1
|
Shen C, Wang M, Su J, Sun H, Hu W, Lin K, Wu J, Liu F, Chen X, Sha C. Characteristics, Source Apportionment, and Health Risk of Heavy Metals in the Soils of Peri-urban Shanghai Chongming Island. ACS OMEGA 2024; 9:42734-42745. [PMID: 39464434 PMCID: PMC11500163 DOI: 10.1021/acsomega.4c03647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Heavy metals resulting from human activities pose significant threats to human health and the soil ecosystem. In the current study, 917 soil samples from Chongming Island in Shanghai, China, were examined for eight heavy metals. The sources of contamination were identified by using a Positive Matrix Factorization (PMF) model. Meanwhile, spatial interpolation and Moran's I index were applied to validate the model in terms of spatial linkages. The results revealed that the average concentrations of As, Cd, Hg, Pb, Cr, Cu, Zn, and Ni in the soil were 8.87, 0.19, 0.06, 28.75, 76.01, 37.74, 88.93, and 30.33 mg kg-1, respectively. The PMF analysis proved that heavy metals in the soil of the study area are mainly influenced by traffic sources (Cr and Pb), industrial sources (Zn, Cd, and Cu), station sources (Hg), and natural sources (As and Ni), with contribution rates of 22.23, 26.25, 36.38, and 15.14%, respectively. The combination of Moran's index and the spatial analysis method not only verified the analytical results of the receptor model on the one hand but also served as a supplementary explanation for the sources of heavy metals in the soil. The health risk assessment indicated that noncarcinogenic values were below the threshold values. The total carcinogenic risk (R T) of different heavy metals has a descending order of Cr > As > Ni > Cd. The R T values of multiple heavy metals for children and adults were 5.28 × 10-04 and 4.10 × 10-05, respectively, which were close to the risk threshold. Therefore, attention should be paid to the health risks, especially for children's skin contact, which is the main exposure pathway.
Collapse
Affiliation(s)
- Cheng Shen
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Min Wang
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Jinghua Su
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Huilun Sun
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Wenan Hu
- School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kuangfei Lin
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Jian Wu
- Shanghai
Technology Center for Reduction of Pollution and Carbon Emissions, Shanghai 200235, China
| | - Fuwen Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiurong Chen
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Chenyan Sha
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
2
|
Duan H, Wang Y, Shen H, Ren C, Li J, Li J, Wang Y, Su Y. Source-specific probabilistic health risk assessment of dust PAHs in urban parks based on positive matrix factorization and Monte Carlo simulation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:451. [PMID: 39316207 DOI: 10.1007/s10653-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Understanding the health risks of polycyclic aromatic hydrocarbons (PAHs) in dust from city parks and prioritizing sources for control are essential for public health and pollution management. The combination of Source-specific and Monte Carlo not only reduces management costs, but also improves the accuracy of assessments. To evaluate the sources of PAHs in urban park dust and the possible health risks caused by different sources, dust samples from 13 popular parks in Kaifeng City were analyzed for PAHs using gas chromatograph-mass spectrometer (GC-MS). The results showed that the surface dust PAH content in the study area ranged from 332.34 µg·kg-1 to 7823.03 µg·kg-1, with a mean value of 1756.59 µg·kg-1. Nemerow Composite Pollution Index in the study area ranged from 0.32 to 14.41, with a mean of 2.24, indicating that the overall pollution warrants attention. Four pollution sources were identified using the positive matrix factorization (PMF) model: transportation source, transportation-coal and biomass combustion source, coke oven emission source, and petroleum source, with contributions of 33.74%, 25.59%, 22.14%, and 18.54%, respectively. The Monte Carlo cancer risk simulation results indicated that park dust PAHs pose a potential cancer risk to all three populations (children, adult male and adult female). Additionally, the cancer risk for children was generally higher than that for adult males and females, with transportation sources being the main contributor to the carcinogenic risk. Lastly, sensitivity analyses results showed that the toxic equivalent concentration (CS) is the parameter contributing the most to carcinogenic risk, followed by Exposure duration (ED).
Collapse
Affiliation(s)
- Haijing Duan
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanfeng Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Haoxin Shen
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Chong Ren
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jing Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jiaheng Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanxia Su
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China.
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Hassan RO, Othman Abdullah F, Salahuddin Ali D, Omar Othman H, Aziz Darwesh D. Evaluating the health risks of heavy metal pollution in dust storms in the city of Erbil in the Kurdistan region of Iraq. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3084-3100. [PMID: 38146170 DOI: 10.1080/09603123.2023.2294472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
This study examined the heavy metal content in dust storm samples from Erbil, Iraq, along with four other locations. Using ICP-MS, Cd, Ni, Cr, Hg, Pb, Zn, Mn, Cu, Co, Fe and As were determined. The health risks due to exposure to these metals through ingestion, inhalation and dermal contact were assessed for both adults and children. Non-carcinogenic risks were evaluated using the hazard quotient (HQ) and hazard index (HI). Children faced a cumulative risk with HQ > 0.2 for As and Cr and HI > 1. The carcinogenic risk was measured using the carcinogenic risk factor (CRF), which fell below 10-6, indicating low cancer risk. However, children had a higher cancer risk (10-4 to 10-6) for As. The pollution indices revealed varying pollution levels from unpolluted to moderately polluted in the studied areas. Overall, this study highlights potential health risks associated with heavy metal exposure during dust storms, particularly for children, and emphasises the importance of addressing these concerns to safeguard public health.
Collapse
Affiliation(s)
- Rebwar Omar Hassan
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq
- Department of Pharmacognosy, Gasha Technical Institute, Erbil, Iraq
| | - Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
| | - Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy , Tishk International University, Erbil, Iraq
| | - Dilshad Aziz Darwesh
- Department of Environmental Science and Health, College of Science, Salahaddin University, Erbil, Iraq
| |
Collapse
|
4
|
Sadouni F, Asgari HM, Amanipoor H, Heidari M, Mojiri-Forushani H. Integrative assessment of urban dust polycyclic aromatic hydrocarbons using ground and satellite data in Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1052. [PMID: 37589823 DOI: 10.1007/s10661-023-11602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
Recently, for quick urbanization and industrialization, pollutants, especially urban dust, have posed many threats to the human environment. Polycyclic aromatic hydrocarbons (PAHs) are regarded as the main dangerous pollutants that are widespread, persistent, and carcinogenic. The present work aimed to investigate the contamination and sources of PAHs, as well as to assess the risk of cancer for 16 priority PAHs, in urban dust samples in Ahvaz, Isfahan, and Shiraz cities in Iran. We measured PAH concentrations by gas chromatography-mass spectrometry (GC-MS). The average concentrations of the 16 PAHs in Ahvaz, Isfahan, and Shiraz were 6215.11, 7611.03, and 7810.37 μg kg-1, respectively. The domination of low-molecular-weight (LMW) PAHs was observed in Ahvaz, while maximum contribution was observed for high-molecular-weight (HMW) PAHs in Esfahan and Shiraz. For PAHs' source identification, diagnostic ratio, correlation analysis, clustering, and positive matrix factorization (PMF) model were used. PAHs had a combustion (coal and wood, oil, fossil fuels) and gasoline/diesel engine emissions in all cities. Comparative studies suggest that the PAH compounds' level is higher in the research area than in other countries, except for China and India. Also, the pollution of urban dust PAHs has increased over time compared to previous studies in the same cities. The cancer risk from exposure to dust contaminated with PAHs was assessed using the Incremental Lifetime Cancer Risk (ILCR) model. According to the findings, a high risk of exposure to cancer was observed in Ahvaz, Isfahan, and Shiraz. However, compared to adults, children are at higher risk of cancer in their daily lives via dermal contact and unconscious ingestion. Based on the ILCR values, the risk of cancer is in the order of Shiraz > Isfahan > Ahvaz. To assess air pollutants and their effects on urban dust, TROPOMI onboard the Sentinel-5P data were used in the studied cities during 2018-2021. The results show that Ahvaz has different high levels of CO compared to the other 2 cities. Also, Isfahan has different high levels of NO2 compared to the other 2 cities, but Shiraz has different low levels of O3. According to satellite time series data, the trend of the Aerosol Absorbing Index (AAI) has been increasing, while there was a decreasing trend in AAI from the beginning of the COVID-19 pandemic until 12 months later. Therefore, the natural and anthropogenic sources of urban dust PAHs have been increasing in all studied cities. Our findings show that PAH compounds in urban dust pose a significant threat to human health. Therefore, strategic management and planning are vital in reducing urban dust pollution.
Collapse
Affiliation(s)
- Fatemeh Sadouni
- Department of Environment, College of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Hossien Mohammad Asgari
- Department of Environment, College of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Hakimeh Amanipoor
- Department of Geology, College of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Majid Heidari
- Department of Geology, College of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | |
Collapse
|
5
|
Lima LHV, do Nascimento CWA, da Silva FBV, Araújo PRM. Baseline concentrations, source apportionment, and probabilistic risk assessment of heavy metals in urban street dust in Northeast Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159750. [PMID: 36309279 DOI: 10.1016/j.scitotenv.2022.159750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution by accelerating urbanization is an emerging socio-environmental issue that poses a potential risk to human health and the environment. In this scenario, street dust is a primary source of contaminants. Here, the metal concentrations in street dust of one of the biggest Brazilian cities were assessed aiming to identify and quantify the sources of contamination. The metal bioaccessibility and estimated probabilistic (non)-carcinogenic risks to humans were also evaluated. Thirty-six dust samples were collected in the metropolitan region of Recife. Results showed that the traffic governed the distribution and accumulation of metals in street dust. Emissions from vehicles were the primary source (> 70 %) of heavy metals, except for Cd, which had a mixed origin (natural, traffic, and industrial). Moderate to heavy dust contamination by Ba, Cu, Mn, Pb, and Zn were found, with a very high potential ecological risk. The main exposure route depended on the metal. Barium, Cu, and Pb had ingestion rather than dermal contact as the main route of exposure, while inhalation and dermal contact posed the main risks to Mn and Cr, respectively. The risk for children was higher than for adults. The probabilities of unacceptable carcinogenic risk scenarios (TCRI >10-6) for children and adults were 27 and 4 %, respectively, with Cr being the most concerning metal for the health of the urban population.
Collapse
Affiliation(s)
- Luiz Henrique Vieira Lima
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | | | - Fernando Bruno Vieira da Silva
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | - Paula Renata Muniz Araújo
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
6
|
Yang Y, Lu X, Fan P, Yu B, Wang L, Lei K, Zuo L. Multi-element features and trace metal sources of road sediment from a mega heavy industrial city in North China. CHEMOSPHERE 2023; 311:137093. [PMID: 36332740 DOI: 10.1016/j.chemosphere.2022.137093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
As the primary carrier of harmful elements, road sediment poses severe hazards to human health and ecological environment, especially in megacities. Based on the industrial cities in North China, this research focused on the multi-element features and the pollution levels, sources, and spatial distributions of trace metals in road sediment of Shijiazhuang. The mean levels of P (928.4 mg kg-1), S (1446.2 mg kg-1), Cl (783.9 mg kg-1), Br (5.3 mg kg-1), Na2O (2.0%), CaO (9.9%), Co (36.0 mg kg-1), Pb (38.0 mg kg-1), Cu (34.7 mg g-1), Zn (149.1 mg kg-1), Ba (518.1 mg kg-1), and Sr (224.9 mg kg-1) in road sediment were greater than their soil background values. Trace metals in most samples was moderately (75%) and heavily contaminated (15.6%). The industrial areas, congested roads, and residential areas in the northeast, middle and south of Shijiazhuang are the hotspots of trace metals pollution. A comprehensive analysis of trace metals sources indicated that Ni, V, Ga, Rb, Y, Sc, La, Ce, Zr, and Hf were mainly from natural source, which contributed to 34.2% of the total trace metals concentrations. Cu, Pb, Zn, Cr, Ba, Sr, and Mn primarily originated from mixed source, which accounted for 46.5%. Co principally came from building source, which accounted for 19.3%. This study shows that industrial discharges, construction dust and traffic emissions are the primary anthropogenic sources of trace metals in road sediment in the study area.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Nematollahi MJ, Rastegari Mehr M, Shakeri A, Amjadian K, Ebrahimi P, Pirouei M. Polycyclic aromatic hydrocarbons (PAHs) in soils around oil refineries; Case study: Erbil and Kirkuk refineries, Iraq- A modelling approach. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:699-716. [PMID: 36406609 PMCID: PMC9672271 DOI: 10.1007/s40201-022-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/01/2022] [Indexed: 06/11/2023]
Abstract
Purpose Political tensions in Iraq have made attention to environmental issues not a priority for the authorities. Therefore, the influence of Kirkuk and Erbil refineries on contamination of the surrounding soil by polycyclic aromatic hydrocarbons (PAHs), were studied. Methods 25 soil samples were collected and analyzed using high-performance liquid chromatography (HPLC), and their fate and health risk were investigated using Exposure Model for Soil-Organic Fate and Transport (EMSOFT) and the Monte Carlo Simulation (MCS) model. Results High ∑PAHs contamination (raged from 212.8 to 12,790.4 ppb), the dominance of pyrogenic sources, and high ecological risk were observed. The mean hazard index values for children (0.043) are higher than those for adults (0.02), while the incremental lifetime carcinogenic risk values for adults (8.50E-4) are greater than those for children (5.27E-4). Pyrene is the significant soil PAH from the depth of 3 cm downwards, while phenanthrene and fluorene are the major constituents of PAHs between the depth of 3 and 10 cm. Also, low molecular weight PAHs significantly decrease in soil layers over the time frame, and maximum PAHs concentrations belong to high molecular weight PAHs over 20 years. Conclusion Using an appropriate monitoring system, as well as sound management decisions to reduce the emission of environmental pollution are needed. Also, it seems that the use of constant values for soil physicochemical parameters such as moisture and porosity, despite seasonal variations, may result in uncertainty for fate and transport modelling. Therefore, seasonal sampling and analysis of soil parameters, would be helpful. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-022-00809-y.
Collapse
Affiliation(s)
| | - Meisam Rastegari Mehr
- Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, 15614 Iran
- Water Research Center, Kharazmi University, Tehran, 15614 Iran
| | - Ata Shakeri
- Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, 15614 Iran
- Water Research Center, Kharazmi University, Tehran, 15614 Iran
| | - Keyvan Amjadian
- Department of Petroleum Geoscience, Faculty of Science, Soran University, Soran, Kurdistan Region Iraq
- Scientific Research Center, Soran University, Soran, Kurdistan Region Iraq
| | - Pooria Ebrahimi
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Mohammad Pirouei
- Department of Petroleum Geoscience, Faculty of Science, Soran University, Soran, Kurdistan Region Iraq
- Scientific Research Center, Soran University, Soran, Kurdistan Region Iraq
| |
Collapse
|
8
|
Ding H, Lan J, Yao S, Zhang D, Han B, Pan G, Li X. Evolution of polycyclic aromatic hydrocarbons in the surface sediment of southern Jiaozhou Bay in northern China after an accident of oil pipeline explosion. MARINE POLLUTION BULLETIN 2022; 183:114039. [PMID: 35986952 DOI: 10.1016/j.marpolbul.2022.114039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The 2013 "Qingdao oil pipeline explosion" contaminated about 2.5 km of shoreline in the Jiaozhou Bay area and aroused widespread concern because of the serious casualties even though it was not the most severe oil-spill contamination in China. To evaluate the long-term impact, we collected thirty-three surface sediment samples after 3 years of the accident, with sixteen polycyclic aromatic hydrocarbons (PAHs) detected. Spatial-temporal variation in PAHs revealed that a minimal impact might still be present after 3 years. Source analysis combined with a one-way ANOVA showed that pyrolytic sources were consistently predominant. The environmental impact was already minimal 3 years later and negligible thereafter. Although the cancer risk has decreased over the years, there has always been a potential hazard to human for specific occupation, with all of the risk values exceeded 10-6. This study offers a reference for assessing the long-term impact of oil spills in similar bay areas.
Collapse
Affiliation(s)
- Huiping Ding
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Jie Lan
- Qingdao Institute of Scientific & Technical Information, Qingdao 266003, China.
| | - Shuo Yao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Gang Pan
- School of Humanities, York St John University, York YO31 7EX, UK
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
9
|
From dust to the sources: The first quantitative assessment of the relative contributions of emissions sources to elements (toxic and non-toxic) in the urban roads of Tehran, Iran. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Khodadadi N, Amini A, Dehbandi R. Contamination, probabilistic health risk assessment and quantitative source apportionment of potentially toxic metals (PTMs) in street dust of a highly developed city in north of Iran. ENVIRONMENTAL RESEARCH 2022; 210:112962. [PMID: 35182599 DOI: 10.1016/j.envres.2022.112962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Street dust (SD) are the particulates that primarily originated from Earth's crust and secondary alteration and erosion of natural and anthropogenic materials. The multi-dimensional pollution and health risk assessment of potentially toxic metals (PTMs) in these particles remain unknown in the majority of world urban areas. The elemental concentration, mineralogy, and micro-morphology of street dust were determined by inductively coupled plasma mass spectrometry (ICP-MS), SEM-EDX, XRD, and petrographical observation. Multivariate statistical analysis combined with positive matrix factorization (PMF) and Monte-Carlo simulations were applied to source identification and health risk assessment of PTMs. A severe enrichment of Sb, Cu and Zn and moderate contamination of Sn, Pb, and Cr were observed in the samples particularly in the areas with higher loads of traffic. The results of geochemical indices showed that K, Al, Mn, and V have natural/geogenic origins. While Sb, Pb, Cr, Cu, and Zn showed an enrichment relative to the background values with dominant anthropogenic sources. The results were confirmed by source appointment techniques. The results of deterministic and probabilistic health risk assessment by Monte-Carlo simulations revealed the non-carcinogenic nature of As, Mn, and Pb for children mainly through skin and ingestion routes. It can be concluded that the chemical compound of street dust in Gorgan city is affected by both natural (loess deposits) and anthropogenic sources. Also, children are in the risk of exposure to PTMs in street dust more than adults.
Collapse
Affiliation(s)
| | - Arash Amini
- Geology Department, Faculty of Sciences, Golestan University, Gorgan, Iran.
| | - Reza Dehbandi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Živančev J, Antić I, Buljovčić M, Đurišić-Mladenović N. A case study on the occurrence of polycyclic aromatic hydrocarbons in indoor dust of Serbian households: Distribution, source apportionment and health risk assessment. CHEMOSPHERE 2022; 295:133856. [PMID: 35122819 DOI: 10.1016/j.chemosphere.2022.133856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted in order to obtain the first insight into the occurrence, potential sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor dust. Samples (n = 47) were collected from households in four settlements in the northern Serbian province of Vojvodina. Total concentrations of 16 EPA priority PAHs in the dust samples varied from 140 to 8265 μg kg-1. Mean and median values for all samples were 1825 and 1404 μg kg-1, respectively. According to the international guidelines for indoor environment, PAH content can be regarded as normal (<500 μg kg-1) for ∼6% of the samples, high (500-5000 μg kg-1) for ∼87% of the samples, and very high (5000-50000 μg kg1) for ∼6% of the samples. In all settlements, PAHs with 4 rings were the most prevalent (accounting for 40-53% of the total PAHs). They were followed by 3-ringed PAHs (29-40%), which indicates rather uniform PAH profiles in the analyzed dust. Based on diagnostic ratios, principal component analysis (PCA), and positive matrix factorization (PMF), pyrogenic sources, such as vehicle emissions and wood combustion were the dominant sources of PAHs in analyzed samples. Health risk assessment, which included incidental ingesting, inhaling and skin contact with PAHs in the analyzed dust, was evaluated by using the incremental lifetime cancer risk (ILCR) model. Median total ILCR was 3.88E-04 for children, and 3.73E-04 for adults. Results revealed that major contribution to quite high total ILCRs was brought by dermal contact and ingestion. Total cancer risk for indoor dust indicated that 85% of the studied locations exceeded 10-4. This implies risk of high concern, with potential adverse health effects. The results are valuable for future observation of PAHs in indoor environment. They are also useful for regional authorities who can use them to create policies which control sources of pollution.
Collapse
Affiliation(s)
- Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| |
Collapse
|
12
|
Konstantinova E, Minkina T, Konstantinov A, Sushkova S, Antonenko E, Kurasova A, Loiko S. Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:409-432. [PMID: 32803735 DOI: 10.1007/s10653-020-00692-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
This study investigated levels and sources of pollution and potential health risks associated with potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust collected from Tyumen city, a large transport centre with one of the highest motorization rates in Russia. Twenty street dust samples were collected from four grades of roads in five different land use areas. Research methods included measurements of physical and chemical properties of street dust, concentrations of 18 PTEs using inductively coupled plasma mass spectrometry, 12 PAHs using high-performance liquid chromatography, and statistical analysis of the data. Concentrations of Ni, Cr, Sb, and Mo, as well as medium and high molecular weight PAHs in urban street dust, were notably higher than in soils within the city, which indicates that transport is the main source of these elements. Concentrations of Cu, Cd, Pb, Zn, Mn, and As in street dust of Tyumen were lower compared to many large cities, while Cr, Ni, and Co were higher. Concentrations of PAH were comparable to other large nonindustrial cities. Total contamination of street dust by both PTEs and PAHs showed more robust relationships with the number of roadway lanes rather than land use. The estimated carcinogenic risks were low in 70% of samples and medium in 30% of samples. Noncarcinogenic risks were attributed to exposure to Co, Ni, V, and As. The total noncarcinogenic risk for adults was found to be negligible, while the risk was found to be moderate for children.
Collapse
Affiliation(s)
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation
| | | | | | - Elena Antonenko
- Southern Federal University, Rostov-on-Don, Russian Federation
| | - Alina Kurasova
- University of Tyumen, 6 Volodarskogo St., Tyumen, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Sergey Loiko
- National Research Tomsk State University, Tomsk, Russian Federation
- Tomsk Oil and Gas Research and Design Institute (TomskNIPIneft), Tomsk, Russian Federation
| |
Collapse
|
13
|
Fan X, Lu X, Yu B, Zuo L, Fan P, Yang Y, Zhuang S, Liu H, Qin Q. Risk and sources of heavy metals and metalloids in dust from university campuses: A case study of Xi'an, China. ENVIRONMENTAL RESEARCH 2021; 202:111703. [PMID: 34284017 DOI: 10.1016/j.envres.2021.111703] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
College students study and live at university for several years; however, the pollution levels, ecological health risks, and sources of heavy metals and metalloids (HMMs) in the dust found at university campuses are still unknown. In this study, dust samples from university campuses in Xi'an were collected and the Zn, Mn, As, Pb, V, Cr, Co, Cu, Ba, and Ni contents were measured using X-ray fluorescence spectrometry. The pollution levels and ecological health risks of these HMMs were evaluated using the geo-accumulation, pollution load, and potential ecological risk indices and a health risk assessment model while their sources were apportioned using positive matrix factorization. The mean HMM concentrations in the dust were higher than the corresponding background values in the topsoil of Shaanxi Province. The Mn, V, Co, As, and Ni concentrations in the dust samples analyzed were within the levels categorized as no pollution by the geo-accumulation index standard, whereas other HMMs caused pollution to different degrees. Assessment of the pollution load index indicated that the dust samples analyzed were moderate contamination with HMMs. Pb and Cu in the dust presented considerable and moderate ecological risks, respectively; the other HMMs presented low ecological risks. The combined ecological risk of the HMMs measured in the dust samples was considerable. The non-carcinogenic and carcinogenic risks to male and female college students were within the safe levels. This study found three main sources of the HMMs measured in the dust: traffic, natural, and mixed sources (the latter including automobile repair industry waste and paints and pigments), which accounted for 47.5%, 29.3%, and 23.2% of the total HMM concentration, respectively.
Collapse
Affiliation(s)
- Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Sukai Zhuang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Huimin Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Qing Qin
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
14
|
Aminiyan MM, Kalantzi OI, Etesami H, Khamoshi SE, Hajiali Begloo R, Aminiyan FM. Occurrence and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dust of an emerging industrial city in Iran: implications for human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63359-63376. [PMID: 34231139 DOI: 10.1007/s11356-021-14839-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) bounded to street dust are a severe environmental and human health danger. This study provides preliminary information on the abundance of PAHs in street dust from Rafsanjan city, Iran, where industrial emissions are high and data are lacking. Seventy street dust samples were collected from streets with different traffic loads. The United States Environmental Protection Agency (USEPA) Standard Methods 8270D and 3550C were used for the measurement of PAHs using GC mass spectroscopy. The total concentration of PAHs was 1443 ng g-1, with a range of 1380-1550 ng g-1. Additionally, the concentration of carcinogenic PAHs (∑carcPAHs) ranged from 729.5 to 889.4 ng g-1, with a mean value of 798.1 ng g-1. Pyrene was the most abundant PAH, with an average concentration of 257 ng g-1. Source identification analyses showed that vehicle emissions along with incomplete combustion and petroleum were the main sources of PAHs. The ecological risk status of the studied area was moderate. Spatial distribution mapping revealed that the streets around the city center and oil company had higher PAH levels than the other sectors of Rafsanjan. The results indicated that dermal contact and ingestion of contaminated particles were the most important pathways compared to inhalation. The mean incremental lifetime cancer risk (ILCR) was 1.4 × 10-3 and 1.3 × 10-3 for children and adults, respectively. This implies potentially adverse health effects in exposed individuals. The mutagenic risk for both subpopulations was approximately 18 times greater than the one recommended by USEPA. Our findings suggest that children are subjected to a higher carcinogenic and mutagenic risk of PAHs, especially dibenzo[a,h]anthracene (DahA), bounded to street dust of Rafsanjan. Our study highlights the need for the development of emission monitoring and control scenarios.
Collapse
Affiliation(s)
- Milad Mirzaei Aminiyan
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | | | - Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Seyyed Erfan Khamoshi
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Raziyeh Hajiali Begloo
- School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Mirzaei Aminiyan
- Civil Engineering Department, College of Engineering, Vali-e-Asr Rafsanjan University, Rafsanjan, Iran
| |
Collapse
|
15
|
Dhar PK, Naznin A, Hossain MS, Hasan MK. Toxic element profile of ice cream in Bangladesh: a health risk assessment study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:421. [PMID: 34128113 DOI: 10.1007/s10661-021-09207-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Ice cream is a popular frozen dairy product and a possible source of dietary minerals. However, ice cream may also contain toxic metals, which may cause several health implications. The current study aimed to determine the content of toxic elements in ice cream samples using inductively coupled plasma-optical emission spectrometry (ICP-OES) and to assess the health risks of consumers based on target cancer risk (TCR), target hazard quotient (THQ), and hazardous index (HI). The determined concentration (median, range) of all studied elements had shown a descending order of Al (9.36, 5.37-14.26) > Zn (5.94, 1.95-10.22) > Cu (1.73, 1.02-3.77) > Ni (0.95, 0.67-1.80) > Fe (0.79, 0.10-1.64) > Cr (0.43, 0.28-0.73) > Mn (0.42, 0.11-1.03) > Pb (0.34, 0.09-0.79) > Cd (0.08, 0.04-0.14) mg/kg (fresh weight). The values of THQ and HI (except 16% for children) were lower than the maximum threshold risk limit (TRL = 1.0), indicating no potential non-carcinogenic health effects might occur. Similarly, the TCR of Cr and Pb for both adults and children was within the permissible limit of 10-4-10-6, which suggested that the consumer would not experience potential lifetime carcinogenic health risks. However, the overall analyses revealed that the consumption of ice cream is almost safe for people, but the combined impact of all metals (HI) in some samples is a matter of health concern. Henceforth, regular monitoring of toxic metals in ice creams should be done to assure food safety and hygiene.
Collapse
Affiliation(s)
| | - Arifa Naznin
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Muhammad Sarwar Hossain
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Department of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Japan
| |
Collapse
|
16
|
Rastegari Mehr M, Keshavarzi B, Moore F, Hooda PS, Busquets R, Ghorbani Z. Arsenic in the rock-soil-plant system and related health risk in a magmatic-metamorphic belt, West of Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3659-3673. [PMID: 32440917 DOI: 10.1007/s10653-020-00599-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Following earlier reports of water contamination and arsenic (As) toxicity symptoms in residents of Kurdistan Province, As was determined in rock, soil and plant samples to investigate its fate from rock to crops and its potential effects on human health. Total As content ranged from 4.9 to 10,000 mg/kg, 7.7-430 mg/kg and < 0.05-25,079 µg/kg (dry weight) in rock, soil and plant samples, respectively. The Qorveh-Bijar region data indicated that magmatic differentiation has enriched late magmatic fluids in As. High rare earth elements concentration, dissociation coefficient, and positive Eu anomaly in volcanic rocks, indicated the prevalence of intermediate to felsic composition. The highest As concentration was measured in travertine. In soil, As average level in Qorveh and Bijar was 48.5 and 107 mg/kg, respectively. Higher pollution index and geoaccumulation index (Igeo) were also calculated for Bijar County. The As concentration in crop samples was greater than the recommended maximum permissible concentration for foodstuff. Mann-Whitney U test revealed significant differences between As concentration in different plant species and no difference between plants in Bijar and Qorveh. Also, alfalfa displayed the highest biological accumulation coefficient among the investigated plants. The calculated chronic daily intake of As in Bijar County was higher than the recommended levels for wheat and barley grains. Moreover, the hazard quotient (HQ) and incremental lifetime cancer risk assessments revealed high non-cancer (HQ > 1 for both adults and children) and cancer (particularly for barley in Bijar) risks for inhabitants via consumption of As contaminated crops cultivated in the study area.
Collapse
Affiliation(s)
- Meisam Rastegari Mehr
- Department of Applied Geology, Faculty of Earth Science, Kharazmi University, 15614, Tehran, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454, Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454, Shiraz, Iran
| | - Peter S Hooda
- School of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, KT1 2EE, UK
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE, UK
| | - Zohreh Ghorbani
- Department of Earth Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada
| |
Collapse
|
17
|
Jose J, Srimuruganandam B. Investigation of road dust characteristics and its associated health risks from an urban environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2819-2840. [PMID: 32026171 DOI: 10.1007/s10653-020-00521-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Globally, road dust is a major source of inhalable particulate matter in any urban environment. This research seeks to assess the elemental composition of road dust at Vellore city, India, and to evaluate its health risks. For this, dust samples are collected from 18 locations in the study region. The collected samples are digested and analysed for about 25 elements using inductively coupled plasma-optical emission spectroscopy, of which 19 elements have concentration greater than the detection limit of the instrument (Al, Ba, Ca, Mg, Sr, Co, Cr, Cu, Fe, Ga, Zn, In, K, Li, Mn, Na, Ni, Pb and Rb). The highest mean concentration is noted for Fe (22,638.23 mg/kg) followed by Ca (13,439.47 mg/kg), Al (8445.89 mg/kg) and Mg (3381.20 mg/kg). Enrichment factor (EF) and contamination factor (CF) are calculated for 10 trace elements: Cu, Co, Cr, Ga, Mn, Ni, Pb, Rb, Sr and Zn. Elements Ga and Zn show the highest EF and CF. Source identification recognized that crustal material and traffic as the major sources of potentially toxic elements (PTEs). Further, the health risk assessment is performed for nine PTEs and identifies that Fe, Pb, Cr and Co are elements with the highest health index. Health index of these elements suggests a possible health risk. Ingestion is the major pathway, and children are found to be at a higher risk compared to adults.
Collapse
Affiliation(s)
- Jithin Jose
- School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - B Srimuruganandam
- School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
18
|
Chang X, Li YX. Lead distribution in urban street dust and the relationship with mining, gross domestic product GDP and transportation and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114307. [PMID: 32443187 DOI: 10.1016/j.envpol.2020.114307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an important pollutant and it is of significance to explore the Pb distribution, influencing factors and health risk. Pb concentration and mass load per unit area in 385 street dust samples collected from 19 cities in China were determined during 2011-2013. The results show that the Pb concentration are 68.8, 105.4, 41.7, 49.7, 75.6, 81.7, 131.9, 67.5, 109.3, 164.1, 74.8, 66.4, 99.8, 58.4, 114.0, 59.6, 103.7, 55.4 and 80.4 for Beijing, Chengdu, Daqing, Harbin, Jilin, Jinan, Kunming, Lanzhou, Luoyang, Panzhihua, Qingdao, Yinchuan, Guangzhou, Tangshan, Xi'an, Guangyuan, Nanjing, Taiyuan and Tianjin, respectively. The Pb pollution level of urban street dust varies among cities in the range of 1.72-5.56 times higher than soil background values. The allometric function can fit the change in Pb concentration with particle size well. The medium-sized (38-120 μm) particles contributed 60.2%-80.4% to the Pb load and should be highlighted when selecting street dust management techniques. Influenced by the distribution of Pb ore, the Pb concentration of urban street dust in China shows obvious regional differences, with value in the south 112% higher than that in the north. Among all kinds of mining types, metal-related mining activities discharge a large amount of Pb dust in the process of crushing and smelting, thus contributing most to the Pb load. The Pb load was also affected by transportation. The relationship between Pb load and gross domestic product (GDP) was described with the environmental Kuznets curve (EKC) model, which indicated that the Pb emissions of most cities were still increasing. Finally, the human health risk assessment model with adjusted parameters showed that the Pb risk of all cities was below the threshold. Despite all this, given the EKC law of Pb emission, long-term follow-up assessments are needed.
Collapse
Affiliation(s)
- Xuan Chang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Ying-Xia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Velázquez-Gómez M, Lacorte S. Organic pollutants in indoor dust from Ecuadorian Amazonia areas affected by oil extractivism. ENVIRONMENTAL RESEARCH 2020; 186:109499. [PMID: 32334168 DOI: 10.1016/j.envres.2020.109499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Fifty-five household dust samples collected within six settlements surrounding oil production complexes along the Ecuadorian Amazonia were analysed to evaluate the occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs), phthalates, alkylphenols (APs), bisphenol A (BPA), nicotine, organophosphorus flame retardants (OPFRs), polychlorinated biphenyls (PCBs), legacy organochlorine pesticides (OCs) and organophosphorus pesticides. Studied areas are mainly affected by gas flares emissions and oil spilling coming from extractivist operations and pesticides used in agriculture. Median ΣPAHs values ranged from 739 to 1182 ng g-1 and up to 52% of the PAH dust concentrations were associated to petrogenic activities from crude oil extraction, according to diagnostic ratios. ΣPAHs and toxic equivalents based on benzo[a]pyrene concentration (ΣTEQBaP, ng g-1) suggested similar toxicities among the different areas. Individual lifetime cancer risk (ILCRdust) was calculated for ingestion and dermal contact exposure routes and a non-acceptable total carcinogenic risk of up to 10-4 (one case per ten thousand people) was found for newborns from 0 to 3 years-old in Pimampiro area. Plasticisers and OPFRs were present in dust at maximum median concentrations of 332,507 ng g-1 (DEHP), 5,249 ng g-1 (DBP), 1,885 ng g-1 (BPA), 871 ng g-1 (TBOEP) and 122 ng g-1 (TEHP). Some dust samples from Ecuadorian houses had high maximum levels of legacy and modern pesticides such as chlorpyrifos (up to 44,176 ng g-1), 4,4'-DDT (12,958 ng g-1), malathion (34,748 ng g-1) and α+β-endosulfan (10,660 ng g-1) attributed to inappropriate use and storage of the pesticides. Finally, nicotine was seldom detected (36 ng g-1). The sources and risks of these compounds are discussed based on the activities carried out in the study areas and attending to an additional non-cancer risk assessment which showed high hazard quotients (HQ) and hazard indexes (HI) for DEHP, DBP, 4,4'-DDT, malathion, chlorpyrifos, naphthalene and benzo[a]pyrene in newborns and children up to 16 years-old.
Collapse
Affiliation(s)
- M Velázquez-Gómez
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - S Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
20
|
Meza-Figueroa D, Barboza-Flores M, Romero FM, Acosta-Elias M, Hernández-Mendiola E, Maldonado-Escalante F, Pérez-Segura E, González-Grijalva B, Meza-Montenegro M, García-Rico L, Navarro-Espinoza S, Santacruz-Gómez K, Gallego-Hernández A, Pedroza-Montero M. Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136481. [PMID: 31954252 DOI: 10.1016/j.scitotenv.2019.136481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Inhalation of playground dust-derived fine particles in schoolyards poses a risk from exposure to metal(oids) and minerals. In this work, we obtained the total concentration and bioaccessibility of metal(oids) with Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) synthetic solutions, simulating the extracellular neutral pH environment of the lung and the intracellular conditions of the macrophage, respectively. Scanning Electron Microscope (SEM), and Dynamic Light Scattering analysis (DLS) techniques were used to characterize particles with a size smaller than 2.5 μm, which can be assimilated by macrophages in the deep part of the lung. Arsenic (As), lead (Pb), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) showed concentrations of 39.9, 147.9, 286, 1369, 2313, 112,457 mg·kg-1, respectively. The results indicated that all studied elements were enriched when compared to (i) local geochemical background and (ii) findings reported in other cities around the world. Bioaccessibility of metal(oids) in GS was low-moderate for most studied elements. However, in ALF assays, bioaccessibility was high among the samples: for lead (Pb = 34-100%), arsenic (As = 14.7-100%), copper (Cu = 17.9-100%), and zinc (Zn = 35-52%) possibly related to hydrophobic minerals in dust. SEM and DLS image analysis showed that playground dust particles smaller than 2.5 μm are dominant, particularly particles with a size range of 500-600 nm. The polydispersity detected in these particle sizes showed that most of them might be crystalline compounds (elongated shapes) forming agglomerates instead of combustion particles (spheres). Moreover, the circularity detected varies from 0.57 to 0.79 (low roundness), which corroborates this finding. The presence of agglomerates of ultrafine/nanoparticles containing highly bioaccessible metals in playground sites may have severe implications in children's health. Therefore, further studies are required to characterize the size distribution, structure, shape and composition of such minerals which are essential factors related to the toxicology of inhaled dust particles.
Collapse
Affiliation(s)
- Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Marcelino Barboza-Flores
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Francisco M Romero
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | - Mónica Acosta-Elias
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ernesto Hernández-Mendiola
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | | | - Efrén Pérez-Segura
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Belem González-Grijalva
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | | | - Leticia García-Rico
- Center of Research in Food and Development, A.C. Carretera a la Victoria km 0.6, Hermosillo, Sonora 83304, Mexico
| | - Sofía Navarro-Espinoza
- Nanotechnology PhD Program, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Karla Santacruz-Gómez
- Physics Department, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ana Gallego-Hernández
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Martín Pedroza-Montero
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
21
|
Men C, Liu R, Xu L, Wang Q, Guo L, Miao Y, Shen Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121763. [PMID: 31818668 DOI: 10.1016/j.jhazmat.2019.121763] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 05/11/2023]
Abstract
To explore the spatial variation of source-specific ecological risks and identify critical sources of heavy metals in road dust, 36 road dust samples collected in Beijing in March 2017 were analyzed for heavy metals. A new method that takes into consideration the heavy-metal toxic response and is flexible to changes in the number of calculated heavy metals, called the Nemerow integrated risk index (NIRI), was developed for ecological risk assessment. The NIRI indicated that heavy metals posed considerable to high risks at the majority of sites, and 22 % of the sites suffered extreme risk in spring (NIRI > 320). Four main sources were identified based on positive matrix factorization (PMF): traffic exhaust, fuel combustion, construction, and use of pesticides and fertilizers. Owing to the lower toxic response factors of representative heavy metals of fuel combustion than those of other sources, although fuel combustion had the highest contribution (34.21 %) to heavy metals in spring, it only contributed 5.57 % to ecological risks. Critical sources and critical source areas were determined by considering the contributions to both heavy metals and ecological risks. The use of pesticide and fertilizer and traffic-related exhaust were identified as critical sources of heavy metals in spring. Source-specific ecological risks and critical sources of heavy metals changed with the changing seasons, which suggests that different strategies should be adopted in different seasons.
Collapse
Affiliation(s)
- Cong Men
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Libing Xu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingrui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Lijia Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yuexi Miao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
22
|
Othman M, Latif MT. Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur City. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11227-11245. [PMID: 31956949 DOI: 10.1007/s11356-020-07633-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Urban road dust contains anthropogenic components at toxic concentrations which can be hazardous to human health. A total of 36 road dust samples from five different urban areas, a commercial (CM), a high traffic (HT), a park (GR), a rail station (LRT), and a residential area (RD), were collected in Kuala Lumpur City followed by investigation into compositions, sources, and human health risks. The concentrations of trace metals in road dust and the bioaccessible fraction were determined using inductively couple plasma-mass spectrometry (ICP-MS) while ion concentrations were determined using ion chromatography (IC). The trace metal concentrations were dominated by Fe and Al with contributions of 53% and 21% to the total trace metal and ion concentrations in road dust. Another dominant metal was Zn while the dominant ion was Ca2+ with average concentrations of 314 ± 190 μg g-1 and 3470 ± 1693 μg g-1, respectively. The most bioaccessible fraction was Zn followed by the sequence Sr > Cd > Cr > Cu > Ni > Co > Mn > As > V > Pb > Fe > Al > U. The results revealed that the highest trace metal and ion concentrations in road dust and in the bioaccessible fraction were found at the LRT area. Based on the source apportionment analysis, the major source of road dust was vehicle emissions/traffic activity (47%), and for the bioaccessible fraction, the major source was soil dust (50%). For the health risk assessments, hazard quotient (HQ) and cancer risk (CR) values for each element were < 1 and in the tolerable range (1.0E-06 to 1.0E-04), except for As for the ingestion pathway. This result suggests a low risk from non-carcinogenic and probable risk from carcinogenic elements, with higher health risks for children compared to adults.
Collapse
Affiliation(s)
- Murnira Othman
- Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Mohd Talib Latif
- Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
Mihankhah T, Saeedi M, Karbassi A. Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109838. [PMID: 31677564 DOI: 10.1016/j.ecoenv.2019.109838] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Due to population growth and the considerable increase in usage of the resources, Human environment quality has been highly threatened by pollutants in recent decades. Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent organic pollutants which are of great concern due to their carcinogenicity. The present study is the first investigation that assesses contamination, sources and cancer risk of 16 priority PAHs proposed by US EPA in urban dust samples (n = 80) taken in different land-uses of Tehran metropolis, the capital of Iran. Gas chromatography-mass spectrometry (GC-MS) is used to measure PAHs concentrations. The results showed that the average concentration of the total 16 PAHs and the average Benzo[a]pyrene total potency equivalency were 566 μg kg-1 dry weight and 36.4 μg kg-1, respectively. In the commercial and residential land-uses high molecular weight (HMW) PAHs were dominated, whereas in green lands, light molecular weight (LMW) PAHs showed maximum contribution. The highest concentration of total PAHs were observed in the commercial areas due to limited air circulation and heavy traffic loads. Incremental Lifetime Cancer Risk (ILCR) model was applied to evaluate the cancer risk of exposure to PAHs contaminated dust. Based on the results, Tehran's residents (children and adults) in various land-uses except for green lands, are in high potential cancer risk of PAHs via ingestion and dermal contact exposure routs. Ace, Chr, Pyr, and BghiP which are indicators of traffic emissions, were found to be predominant PAH contributors in urban dust of commercial areas. Also, Ace, Fl, Phe, and BghiP which are derived from fossil fuel combustion, were mainly observed in the industrial land-use. Based on the results of factor analysis and diagnostic ratios, Diesel/gasoline engine vehicular emissions and combustion were found to be the main sources of PAHs in urban dust of Tehran.
Collapse
Affiliation(s)
- Taraneh Mihankhah
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran
| | - Mohsen Saeedi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran
| | - Abdolreza Karbassi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Chen Y, Ma J, Duan H, Miao C. Occurrence, source apportionment, and potential human health risks of metal(loid)s and PAHs in dusts from driving school campuses in an urban area of Henan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30029-30043. [PMID: 31414389 DOI: 10.1007/s11356-019-06044-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 05/22/2023]
Abstract
Concentrations, health risks, and sources of 9 metal(loid)s (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn) and 16 PAHs in dusts collected from the 29 driving school campuses in the urban area of Kaifeng, Henan Province, China, were evaluated. The health risks due to exposure to these pollutants in dusts were assessed under three different scenarios (working for 10 years, 20 years, and 30 years in driving schools), using the health risk assessment model developed by US EPA. The results indicated that the mean concentrations for As, Cd, Cr, Cu, Hg, Pb, and Zn were higher than the local dust background except Co and Ni. The total PAH concentrations ranged from 198.21 to 3 400.89 μg kg-1, with a mean value of 908.72 μg kg-1. The dominant components were the two and three member-ring PAHs, accounting for 55.79% of the ∑PAHs, while PAHs with four to six member-rings accounted for 44.21% of total PAHs. The non-cancer risks of metal(loid)s in most samples were within the safe range except for two samples, with Pb as the major non-carcinogenic risk factor. The cancer risks of As, Cd, Cr, and Ni were also within the currently acceptable range except for one sample under two scenarios (working for 20a and 30a in a driving school). The cancer risks of PAHs in most samples were within the safe range except for one sample under scenario 3. The source identification results demonstrated that Pb, Zn, Cu, and Cd in the driving school dusts are mainly affected by the emission of driving-school vehicles. For PAHs, the typical driving school vehicle emissions were predominated by Phe and Ant, followed by Flu, Pyr, BkF, and Nap. The concentrations and health risks of the metal(loid)s and PAHs in the dusts were not significantly related to the driving school operation time or vehicle density, but closely related to the surrounding environments and the historical land uses of driving schools.
Collapse
Affiliation(s)
- Yinan Chen
- Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng, 475001, China
| | - Jianhua Ma
- Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng, 475001, China.
- The College of Environment and Planning of Henan University, Kaifeng, 475001, China.
| | - Haijing Duan
- The College of Environment and Planning of Henan University, Kaifeng, 475001, China
| | - Changhong Miao
- Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng, 475001, China
| |
Collapse
|