1
|
Zhao W, Lu J, Wei Q, Cao J, Cui J, Hou Y, Zhang K, Chen H, Zhao W. Spatial distribution, source apportionment, and risk assessment of perfluoroalkyl substances in urban soils of a typical densely urbanized and industrialized city, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176166. [PMID: 39270864 DOI: 10.1016/j.scitotenv.2024.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
As an important capital city of intensive urbanization and industrialization in Northeast China, Changchun has experienced extremely rapid development, with diverse sectors such as automobile manufacturing, equipment manufacturing, optoelectronics, and pharmaceutical decoration. However, data on the levels and profiles of perfluoroalkyl substances (PFASs) in urban soils of Changchun is limited. This study investigated 17 PFASs across various functional zones within the main urban area of Changchun. ∑PFAS concentrations in the soils ranged from 0.236 to 6.483 ng/g, averaging 1.820 ng/g. Perfluorocarboxylic acids (PFCAs) were more prevalent than perfluorosulfonic acids (PFSAs), and short-chain PFASs (C ≤ 6) were the predominant residues. PFAS concentrations varied across functional zones, with commercial markets exhibiting the highest levels, followed by industrial areas, residential areas, suburban zones, and transportation areas. Molecular diagnostic ratio and PCA-MLR analysis identified industrial production processes of consumer goods and wastewater treatment plants as the primary sources of soil PFAS contamination. There were no obvious health risks of soil ∑PFASs, while soil PFOS and PFHxS may have an impact on the richness and diversity of soil microbial communities in some certain locations. This study provides new data on PFAS residues in soils influenced by diverse contamination sources within a key industrial city in Northeast China, offering valuable insights for prioritizing remediation and restoration efforts.
Collapse
Affiliation(s)
- Wei Zhao
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Jilong Lu
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China.
| | - Qiaoqiao Wei
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Jinxin Cao
- Third Geology and Mineral Resources Exploration Institute, Gansu Bureau of Geology and Mineral Resources, Lanzhou 730050, China
| | - Jiaxuan Cui
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Yaru Hou
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Kaiyu Zhang
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Hong Chen
- Soil and Environment Analysis Center, Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Zhao
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Zhuang Y, Wu J, Dong B, Wang F, Hu D, Zhang Y, Bo Y, Peng L. Evidences for the influence from key chemical structures of per- and polyfluoroalkyl substances on their environmental behaviors. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134383. [PMID: 38669930 DOI: 10.1016/j.jhazmat.2024.134383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/03/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
This study carried out the atmospheric and precipitation observation in Beijing for nearly one year, and firstly simultaneously observed the pollution characteristics of PFASs and their main isomers, focusing on their gas-particle partitioning mechanism and dry and wet deposition characteristics. After deducting PFASs in the aqueous phase of particulate matter, the gas-particle partitioning coefficients (-7.04 to -5.49) were about 3-4 units smaller than before (-2.77 to -1.51), and all were smaller than 0, which indicated that each PFAS and isomer were more distributed in the gas phase. Dry deposition was dominant in the atmospheric deposition of each PFAS and isomer with relative contribution of 66 ± 17%, but the relative contribution of dry deposition was significantly different. It was found that the gas-particle partitioning coefficient can be influenced by key chemical structures such as carbon chain length, functional group type, and isomer structure. Furthermore, the gas-particle partitioning can influence the dry and wet deposition of PFASs. Specifically, PFASs with longer carbon chains, carboxylic acid functional group (compared to sulfonic acid functional group) or PFOA branched chain structures had larger gas-particle partitioning coefficients and can be more distributed in the hydrophobic phase of particulate matter, and their relative contributions of dry deposition were smaller.
Collapse
Affiliation(s)
- Yiru Zhuang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Wu
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, PR China; School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
| | - Bingqi Dong
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Fan Wang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Dongmei Hu
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yueling Zhang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yu Bo
- CAS Key Laboratory of Regional Climate and Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Lin Peng
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, PR China; School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
| |
Collapse
|
3
|
Liu L, Yan P, Liu X, Zhao J, Tian M, Huang Q, Yan J, Tong Z, Zhang Y, Zhang J, Zhang T, Guo J, Liu G, Bian X, Li B, Wang T, Wang H, Shen H. Profiles and transplacental transfer of per- and polyfluoroalkyl substances in maternal and umbilical cord blood: A birth cohort study in Zhoushan, Zhejiang Province, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133501. [PMID: 38246060 DOI: 10.1016/j.jhazmat.2024.133501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can pass through the placental barrier and pose health risks to fetuses. However, exposure and transplacental transfer patterns of emerging PFAS remain unclear. Here, 24 PFAS were measured in paired maternal whole blood (n = 228), umbilical cord whole blood (n = 119) and serum (n = 120). Orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to differentiate PFAS between different matrices. The transplacental transfer (TPT) of PFAS was calculated using cord to maternal whole blood concentration ratios. PFOS and PFOA were still the dominant PFAS in maternal samples. The emerging PFAS had higher TPT than PFOS and PFOA. Moreover, PFAS with the same chain length but different functional groups and C-F bonds showed different TPT, such as PFOS and PFOSA (C8, median: 0.090 vs. 0.305, p < 0.05) and PFHxS and 4:2 FTS (C6, median: 0.220 vs. 1.190, p < 0.05). A significant sex difference in 4:2 FTS (median: boys 1.250, girls 1.010, p < 0.05) were found. Furthermore, we observed a significant U-shaped trend for the TPT of carboxylates with increasing carbon chain length. PFAS showed a compound-specific transfer through placental barrier and a compound-specific distribution between different matrices in this study.
Collapse
Affiliation(s)
- Liangpo Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, 030001, PR China
| | - Peixia Yan
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China; Changping District Center for Disease Control and Prevention, Changping, Beijing, 102200, PR China
| | - Xuan Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Junxia Zhao
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jianbo Yan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Zhendong Tong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Yongli Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Jie Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Tongjie Zhang
- Daishan County Center for Disease Control and Prevention, Daishan, Zhejiang 316200, PR China
| | - Jianquan Guo
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Guiying Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xia Bian
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ben Li
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Tong Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361002, China.
| |
Collapse
|
4
|
Wang W, Luo Z, Liu X, Dai Y, Hu G, Zhao J, Yue T. Heterogeneous aggregation of carbon and silicon nanoparticles with benzo[a]pyrene modulates their impacts on the pulmonary surfactant film. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132340. [PMID: 37597387 DOI: 10.1016/j.jhazmat.2023.132340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Inhaled nanoparticles (NPs) can deposit in alveoli where they interact with the pulmonary surfactant (PS) and potentially induce toxicity. Although nano-bio interactions are influenced by the physicochemical properties of NPs, isolated NPs used in previous studies cannot accurately represent those found in atmosphere. Here we used molecular dynamics simulations to investigate the interplay between two types of NPs associated with benzo[a]pyrene (BaP) at the PS film. Silicon NPs (SiNPs), regardless of aggregation and adsorption, directly penetrated through the PS film with minimal disturbance. Meanwhile, BaPs adsorbed on SiNPs were rapidly solubilized by PS, increasing the BaP's bioaccessibility in alveoli. Carbon NPs (CNPs) showed aggregation and adsorption-dependent effects on the PS film. Compared to isolated CNPs, which extracted PS to form biomolecular coronas, aggregated CNPs caused more pronounced PS disruption, especially around irregularly shaped edges. SiNPs in mixture exacerbated the PS perturbation by piercing PS film around the site of CNP interactions. BaPs adsorbed on CNPs were less solubilized and suppressed PS extraction, but aggravated biophysical inhibition by prompting film collapse under compression. These results suggest that for proper assessment of inhalation toxicity of airborne NPs, it is imperative to consider their heterogeneous aggregation and adsorption of pollutants under atmospheric conditions.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhen Luo
- Department of Engineering Mechanics, State of Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State of Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
5
|
Liu LS, Guo YT, Wu QZ, Zeeshan M, Qin SJ, Zeng HX, Lin LZ, Chou WC, Yu YJ, Dong GH, Zeng XW. Per- and polyfluoroalkyl substances in ambient fine particulate matter in the Pearl River Delta, China: Levels, distribution and health implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122138. [PMID: 37453686 DOI: 10.1016/j.envpol.2023.122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted worldwide attention as one of persistent organic pollutants; however, there is limited knowledge about the exposure concentrations of PFAS-contained ambient particulate matter and the related health risks. This study investigated the abundance and distribution of 32 PFAS in fine particulate matter (PM2.5) collected from 93 primary or secondary schools across the Pearl River Delta region (PRD), China. These chemicals comprise four PFAS categories which includes perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl acid (PFAA) precursors and PFAS alternatives. In general, concentrations of target PFAS ranged from 11.52 to 419.72 pg/m3 (median: 57.29 pg/m3) across sites. By categories, concentrations of PFSAs (median: 26.05 pg/m3) were the dominant PFAS categories, followed by PFCAs (14.25 pg/m3), PFAS alternatives (2.75 pg/m3) and PFAA precursors (1.10 pg/m3). By individual PFAS, PFOS and PFOA were the dominant PFAS, which average concentration were 24.18 pg/m3 and 6.05 pg/m3, respectively. Seasonal variation showed that the concentrations of PFCAs and PFSAs were higher in winter than in summer, whereas opposite seasonal trends were observed in PFAA precursors and PFAS alternatives. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human inhalation-based exposure risks to PFAS. Although the health risks of PFAS via inhalation were insignificant (HQ far less than one), sufficient attention should be levied to ascertain the human exposure risks through inhalation, given that exposure to PFAS through air inhalation is a long term and cumulative process.
Collapse
Affiliation(s)
- Lu-Sheng Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Ting Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Xian Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32608, USA
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Wu J, Fang G, Wang X, Jiao L, Wang S, Li Y, Wang Y. Occurrence, partitioning and transport of perfluoroalkyl acids in gas and particles from the southeast coastal and mountainous areas of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32790-32798. [PMID: 36464742 DOI: 10.1007/s11356-022-24468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl acids (PFAA) in gas and particles were analyzed in southeast coastal and mountainous cities, including Fuzhou, Xiamen, Zhangzhou and Nanping, to study the pollution characteristics, particle size distribution, phase partitioning and atmospheric transport. PFAA ranged from 7.8 to 290 pg m-3 in gaseous phase, 27 - 1200 pg m-3 in particulate phase, and perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA) were main compounds. PFAA had the highest concentration in Nanping with perfluorohexanoic acid (PFHxA) dominant, which could be related to the emission of PFAS from local industrial plants. Perfluorocarboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) exhibited different particle size distribution characteristics, with PFSAs preferring to distribute on coarse particles, which could be affected by the salt, minerals and organic matter in different particle sizes. The gas - particle partitioning coefficient (KPA) had a line relationship with the fluorinated carbon chain length of PFAA, suggesting that long-chain PFAA tended to exist in particulate phase. The Winter Monsoon could transport to the study area and drive atmospheric PFAS to southern cities. HIGHLIGHTS: • Industrial plants contributed high concentrations of PFAA. • PFSAs tended to present in coarse particles. • Log KPA increased linearly with increasing carbon chain length of PFAA. • Winter Monsoon drove atmospheric PFAA to southern cities.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Gang Fang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Liping Jiao
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Siquan Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Yongyu Li
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China.
| |
Collapse
|
7
|
Wang S, Lin X, Li Q, Li Y, Yamazaki E, Yamashita N, Wang X. Particle size distribution, wet deposition and scavenging effect of per- and polyfluoroalkyl substances (PFASs) in the atmosphere from a subtropical city of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153528. [PMID: 35104512 DOI: 10.1016/j.scitotenv.2022.153528] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) as emerging organic pollutants have received great attention, but the scavenging efficiency of particulate PFASs by wet deposition was rarely studied. For the first time, we reported the scavenging efficiency of PFASs on different particle sizes. In this study, both rainwater and particle samples were collected for a whole year from Xiamen, a subtropical city of China. Particulate PFASs ranged from 4.11 to 67.41 pg m-3, with an average value of 26.56 pg m-3, and perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) were the main compounds. Perfluorocarboxylic acids (PFCAs) were predominantly observed on fine particles (<1 μm), while PFOS and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) had large proportions on coarse particles (1-2.5 μm and 2.5-10 μm). In the rainwater, PFASs ranged from 0.20 to 180.65 ng L-1, with an average value of 10.71 ng L-1, and perfluorobutanoic acid (PFBA), PFOA were the main compounds. The wet deposition flux of ∑PFASs was 5200 mg km-2 yr-1, exhibiting high fluxes during the wet season (March to September). The scavenging efficiency of particulate PFOS and PFOA ranged from 68%-98% during the rainfall, and wash-out of the raindrops was found to be one of the main scavenging mechanisms. In addition, the precipitation duration and intensity influenced the scavenging efficiency. The scavenging capacity of PFCAs was large on fine particles, while for per-and polyfluoroalkyl sulfonic acids, the scavenging capacity was high on coarse particles. Our results showed that wet deposition effectively removed medium to long carbon chain (≥C6) PFASs in the atmosphere.
Collapse
Affiliation(s)
- Siquan Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xiaoping Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Qin Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Eriko Yamazaki
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Zhao Z, Yue L, Qiao H, Li Y, Cheng X, Hua X, Lin T, Li Q, Sun H. Perfluoroalkyl acids in dust on residential indoor/outdoor window glass in Chinese cities: occurrence, composition, and toddler exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13881-13892. [PMID: 34595719 DOI: 10.1007/s11356-021-16653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The dust on indoor and outdoor surfaces of the window glasses were collected using sterile cotton balls in 11 cities from China. Two sampling campaigns were conducted with the time interval of 7 days to investigate the accumulation especially during the Spring festival holidays. Twenty-nine perfluoroalkyl acids (PFAA) were quantified to investigate concentration, composition, and toddlers' exposure. The concentrations of ∑PFAA ranged from no detection (nd) to 43 ng/m2 (mean 8.9 ± 10 ng/m2). Perfluorobutanoic acid (PFBA) was detected in 78% samples and accounted for 55 ± 21% of ∑PFAA concentrations. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were detected in more than 50% samples indicating the use of alternatives. Fluorotelomer carboxylic acid (FTCA) and fluorotelomer unsaturated acid (FTUCA) were found in the dust, implying the degradation of fluorotelomer alcohols (FTOH). The highest concentration of ∑PFAA (43 ng/m2) was found in outdoor dust from Xinzhou, Shanxi Province. Higher ∑PFAA concentrations were found in indoor dust than outdoor in 6 paired samples (3 from Feb. 14 and 3 from Feb. 21). In Tianjin and Handan, the concentrations of ∑PFAA from outdoor surfaces were higher in sampling campaign I (SC I, Feb. 21) than in sampling campaign II (SC II, Feb. 14), implying intensive outdoor release. The exposure of 2-year-old toddlers to PFAA via hand-to-mouth ingestion and dermal absorption was estimated; the mean values of intake were 2.1 and 1.5 pg/kg body weight, respectively, assuming an exposure time of 1 h.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hongqin Qiao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Yinong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xianghui Cheng
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Xia Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Wang B, Fu J, Gao K, Liu Q, Zhuang L, Zhang G, Long M, Na J, Ren M, Wang A, Liang R, Shen G, Li Z, Lu Q. Early pregnancy loss: Do Per- and polyfluoroalkyl substances matter? ENVIRONMENT INTERNATIONAL 2021; 157:106837. [PMID: 34454360 DOI: 10.1016/j.envint.2021.106837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Per- and poly-fluorinated substances (PFASs) with endocrine disrupting effect can efficiently transfer across the blood-follicle barrier. However, it is still controversial and attracting extensive public concern that whether PFASs can affect the human fertility potential. Therefore, we aimed to analyze the associations of women's exposure to PFASs with pregnancy loss, the relevant processes of fertilization, zygote implantation, and embryo development by using a prospective cohort study. The women undergoing in vitro fertilization-embryo transfer (IVF-ET) treatment were recruited in Beijing City (Beijing Center) and Yantai City (Yantai Center) in China during 2015-2017. A total of 305 women were recruited before the IVF-ET treatment. Twelve PFASs were measured in their serum samples collected in the day before the IVF-ET treatment, as well as in the human chorionic gonadotropin (hCG) day. The three IVF-ET outcomes were included, i.e. hCG test negative, clinical pregnancy failure (CPF), and preclinical spontaneous abortion. Nine serum PFASs had detection rate of >70% in Beijing and Yantai centers. The exposure patterns to PFASs between these two centers were overall different. For Beijing Center, we only found a positive association of perflurodecanoic acid (PFDA) with the risk of CPF [RR = 2.28 (95 %CI: 1.02-5.11)], but there is a reverse trend in Yantai Center with [RR = 0.45 (95 %CI: 0.23-0.85)]. However, the serum concentration of PFDA in Beijing Center was relatively lower than that of Yantai Center. Other significant associations of the detected PFASs with the IVF-ET outcomes, or with the relevant clinical processes, were not found. The multi-pollutant regression model of the Bayesian kernel machine regression suggested that there were no joint effects between various PFASs on the concerned outcomes. Overall, we suggest that most PFAS were not associated with early pregnancy loss at the current exposure levels. As for the PFDA, there may exist susceptibility of different populations.
Collapse
Affiliation(s)
- Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China.
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ke Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Manman Long
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Jigen Na
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Anni Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Rong Liang
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
10
|
Mokra K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci 2021; 22:2148. [PMID: 33670069 PMCID: PMC7926449 DOI: 10.3390/ijms22042148] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Endocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds. PFASs were firstly synthesized in the 1950s and broadly used in the industry in the production of firefighting agents, cosmetics and herbicides. The numerous industrial applications of PFASs, combined with the exceptionally long half-life of these substances in the human body and extreme environmental persistence, result in a common and chronic exposure of the general population to their action. Available data have suggested that human exposure to PFASs can occur during different stages of development and may cause short- or/and long-term health effects. This paper synthetizes the current literature reports on the presence, bioaccumulation and, particularly, endocrine toxicity of selected long- and short-chain PFASs, with a special emphasis on the mechanisms underlying their endocrine actions.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236 Lodz, Poland
| |
Collapse
|
11
|
Yuan X, Li G, Yang W, Li D. Distribution characteristics of microbial community structure in atmospheric particulates of the typical industrial city in Jiangsu province, China. Bioengineered 2021; 12:615-626. [PMID: 33565903 PMCID: PMC8806265 DOI: 10.1080/21655979.2021.1885223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, Xuzhou, a typical industrial city in the north of Jiangsu Province, was chosen to investigate the pollution level of atmospheric particulates. The proportion of fine particles (PM2.5) in PM10 is larger than that of coarse particles (about 58%). The physicochemical properties of PM2.5 were analyzed by SEM and EDS. DGGE was used to study the distribution characteristics of bacterial community structure on atmospheric particulates (TSP, PM2.5 and PM10) in different functional areas of Xuzhou city during the winter haze. It was found that the microbial populations of atmospheric particles were mainly divided into three groups: Proteobacteria, Bacteroidetes, and Pachytenella. The community structure of bacteria in fine particle size was more abundant than that in coarse particle size. When haze occurs, the concentration of all kinds of pathogens in fine particle size will increase. Therefore, it is necessary to focus on the monitoring and management of fine particles.
Collapse
Affiliation(s)
- Xingcheng Yuan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| | - Guangchao Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| | - Dan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University , Xuzhou, P.R. China
| |
Collapse
|
12
|
Gonçalves PB, Baltazar JP, Nogarotto DC, Cristale J, Pozza SA. Occurrence of polar organic compounds in atmospheric particulate matter: a system review in South America. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:108. [PMID: 33532946 DOI: 10.1007/s10661-021-08881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter (PM) is one of the existing air pollutants, which can cause damages to human health, public property, and the environment. The chemical composition of this pollutant greatly varies, mainly its organic fraction. Thus, our objective was to carry out a literature review based on articles, considering studies conducted in South America, whose authors address the characterization of the polar organic fraction of PM. We performed the review using the Scopus, SciELO, and Web of Science databases, considering publications dated from the years 2010 to 2019. A total of 14,575 articles were found, of which only 12 met the predefined selection criteria. According to our research, the most studied compound is levoglucosan, a biomass burning marker belonging to the group of anhydrous sugars. Besides, nitro-PAHs, which usually originate from vehicular sources and are compounds with mutagenic and carcinogenic characteristics, have also been found. Moreover, we concluded that, currently, there are few studies on the subject in South America, requiring more research on polar organic compounds present in PM in countries of this region. These studies are of great importance because some compounds can cause great damage to human health, such as the nitro-PAHs; furthermore, PM may still have unknown compounds that need identification and elucidation of their toxicity.
Collapse
Affiliation(s)
| | | | | | - Joyce Cristale
- School of Technology, University of Campinas, Limeira, Brazil
| | | |
Collapse
|
13
|
Wang P, Zhang M, Li Q, Lu Y. Atmospheric diffusion of perfluoroalkyl acids emitted from fluorochemical industry and its associated health risks. ENVIRONMENT INTERNATIONAL 2021; 146:106247. [PMID: 33276313 DOI: 10.1016/j.envint.2020.106247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
The fluorochemical industry is an important emission source of atmospheric perfluoroalkyl acids (PFAAs). In this study, air samples were collected through active high-volume air samplers coupled with Tissuquartz™ filters around a fluorochemical manufacturer, and analyzed for PFAAs levels. Perfluorooctanoic acid (PFOA) was dominant with concentrations as high as 9730 pg/m3, followed by short chain perfluoroalkyl carboxylic acids (PFCAs). The PFAAs in the air were compared to those measured in outdoor dust and rain collected in the same area. Short chain PFCAs had a greater distribution in air, while PFOA was more distributed in dust and rain. With increasing concentrations, a significant decreasing trend for PFOA was observed in rain (P < 0.05). The estimated daily intake (EDI) of PFOA via indoor air inhalation by five age groups were calculated in two scenarios, and compared to the strictest tolerable daily intake (TDI) of PFOA (≤0.63 ng/kg bw/day). Potential health risk occurred in the best-case scenario, while the EDI from the worst-case scenario was comparable to that via indoor dust ingestion, indicating a notable health risk. This suggests that in terms of PFOA exposure and health risks, air inhalation may be as important as dust ingestion. These results highlight the impacts of PFAAs emissions from the fluorochemical industry to the atmosphere and ultimately, human health.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifeng Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Ahmed MB, Johir MAH, McLaughlan R, Nguyen LN, Xu B, Nghiem LD. Per- and polyfluoroalkyl substances in soil and sediments: Occurrence, fate, remediation and future outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141251. [PMID: 32805564 DOI: 10.1016/j.scitotenv.2020.141251] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are contaminants of great concern due to their wide-spread occurrence and persistence in the environments (i.e., in water, soil and sediment) and potential toxicology even at very low concentration. The main focus of this review is on the PFASs in soil and sediments. More specifically, this review systematically examines the occurrence and toxicological effects with associated risks, fate (i.e., PFASs adsorption by soil and sediment, transportation and transformation, and bioaccumulation), and remediation practices of PFASs in soil and sediment. Various models and equations such as fugacity-based multimedia fate and hydrodynamic models are used to study the fate, transport, and transformation of PFASs. Among different remediation practices, sorption is the dominant process for the removal of PFASs from soil and sediments. Results also indicate that PFASs adsorption onto activated carbon decrease with the increase of carbon chain length in the PFASs. The longer-chain PFASs have larger partition coefficient values than shorter-chained PFASs. Sorption of PFASs to soil and sediments are mainly governed by different electrostatic interactions, hydrogen bonds formation, hydrophobic interactions, organic content in soil and sediments, and ligand exchange. Other technology such as thermal treatment might be potential in the removal of PAFSs, but need further study to elucidate a conclusion. Finally, the associated challenges and future outlook have been included.
Collapse
Affiliation(s)
- M B Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - M A H Johir
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia.
| | - Robert McLaughlan
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Luong N Nguyen
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Bentuo Xu
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Long D Nghiem
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
15
|
Wang Q, Ruan Y, Lin H, Lam PKS. Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139804. [PMID: 32526580 DOI: 10.1016/j.scitotenv.2020.139804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been manufactured and used for over 50 years, and now are worldwide distributed in the environment. The atmospheric environment is the main compartment for PFASs to be transported and transformed, and relevant research has highlighted the global occurrence and impacts of atmospheric PFASs in ecosystems and human health. With the phasing-out and restriction of eight‑carbon chain-length (C8) PFASs in developed countries, China has become the largest producer of C8 PFASs since 2004. Subsequently, a number of studies on PFASs in the Chinese atmospheric environment have been conducted in the recent decade. This review documented twenty-eight studies on PFASs in Chinese outdoor air published to date. Methods of sampling, extraction, cleanup, and instrumental analysis were summarized for both ionic and neutral PFASs. Levels, compositions, and spatial distribution of PFASs from different areas in China (i.e. source, urban, and remote regions, and north versus south China) were compared and discussed. Leaves and tree barks were proposed as effective bioindicators to reflect the contamination status of atmospheric PFASs. Special attention can be given to non-target screening for future research directions.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong, China
| |
Collapse
|
16
|
Zhao Z, Cheng X, Hua X, Jiang B, Tian C, Tang J, Li Q, Sun H, Lin T, Liao Y, Zhang G. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114391. [PMID: 32213363 DOI: 10.1016/j.envpol.2020.114391] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) contamination in the Bohai Sea and its surrounding rivers has attracted considerable attention in recent years. However, few studies have been conducted regarding the distribution of PFASs in multiple environmental media and their distributions between the suspended particles and dissolved phases. In this study, surface water, surface sediment, and air samples were collected at the Bohai Sea to investigate the concentration and distribution of 39 targeted PFASs. Moreover, river water samples from 35 river estuaries were collected to estimate PFAS discharge fluxes to the Bohai Sea. The results showed that total ionic compound (Σi-PFASs) concentrations ranged from 19.3 to 967 ng/L (mean 125 ± 152 ng/L) in the water and 0.70-4.13 ng/g dw (1.78 ± 0.76 ng/g) in surface sediment of the Bohai Sea, respectively. In the estuaries, Σi-PFAS concentrations were ranged from 10.5 to 13500 ng/L (882 ± 2410 ng/L). In the air, ΣPFAS (Σi-PFASs + Σn-PFASs) concentrations ranged from 199 to 678 pg/m3 (462 ± 166 pg/m3). Perfluorooctanoic acid (PFOA) was the predominant compound in the seawater, sediment, and river water; in the air, 8:2 fluorotelomer alcohol was predominant. Xiaoqing River discharged the largest Σi-PFAS flux to the Bohai Sea, which was estimated as 12,100 kg/y. Some alternatives, i.e., 6:2 fluorotelomer sulfonate acid (6:2 FTSA), hexafluoropropylene oxide dimer acid (HFPO-DA), and chlorinated 6:2 polyfluorinated ether sulfonic acid (Cl-6:2 PFESA), showed higher levels than or comparable concentrations to those of the C8 legacy PFASs in some sampling sites. The particle-derived distribution coefficient in seawater was higher than that in the river water. Using high resolution mass spectrometry, 29 nontarget emerging PFASs were found in 3 river water and 3 seawater samples. Further studies should be conducted to clarify the sources and ecotoxicological effects of these emerging PFASs in the Bohai Sea area.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianghui Cheng
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Xia Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
17
|
Zeng XW, Li QQ, Chu C, Ye WL, Yu S, Ma H, Zeng XY, Zhou Y, Yu HY, Hu LW, Yang BY, Dong GH. Alternatives of perfluoroalkyl acids and hepatitis B virus surface antibody in adults: Isomers of C8 Health Project in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113857. [PMID: 31918137 DOI: 10.1016/j.envpol.2019.113857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Previous epidemiological and experimental studies have shown that legacy perfluoroalkyl acids (PFAAs) are immunotoxic. However, whether the immunosuppressive effects in PFAA alternatives which recently have been widely detected in the environment are unknown. To address this knowledge gap, we investigated the relationship of serum legacy PFAAs and PFAA alternatives with the antibody of hepatitis B virus in adults. We recruited 605 participants from a cross-sectional study, the Isomer of C8 Health Project in China. We measured two representative legacy PFAAs (perfluorooctane sulfonate, PFOS and perfluorooctanoic acid, PFOA), and three PFAA alternatives (two chlorinated polyfluorinated ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) in serum using ultra-performance liquid chromatograph-tandem mass spectrometry (UPLC-MS/MS). We applied linear and logistic regression models to analyze associations between serum PFAAs and hepatitis B surface antibody (HBsAb) with multivariable adjustments. We found negative associations between serum PFAAs concentrations and HBsAb. Lower serum HBsAb levels (log mIU/mL) were observed for each log-unit increase in linear PFOS (β = -0.31, 95% confidential interval: 0.84, -0.18), 6:2 PFESA (β = -0.81, 95% CI: 1.20, -0.42), 8:2 PFESA (β = -0.29, 95% CI: 0.43, -0.14) and PFBA (β = -0.18, 95% CI: 0.28, -0.08). The association between PFAAs and HBsAb seronegative seemed to be higher for 6:2 PFESA (odds ratio = 3.32, 95% CI: 2.16, 5.10) than its predecessors, linear PFOS (OR = 1.96, 95% CI: 1.37, 2.81) and branched PFOS isomers (OR = 1.64, 95% CI: 1.05, 2.56). We report new evidence that exposure to PFAA alternatives are associated with lower HBsAb in adults. This association seems to be stronger in 6:2 PFESA than PFOS. Our results suggest that more studies are needed to clarify the potential toxicity of PFAA alternatives in human which will facilitate better chemical regulations for PFAAs.
Collapse
Affiliation(s)
- Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Lin Ye
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Liu Y, Liu W, Xu Y, Zhao Y, Wang P, Yu S, Zhang J, Tang Y, Xiong G, Tao S, Liu W. Characteristics and human inhalation exposure of ionic per- and polyfluoroalkyl substances (PFASs) in PM 10 of cities around the Bohai Sea: Diurnal variation and effects of heating activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:177-187. [PMID: 31207508 DOI: 10.1016/j.scitotenv.2019.06.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric PM10 (particulate matter with aerodynamic diameter <10 μm) samples were collected in the cities along the Bohai Sea Rim during heating and non-heating periods, and ionic per- and polyfluoroalkyl species (PFASs) in the PM10 were measured. The total concentration of ionic PFASs ranged from 21.8 to 87.0 pg/m3, and the mean concentration of ionic PFASs during the day (42.6 pg/m3) was slightly higher than that at night (35.1 pg/m3). Generally, diurnal variations in the levels of ionic PFASs were consistent with those in the PM10 concentrations. Perfluorooctanoic acid (PFOA, 23.5-33.7%), perfluoropentanoic acid (PFPeA, 28.3-39.9%) and perfluorobutyric acid (PFBA, 17.1-20.1%) accounted for the dominant compositional contributions. Significant positive correlations (p < 0.05) between the main components of PFASs and O3 implied that oxidative degradation (O3 served as the main oxidant) in the period of non-heating may affect the short-chain PFASs. The clustering analysis of a 72-h backward trajectory indicated that cross-provincial transport contributed to ionic PFASs at the sampling sites. Compared with ingestion via daily diet, the inhalation of PM10 exhibited an insignificant contribution to the estimated average daily intakes (ADIs) of PFASs by different age groups. In addition, the calculated hazard ratios (HRs) for the non-cancer respiratory risk, based on the air concentrations of PFOA and perfluorooctane sulfonate (PFOS), also manifested lower non-cancer risk through inhalation exposure. CAPSULE: The effects of heating and non-heating activity and diurnal variation on the concentrations of PFASs, dominated by PFOA, PFPeA, and PFBA in PM10, were determined, and atmospheric trans-provincial input served as an important source.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WeiJian Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YunSong Xu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YongZhi Zhao
- Center for Environmental Engineering Assessment, Qiqihar, Heilongjiang Province 161005, China
| | - Pei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - ShuangYu Yu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JiaoDi Zhang
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - GuanNan Xiong
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Ruan Y, Lalwani D, Kwok KY, Yamazaki E, Taniyasu S, Kumar NJI, Lam PKS, Yamashita N. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair - The first nationwide survey in India. CHEMOSPHERE 2019; 229:366-373. [PMID: 31078894 DOI: 10.1016/j.chemosphere.2019.04.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 05/28/2023]
Abstract
In recent years, environmental issues emerging from per- and polyfluoroalkyl substances (PFAS) have raised high concern worldwide. Levels of human exposure to PFAS remain unknown in India. Biomonitoring data obtained from hair analysis have been evidenced to provide insight into retrospective human exposure to PFAS. In this study, 25 PFAS, including perfluoroalkyl acids and their precursors, were measured in 39 human hair samples collected from 14 cities in India. The inuflence of gender on the PFAS levels was also examined. To our knowledge, this is the first attempt to provide preliminary indicative data (due to the limited sample size and variability in hair-length sampling) on the levels of PFAS in Indian hair. The concentrations of total PFAS in hair varied from below matrix-specific limit of quantification (<0.02 ng/g) to 3.78 ng/g. Among 9 PFAS quantified, perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), and perfluorooctanoic acid (PFOA) were the predominant compounds. Categorized into 4 regions, PFAS contamination exhibited certain regional difference where South India may show higher levels than the other regions. Highly significant positive correlation was observed between PFHxS and PFOS (p ≪ 0.001; r = 0.644), suggesting similar pathways of exposure to the two compounds. Higher PFAS occurrence was generally observed in the hair of females. Our results highlighted the urgent need to investigate the deposition mechanism of PFAS in hair.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Dipa Lalwani
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan; Institute of Science & Technology for Advanced Studies & Research (ISTAR), Sardar Patel Centre for Science and Technology, Vallabh Vidhyanagar, Anand, Gujarat, India
| | - Karen Y Kwok
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Eriko Yamazaki
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Nirmal J I Kumar
- Institute of Science & Technology for Advanced Studies & Research (ISTAR), Sardar Patel Centre for Science and Technology, Vallabh Vidhyanagar, Anand, Gujarat, India
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|