development process that has gone from weak to strong. However, whether there are problems such as lack of systems, invalid systems, and system conflicts in the current management of marine ecological environments, and how to conduct collaborative governance among various complex subjects, remain to be answered. This paper first summarizes how China’s marine ecological environment management policy has evolved, which can be divided into five stages: the foundation stage (1949–1980), the initial establishment stage (1981–1995), the steady advancement stage (1996–2005), the deepening adjustment stage (2006–2010), and the strategic development stage (2011–present), and analyzes its characteristics at different stages. Then, this paper further explores the inherent dilemmas in the Chinese marine ecological environment management system. Finally, combined with the practical experience of marine ecological environment management in developed countries, this paper fully considers the division of responsibilities and mutual checks and balances of different subjects, flexibly configures various policy tools, and explores the mechanism of collaborative governance of marine ecological environment from the levels of government, market, the public and social organizations, so as to gradually improve the modern marine ecological environment management system and provide a reference for the government’s governance activities.
Collapse
|
6
|
Hwang K, Lee J, Kwon I, Park SY, Yoon SJ, Lee J, Kim B, Kim T, Kwon BO, Hong S, Lee MJ, Hu W, Wang T, Choi K, Ryu J, Khim JS. Large-scale sediment toxicity assessment over the 15,000 km of coastline in the Yellow and Bohai seas, East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148371. [PMID: 34146811 DOI: 10.1016/j.scitotenv.2021.148371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The Yellow and Bohai seas have long been contaminated by persistent toxic substances (PTSs) from numerous (un)known anthropogenic sources. In this study, we used Vibrio fischeri bioassay to evaluate ecotoxicological profiles associated with sedimentary PTSs contamination at a large marine ecosystem (LME) scale. A total of 125 surface sediments collected from the coastal areas of the Yellow and Bohai seas were analyzed both for aqueous and organic extracts. Not surprisingly, the results indicated site-dependent toxicities, but most sites were identified as non-toxic to V. fischeri. For aqueous extracts and organic extracts, 13% and 8% of samples, respectively exhibited marginal toxicity, while 0% and 2% of samples exhibited moderate toxicity. However, it should be noted that organic extracts (mean TU = 56) induced stronger toxicities than aqueous samples (mean TU = 0.4). This result generally back-supported the high toxicity potentials associated with sedimentary sink of organic pollutants. Several PTSs measured in the samples indicated a significant contribution to the observed V. fischeri toxicities. Of note, polycyclic aromatic hydrocarbons (PAHs; r = 0.28, p < 0.05), styrene oligomers (r = 0.41, p < 0.01), and alkylphenols (r = 0.38, p < 0.05) showed significant associations to the observed bacterial inhibition. Among PAHs, benzo[a]anthracene and phenanthrene exhibited a significant contribution to the observed V. fischeri toxicities. Meantime, salinity which reflects the distance from the point sources of land-driven pollutants along the rivers and estuaries in the Yellow and Bohai seas was a key environmental variable representing the sample toxicities. Overall, the present study provides baseline information for evaluating the potential sediment toxicity to implement responsible coastal management at an LME scale, and elsewhere.
Collapse
Affiliation(s)
- Kyuwon Hwang
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Inha Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Shin Yeong Park
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmin Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomgi Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moo Joon Lee
- Department of Marine Biotechnology, Anyang University, Ganghwagun, Incheon 23038, Republic of Korea
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tieyu Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Kyungsik Choi
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Ganghwagun, Incheon 23038, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Léger JAD, Athanasio CG, Zhera A, Chauhan MF, Simmons DBD. Hypoxic responses in Oncorhynchus mykiss involve angiogenesis, lipid, and lactate metabolism, which may be triggered by the cortisol stress response and epigenetic methylation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100860. [PMID: 34126312 DOI: 10.1016/j.cbd.2021.100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The incidence of hypoxia in water bodies is increasing more rapidly than aquatic life can adapt. This study aimed to determine the effects of hypoxia on fish physiology, as well as protein expression through proteomics. To do this, 40 rainbow trout were divided into normoxic control (11.5 mg/L dissolved oxygen) and hypoxic treatment (5 mg/L dissolved oxygen) tanks for a period of 7 days. Fish were then anesthetized and blood was sampled. Fish were then euthanized and heart and liver samples were taken. Blood glucose, cortisol and lipid, body and liver mass, fork length, hematocrit and, blood cell counts and global heart methylation were measured. Red blood cell counts were significantly lower, while hematocrit and mean corpuscular volume were significantly higher in the hypoxic treatment. Global DNA methylation was significantly decreased in hypoxic heart tissue. Plasma cortisol and 18:1 monoacylglyerol increased, while 15:0-18:1 phosphatidylethanolamine, and 18:1 lysophosphatidylethanolamine decreased in plasma of rainbow trout under hypoxic conditions. Plasma proteomics revealed 70 significantly altered proteins (p < 0.05) in the hypoxia treatment (Data are available via ProteomeXchange with identifier PXD026589). Many of these molecular changes appear to be related to the observed increase in red blood cell volume and epigenetic modifications, as well as to angiogenesis, lipid, and glucose metabolism. This study highlights a range of cellular and molecular responses in the blood and plasma of freshwater fish that may be phenotypic adaptions to hypoxia, and that could aid in diagnosing the health status of wild fish populations using several, potential, discovered biomarkers.
Collapse
Affiliation(s)
- Jessica A D Léger
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Camila G Athanasio
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| | - Aaleen Zhera
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Mohammed Faiz Chauhan
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Denina B D Simmons
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| |
Collapse
|
8
|
Aretoulaki E, Ponis S, Plakas G, Agalianos K. Α systematic meta-review analysis of review papers in the marine plastic pollution literature. MARINE POLLUTION BULLETIN 2020; 161:111690. [PMID: 33039791 DOI: 10.1016/j.marpolbul.2020.111690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The omnipresence of plastic particles in marine ecosystems, a.k.a. Marine Plastic Pollution (MPP) constitutes a major environmental and socioeconomic threat. In the last decade, the realization of the severity of the MPP problem by international organizations, governments and policy makers worldwide, has triggered the publication of a large number of review papers studying the current state of the art of MPP, from a plethora of different perspectives. This study attempts to classify the existing review efforts, by conducting a systematic analysis of review papers on MPP, published from 2000 to 2019. A sample of 114 review studies, retrieved from the SCOPUS database, are classified based on a number of carefully selected coding criteria and processed in order to produce a set of meaningful descriptive statistics and visualizations. Ultimately, the objective of this paper is to synthesize the different perspectives on MPP, assess the research progress and highlight future research directions.
Collapse
Affiliation(s)
- Eleni Aretoulaki
- National Technical University Athens, School of Mechanical Engineering, Ir. Politechniou 9, Zografou 157 73, Athens, Greece.
| | - Stavros Ponis
- National Technical University Athens, School of Mechanical Engineering, Ir. Politechniou 9, Zografou 157 73, Athens, Greece
| | - George Plakas
- National Technical University Athens, School of Mechanical Engineering, Ir. Politechniou 9, Zografou 157 73, Athens, Greece
| | - Konstantinos Agalianos
- National Technical University Athens, School of Mechanical Engineering, Ir. Politechniou 9, Zografou 157 73, Athens, Greece
| |
Collapse
|
9
|
Chen J, Liao J, Wei C. Coking wastewater treatment plant as a sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and ecological risk assessment. Sci Rep 2020; 10:7833. [PMID: 32398695 PMCID: PMC7217903 DOI: 10.1038/s41598-020-64835-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in sediments of Maba River, a major tributary of Beijiang River (South China). A total of 13 samples from Maba River and its tributary, Meihua River, were analyzed for 16 PAHs. The total concentration of 16 PAHs (ΣPAH) in high and low water period ranged between 47.61 to 25480.98 ng g-1, with a mean concentration of 4382.98 ng g-1, and 60.30 to 15956.62 ng g-1 with a mean concentration of 3664.32 ng g-1, respectively. Three-ring and four-ring PAHs were the dominant species. It was concluded that a pattern of pyrolytic input as a major source of PAHs in sediments through the molecular ratio method for the source identification, such as HMW/LMW PAHs, Flu/(Flu+Pyr), IcdP/(IcdP+BghiP) and BaA/(BaA+Chr). It is suggested that the pollution emission from the iron and steel plant might be the most important sources of PAHs into Maba River water system. The threat of PAHs contamination to biota of the river was assessed using effect range low (ERL) and effect range median (ERM) values, which suggested that PAHs in Maba River and its tributary had already caused ecological risks.
Collapse
Affiliation(s)
- Jundong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Jianbo Liao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P.R. China.
| |
Collapse
|
10
|
Chu SO, Lee C, Noh J, Song SJ, Hong S, Ryu J, Lee JS, Nam J, Kwon BO, Khim JS. Effects of polluted and non-polluted suspended sediments on the oxygen consumption rate of olive flounder, Paralichthys olivaceus. MARINE POLLUTION BULLETIN 2020; 154:111113. [PMID: 32319928 DOI: 10.1016/j.marpolbul.2020.111113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The potential ecological impacts of elevated suspended sediments (SS) in coastal areas due to human activities remain unclear. In particular, physiological response of benthic fish to SS exposure in polluted environment has not been documented. We determined sub-lethal toxicity of polluted and non-polluted SS to olive flounder. Test organism was exposed to varying concentrations of SS (0-4000 mg L-1) and real-time oxygen consumption rate (OCR) was measured for 12 h. The early-juvenile was sensitive to SS, particularly at >500 mg L-1, but late-juvenile was tolerant up to 4000 mg SS L-1. Metal polluted SS (HQmetal > 1) increased OCR in general, particularly at >1000 SS mg L-1. Combined effect of copper and SS exposure on fish was either synergistic or antagonistic. Overall, potential adverse effect of polluted SS on fish greatly varied at different life stage and/or by metal pollution gradients.
Collapse
Affiliation(s)
- Seung Oh Chu
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Sung Joon Song
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Ganghwa-gun, Incheon, Republic of Korea
| | - Jung-Suk Lee
- Neo Environmental Business Co. (NeoEnBiz), Bucheon 14523, Republic of Korea
| | - Jungho Nam
- Korea Maritime Institute, Busan 49111, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Yoon SJ, Hong S, Kim S, Lee J, Kim T, Kim B, Kwon BO, Zhou Y, Shi B, Liu P, Hu W, Huang B, Wang T, Khim JS. Large-scale monitoring and ecological risk assessment of persistent toxic substances in riverine, estuarine, and coastal sediments of the Yellow and Bohai seas. ENVIRONMENT INTERNATIONAL 2020; 137:105517. [PMID: 32018133 DOI: 10.1016/j.envint.2020.105517] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The Yellow and Bohai seas comprise one of the most rapidly developing regions in the world, but efforts to assess coastal pollution by persistent toxic substances (PTSs) on wide spatial scale are lacking. The present study aimed to (1) measure the concentrations of PTSs, such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), and styrene oligomers (SOs) via large-scale sediment monitoring (total of 125 locations), (2) assess potential ecological risk of PTSs in sediments to coastal ecosystems, (3) estimate various sources and fresh inputs of PTSs, (4) determine distribution patterns of PTSs by human activities and land-use type, and (5) address decadal (2008-2018) changes in distributions of PTSs. The high concentrations of PAHs [> 7000 ng g-1 dry weight (dw)] in sediments were detected in Nantong in the Yellow Sea of China (YSC) and Huludao and Qinhuangdao in the Bohai Sea (BS), whereas lesser concentrations (< 200 ng g-1 dw) were detected in the Yellow Sea of Korea (YSK). We found relatively high concentrations of sedimentary APs and SOs in Nantong, Huludao, and Qinhuangdao from the YSC and BS regions, but corresponding concentrations were generally below < 100 ng g-1 dw in other locations. Concentrations of PAHs at 38 locations (30% of YSC and BS) posed a potential risk to aquatic ecosystems, whereas relatively low risk concentrations occurred in all locations of YSK. The main source of PAHs (concentrated in YSC and BS) were by-products of diesel and gasoline combustion (42% of total concentration), whereas biomass combustion (24%) dominated in YSK. Fresh inputs of PTSs indicated that the generation and use of PTSs continue across all regions and locations. Among PTSs, concentrations of PAHs were significantly associated with location (p < 0.05) relative to land-use within a given region, whereas concentrations of APs and SOs showed no significant relationships (p > 0.05) among or within regions. Over time, concentrations of PAHs have generally declined, but sediment contamination has increased at some locations in China, with sources shifting from a mixture of PAHs types to those linked to diesel and gasoline combustion. Additional studies are needed on the fate and potential ecological risk posed by certain PTSs in hotspots. This is one of the first efforts providing backgrounds on PTS pollution in the large marine ecosystem of the Yellow and Bohai seas.
Collapse
Affiliation(s)
- Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Seonju Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jongmin Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Beomgi Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yunqiao Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Bin Shi
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Peng Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Tieyu Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Abstract
This paper aims to unearth the ways in which the Chinese government applies policies to govern the marine environment effectively. Co-word analysis, word frequency analysis and multi-dimensional scaling (MDS) were chosen to analyze the evolution of marine environmental policy. This paper focuses on the marine environmental governance policy of China since 1982, takes the five-year plan for marine economic development as the node, divides these policies into five stages: The germination period, the 10th Five-Year Plan period, the 11th Five-Year Plan period, the 12th Five-Year Plan period and the 13th Five-Year Plan period. The evolution characteristics of China’s marine environmental governance policy are analyzed accordingly and include the diversification of participants, changes from ex-post control to ex-ante control, diversification of policy tools, and expansion of governance scope. Finally, we elucidate the challenges regarding the formulation and implementation of China’s marine environmental governance policies in the future.
Collapse
|
13
|
Zhang X, You J, Khim JS, Wang T. Coastal ecosystem in East Asia: Pollution and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:990-992. [PMID: 31003780 DOI: 10.1016/j.envpol.2019.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|