1
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
2
|
Fossdal CG, Krokene P, Olsen JE, Strimbeck R, Viejo M, Yakovlev I, Mageroy MH. Epigenetic stress memory in gymnosperms. PLANT PHYSIOLOGY 2024; 195:1117-1133. [PMID: 38298164 PMCID: PMC11142372 DOI: 10.1093/plphys/kiae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.
Collapse
Affiliation(s)
- Carl Gunnar Fossdal
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Paal Krokene
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Jorunn Elisabeth Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Richard Strimbeck
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Marcos Viejo
- Department of Functional Biology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Igor Yakovlev
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Melissa H Mageroy
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| |
Collapse
|
3
|
Car C, Quevarec L, Gilles A, Réale D, Bonzom JM. Evolutionary approach for pollution study: The case of ionizing radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123692. [PMID: 38462194 DOI: 10.1016/j.envpol.2024.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Collapse
Affiliation(s)
- Clément Car
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| | - Loïc Quevarec
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France.
| | - André Gilles
- UMR Risques, ECOsystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix-Marseille Université (AMU), Marseille, France
| | - Denis Réale
- Département des Sciences Biologiques, Université Du Québec à Montréal, (UQAM), Montréal, Canada
| | - Jean-Marc Bonzom
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| |
Collapse
|
4
|
Mishra S, Duarte GT, Horemans N, Ruytinx J, Gudkov D, Danchenko M. Complexity of responses to ionizing radiation in plants, and the impact on interacting biotic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171567. [PMID: 38460702 DOI: 10.1016/j.scitotenv.2024.171567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In nature, plants are simultaneously exposed to different abiotic (e.g., heat, drought, and salinity) and biotic (e.g., bacteria, fungi, and insects) stresses. Climate change and anthropogenic pressure are expected to intensify the frequency of stress factors. Although plants are well equipped with unique and common defense systems protecting against stressors, they may compromise their growth and development for survival in such challenging environments. Ionizing radiation is a peculiar stress factor capable of causing clustered damage. Radionuclides are both naturally present on the planet and produced by human activities. Natural and artificial radioactivity affects plants on molecular, biochemical, cellular, physiological, populational, and transgenerational levels. Moreover, the fitness of pests, pathogens, and symbionts is concomitantly challenged in radiologically contaminated areas. Plant responses to artificial acute ionizing radiation exposure and laboratory-simulated or field chronic exposure are often discordant. Acute or chronic ionizing radiation exposure may occasionally prime the defense system of plants to better tolerate the biotic stress or could often exhaust their metabolic reserves, making plants more susceptible to pests and pathogens. Currently, these alternatives are only marginally explored. Our review summarizes the available literature on the responses of host plants, biotic factors, and their interaction to ionizing radiation exposure. Such systematic analysis contributes to improved risk assessment in radiologically contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia
| | - Gustavo Turqueto Duarte
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Nele Horemans
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Joske Ruytinx
- Department of Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia.
| |
Collapse
|
5
|
Geras'kin S. Plant adaptation to ionizing radiation: Mechanisms and patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170201. [PMID: 38246389 DOI: 10.1016/j.scitotenv.2024.170201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Adaptation to environmental stressors is an essential property of plants that allows them, despite an immobile lifestyle, to survive in a changeable environment. The chain of successive events culminating in the final radiobiological reaction begins with the absorption of energy of ionizing radiation in the cell. Starting from stochastic acts of molecular injury formation, radiation damage gradually acquires deterministic features, which are expressed in a limited number of phenomena that complete plant radiation damage. As plants undergo specialization, the differences between plants and animals become more pronounced, leading to distinct responses to radiation. Chronic radiation exposure may activate biological mechanisms resulting in increased radioresistance of the population. The higher the level of radiation exposure and the sensitivity of plants to radiation, the more intensive the selection. Depending on the circumstances, enhanced radioresistance of a population can be achieved in different ways or has not evolved at all. High dose rates of chronic irradiation leаd to selection for the efficiency of repair systems, while low dose rates activate epigenetic mechanisms that lead to the maintenance of oxidative balance, additional synthesis of chaperones, and control of TEs transposition. Due to huge differences in the radiosensitivity of organisms that make up the ecosystem, irradiation can result in disruption of connections between components of ecosystems which may lead to consequences that can differ drastically from those expected at the organismal and population levels. Therefore, the use of ecological knowledge is essential for understanding the responses of populations and ecosystems to radiation exposure.
Collapse
Affiliation(s)
- Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology of NRC "Kurchatov Institute", Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia.
| |
Collapse
|
6
|
Sakauchi K, Otaki JM. Soil Microbes and Plant-Associated Microbes in Response to Radioactive Pollution May Indirectly Affect Plants and Insect Herbivores: Evidence for Indirect Field Effects from Chernobyl and Fukushima. Microorganisms 2024; 12:364. [PMID: 38399767 PMCID: PMC10892324 DOI: 10.3390/microorganisms12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biological impacts of the nuclear accidents in Chernobyl (1986) and Fukushima (2011) on wildlife have been studied in many organisms over decades, mainly from dosimetric perspectives based on laboratory experiments using indicator species. However, ecological perspectives are required to understand indirect field-specific effects among species, which are difficult to evaluate under dosimetric laboratory conditions. From the viewpoint that microbes play a fundamental role in ecosystem function as decomposers and symbionts for plants, we reviewed studies on microbes inhabiting soil and plants in Chernobyl and Fukushima in an attempt to find supporting evidence for indirect field-specific effects on plants and insect herbivores. Compositional changes in soil microbes associated with decreases in abundance and species diversity were reported, especially in heavily contaminated areas of both Chernobyl and Fukushima, which may accompany explosions of radioresistant species. In Chernobyl, the population size of soil microbes remained low for at least 20 years after the accident, and the abundance of plant-associated microbes, which are related to the growth and defense systems of plants, possibly decreased. These reported changes in microbes likely affect soil conditions and alter plant physiology. These microbe-mediated effects may then indirectly affect insect herbivores through food-mass-mediated, pollen-mediated, and metabolite-mediated interactions. Metabolite-mediated interactions may be a major pathway for ecological impacts at low pollution levels and could explain the decreases in insect herbivores in Fukushima. The present review highlights the importance of the indirect field effects of long-term low-dose radiation exposure under complex field circumstances.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan;
| |
Collapse
|
7
|
Grison S, Braga-Tanaka II, Baatout S, Klokov D. In utero exposure to ionizing radiation and metabolic regulation: perspectives for future multi- and trans-generation effects studies. Int J Radiat Biol 2024; 100:1283-1296. [PMID: 38180060 DOI: 10.1080/09553002.2023.2295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects. It primarily focuses on animal studies involving in utero exposure and discusses crucial elements for interpreting the results. These elements include in utero exposure scenarios relative to the developmental stages of the embryo/fetus, and the primary biological mechanisms responsible for transmitting heritable or hereditary effects to future generations. The review addresses several issues within the contexts of both multigenerational and transgenerational effects, with a focus on hereditary perspectives. CONCLUSIONS Knowledge consolidation in the field of Developmental Origins of Health and Disease (DOHaD) has led us to propose a new study strategy. This strategy aims to address the transgenerational effects of in utero exposure to low dose and low dose-rate radiation. Within this concept, there is a possibility that disruption of epigenetic programming in embryonic and fetal cells may occur. This disruption could lead to metabolic dysfunction, which in turn may cause abnormal responses to future environmental challenges, consequently increasing disease risk. Lastly, we discuss methodological limitations in our studies. These limitations are related to cohort size, follow-up time, model radiosensitivity, and analytical techniques. We propose scientific and analytical strategies for future research in this field.
Collapse
Affiliation(s)
- Stéphane Grison
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ignacia Iii Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), Rokkasho Kamikita, Aomori, Japan
| | - Sarah Baatout
- Belgian Nuclear Research Centre, SCK CEN, Institute of Nuclear Medical Applications, Mol, Belgium
- Department of Molecular Biotechnology (BW25) and Department of Human Structure and Repair (GE38), Ghent University, Ghent, Belgium
| | - Dmitry Klokov
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
- Department of Microbiology, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Sreetharan S, Frelon S, Horemans N, Laloi P, Salomaa S, Adam-Guillermin C. Ionizing radiation exposure effects across multiple generations: evidence and lessons from non-human biota. Int J Radiat Biol 2023; 100:1312-1329. [PMID: 38079349 DOI: 10.1080/09553002.2023.2281512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 08/30/2024]
Abstract
A Task Group (TG121) of the International Commission on Radiological Protection (ICRP) Committee 1 was launched in 2021 to study the effects of ionizing radiation in offspring and next generations. In this report, we summarize the evidence of multi- and trans-generational effects in non-human biota species that was discussed at the ICRP workshop entitled "Effects of Ionizing Radiation Exposure in Offspring and Next Generations" in June 2022. Epigenetic changes, including changes in DNA methylation, have been observed in trans- and multi-generational irradiation studies in both plants and animals. There were also reports of changes in offspring survival and reproduction. The reported evidence for altered reproduction is an area of potential concern, due to possible effects at the population or ecosystem level. Different considerations are also discussed regarding non-human biota data, such as transferability of data between different species or extending knowledge to humans, differences in species radiosensitivity, the presence of adaptive responses, and dose reconstruction for exposures that occur across multiple generations. Overall, there is a diverse range of available data of the effects in non-human biota, and it will require careful consideration when incorporating this evidence into the system of radiological protection of humans and of the environment.
Collapse
Affiliation(s)
- Shayenthiran Sreetharan
- Radiation Safety, London Health Sciences Centre (LHSC), London, Ontario, Canada
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Mol, Belgium
- Centre of Environmental Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Patrick Laloi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
9
|
Horemans N, Kariuki J, Saenen E, Mysara M, Beemster GTS, Sprangers K, Pavlović I, Novak O, Van Hees M, Nauts R, Duarte GT, Cuypers A. Are Arabidopsis thaliana plants able to recover from exposure to gamma radiation? A molecular perspective. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107304. [PMID: 37871537 DOI: 10.1016/j.jenvrad.2023.107304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Most plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A. thaliana seedlings to gamma dose rates ranging from 27 to 103.7 mGy/h for 2 weeks and allowing them to recover for 4 days. A high-throughput RNAsequencing analysis was carried out. An enrichment of GO terms related to the metabolism of hormones was observed both after irradiation and during recovery at all dose rates. While plants exposed to the lowest dose rate activate defence responses after irradiation, they recover from the IR by resuming normal growth during the recovery period. Plants exposed to the intermediate dose rate invest in signalling and defence after irradiation. During recovery, in the plants exposed to the highest dose rate, fundamental metabolic processes such as photosynthesis and RNA modification were still affected. This might lead to detrimental effects in the long-term or in the next generations of those irradiated plants.
Collapse
Affiliation(s)
- Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium.
| | - Jackline Kariuki
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Katrien Sprangers
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - May Van Hees
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | | | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Shimalina NS, Antonova EV, Pozolotina VN. Multiannual Assessment of Quality of Plantago major L. Seed Progeny from Kyshtym Radiation Accident Area: Weather-Dependent Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2528. [PMID: 37447088 DOI: 10.3390/plants12132528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
The effects of low-dose radiation that are observed in plant populations in radioactively contaminated areas are variable. One of the reasons is the influence of fluctuating weather conditions and the interaction of radiation with weather factors. This article summarizes results of 12-year research on the viability and radioresistance of greater plantain (Plantago major L.) seed progeny growing in the East Ural Radioactive Trace (EURT) zone and in control (nonradioactive) areas, with consideration of weather conditions' variability. The EURT was formed by the Kyshtym accident, which occurred in 1957 at the Mayak Production Association. Absorbed dose rates of P. major parental plants in the pollution gradient were 14.5-165.9 μGy h-1, which correspond to a low-dose range. Seed progeny quality was evaluated as seed weight, the survival rate, and root length of 21-day seedlings. Interannual variability in the studied parameters was high, and their ranges overlapped between EURT groups of seeds and control groups in most cases. The number of significant correlations between the parameters of seed quality and weather conditions was higher in EURT groups than in control populations. In the control groups of seeds, 88.9% of correlations were negative, whereas in the EURT groups, 78.5% were positive.
Collapse
Affiliation(s)
- Nadezhda S Shimalina
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 8 Marta Str. 202, Ekaterinburg 620144, Russia
| | - Elena V Antonova
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 8 Marta Str. 202, Ekaterinburg 620144, Russia
| | - Vera N Pozolotina
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 8 Marta Str. 202, Ekaterinburg 620144, Russia
| |
Collapse
|
11
|
Ferreira MF, Turner A, Vernon EL, Grisolia C, Lebaron-Jacobs L, Malard V, Jha AN. Tritium: Its relevance, sources and impacts on non-human biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162816. [PMID: 36921857 DOI: 10.1016/j.scitotenv.2023.162816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Tritium (3H) is a radioactive isotope of hydrogen that is abundantly released from nuclear industries. It is extremely mobile in the environment and in all biological systems, representing an increasing concern for the health of both humans and non-human biota (NHB). The present review examines the sources and characteristics of tritium in the environment, and evaluates available information pertaining to its biological effects at different levels of biological organisation in NHB. Despite an increasing number of publications in the tritium radiobiology field, there exists a significant disparity between data available for the different taxonomic groups and species, and observations are heavily biased towards marine bivalves, fish and mammals (rodents). Further limitations relate to the scarcity of information in the field relative to the laboratory, and lack of studies that employ forms of tritium other than tritiated water (HTO). Within these constraints, different responses to HTO exposure, from molecular to behavioural, have been reported during early life stages, but the potential transgenerational effects are unclear. The application of rapidly developing "omics" techniques could help to fill these knowledge gaps and further elucidate the relationships between molecular and organismal level responses through the development of radiation specific adverse outcome pathways (AOPs). The use of a greater diversity of keystone species and exposures to multiple stressors, elucidating other novel effects (e.g., by-stander, germ-line, transgenerational and epigenetic effects) offers opportunities to improve environmental risk assessments for the radionuclide. These could be combined with artificial intelligence (AI) including machine learning (ML) and ecosystem-based approaches.
Collapse
Affiliation(s)
- Maria Florencia Ferreira
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | | | | | - Veronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, IPM, F-13108 Saint Paul-Lez-Durance, France
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
12
|
Bondarenko V, Geras'kin S, Bondarenko E, Yoschenko V, Bondarenko S, Khanova A, Garbaruk D, Nanba K. Comparative analysis of epigenetic variability in two pine species exposed to chronic radiation in the chernobyl and fukushima affected zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121799. [PMID: 37169241 DOI: 10.1016/j.envpol.2023.121799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Comparative analysis of epigenetic variability in two pine species affected as a result of the Chernobyl and Fukushima accidents is presented. The absorbed dose rate within the affected Chernobyl sites varies over a wider range (1.5-24.6 μGy/h) than within the Fukushima sites (3.5-6.5 μGy/h). It was shown that chronic irradiation can change the level of whole genome methylation in pine populations, but in different ways. The genomes of Japanese red pines are hypomethylated, and the degree of methylation and hydroxymethylation decreases with an increase in the level of radiation exposure. In contrast, the percentages of genome methylation and hydroxymethylation in Scots pine populations exceed the reference levels. The observed discrepancy in the patterns of genome-wide DNA methylation can be attributed partly to the design of the study (differences in the climate, radiation dose, age and species of the pines) which could affect the results. In the frame of IRAP analysis, a larger number of different bands was observed in the Chernobyl populations compared to the Japanese populations. Both the Japanese and Chernobyl populations are characterized by significant genetic variability. However, the main part of this variability is observed within populations. The dendrograms, based on presence/absence of IRAP fragments and Nei's genetic distances, revealed subdivisions of the Chernobyl and Japanese populations according to the level of radioactive contamination. Analysis of the results presented will improve our understanding of the mechanisms underlying the responses of pine trees to chronic radiation exposure.
Collapse
Affiliation(s)
- Vladimir Bondarenko
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation.
| | - Ekaterina Bondarenko
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Vasyl Yoschenko
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Sergey Bondarenko
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Anastasiya Khanova
- Russian Institute of Radiology and Agroecology, Kievskoe Shosse, 109 Km, Obninsk, Kaluga Region, 249032, Russian Federation
| | - Dmitriy Garbaruk
- Polesye State Radiation-Ecological Reserve, 247618, Tereshkovoy Str. 7, Khoyniki, Belarus
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| |
Collapse
|
13
|
Otsuka K, Iwasaki T. Insights into radiation carcinogenesis based on dose-rate effects in tissue stem cells. Int J Radiat Biol 2023; 99:1503-1521. [PMID: 36971595 DOI: 10.1080/09553002.2023.2194398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells. METHODS We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation. RESULTS Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition. CONCLUSIONS We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Toshiyasu Iwasaki
- Strategy and Planning Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| |
Collapse
|
14
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
15
|
Shimalina NS, Pozolotina VN, Orekhova NA. Stress memory in two generations of Plantago major from radioactive and chemical contaminated areas after the cessation of exposure. Int J Radiat Biol 2022:1-11. [PMID: 36353750 DOI: 10.1080/09553002.2023.2146232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HYPOTHESIS The differences in viability, root length, and pro/antioxidant features of Plantago major seedlings identified in seed progeny formed in areas of radioactive and chemical contamination can persist in subsequent generations after the elimination of the stress. MATERIALS AND METHODS The seed mixtures of F1 generation were collected from P. major natural populations (P plants) growing for a long time in the East Ural Radioactive Trace, the Karabash Copper Smelter zone, and background area. The seeds of F2 generation were obtained from F1 generation plants grown on experimental plots with 'clean' agricultural background; F3 generation was grown from F2 generation on the same plots. The viability of seed progeny was estimated by survival rate and root length. Pro/antioxidant features were determined spectrophotometrically by malondialdehyde content, superoxide dismutase and catalase activities, and total content of low molecular weight antioxidants in seedlings. RESULTS AND CONCLUSIONS The hypothesis about the persistence of effects from chronic exposure to ionizing radiation and chemical contamination in the generations' sequence of P. major after the removal of stress was confirmed only partially. The data obtained indicated that changes in the prooxidant and antioxidant features of plants in response to low doses of ionizing radiation can persist for at least in two generations after the stress removal. In the case of long-term exposure to chemical contaminants, we observed the persistence of the effect in a succession of generations only on the morphological indicator of root length.
Collapse
Affiliation(s)
- Nadezhda S. Shimalina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str. 202, Yekaterinburg 620144, Russia
| | - Vera N. Pozolotina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str. 202, Yekaterinburg 620144, Russia
| | - Natalya A. Orekhova
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str. 202, Yekaterinburg 620144, Russia
| |
Collapse
|
16
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
17
|
Raskosha O, Bashlykova L, Starobor N. Assessment of DNA damage in somatic and germ cells of animals living with increased radiation background and their offspring. Int J Radiat Biol 2022; 99:499-509. [PMID: 35938979 DOI: 10.1080/09553002.2022.2110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE The aim of this work is to assess DNA damage in the somatic and germ cells in root voles living for a long time under conditions of an increased radiation background and to examine the of manifestation of long-term consequences in their offspring. MATERIALS AND METHODS Using the DNA comet assay (neutral version), we assessed the proportion of cells with DNA damage in the cells of the thyroid, bone marrow and testicular in root voles (Microtus oeconomus Pall.) that lived under conditions of increased radiation background (exposure dose rate - 0.50-20 μSv/h; Komi Republic, Russia) and in their offspring (F1-F3) that were reproduced in a vivarium with a normal radiation background. RESULTS In animals caught in a radioactively contaminated area, the level of DNA fragmentation in the thyroid gland, bone marrow and testicular remained within the range of values of control animals. The studies that we continued on the offspring of irradiated root voles that were developing in the vivarium under normal radiation background allowed us to identify an increase in the level of DNA DSBs in the thyroid gland in the F1 generation, in the bone marrow and testicular cells in the F2 generation. The modifying effect of urethane showed a similarity in the response of somatic cells in voles that lived for a long time in a radioactively contaminated area and in their offspring that developed with a normal radiation background. The effect of urethane was more conspicuous in thyroid cells that, than in bone marrow cells. CONCLUSION The data obtained on voles from the experimental site indicate adaptation to habitat conditions in a radioactively polluted environment. The provocative effect of urethane made it possible to reveal different response of organs with different proliferative activity. Long-term habitation of voles under conditions of an increased radiation background led to genome instability in their offspring.
Collapse
Affiliation(s)
- Oksana Raskosha
- Ural Branch of the Russian Academy of Sciences, Institute of Biology of the Komi Science Center, Syktyvkar, Russia
| | - Lyudmila Bashlykova
- Ural Branch of the Russian Academy of Sciences, Institute of Biology of the Komi Science Center, Syktyvkar, Russia
| | - Natalia Starobor
- Ural Branch of the Russian Academy of Sciences, Institute of Biology of the Komi Science Center, Syktyvkar, Russia
| |
Collapse
|
18
|
Šrut M. Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms. TOXICS 2022; 10:toxics10070406. [PMID: 35878310 PMCID: PMC9323174 DOI: 10.3390/toxics10070406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One of the major emerging concerns within ecotoxicology is the effect of environmental pollutants on epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms regulate gene expression, meaning that the alterations of epigenetic marks can induce long-term physiological effects that can even be inherited across generations. Many invertebrate species have been used as models in environmental epigenetics, with a special focus on DNA methylation changes caused by environmental perturbations (e.g., pollution). Among soil organisms, earthworms are considered the most relevant sentinel organisms for anthropogenic stress assessment and are widely used as standard models in ecotoxicological testing of soil toxicity. In the last decade, several research groups have focused on assessing the impact of environmental stress on earthworm epigenetic mechanisms and tried to link these mechanisms to the physiological effects. The aim of this review is to give an overview and to critically examine the available literature covering this topic. The high level of earthworm genome methylation for an invertebrate species, responsiveness of epigenome to environmental stimuli, availability of molecular resources, and the possibility to study epigenetic inheritance make earthworms adequate models in environmental epigenomics. However, there are still many knowledge gaps that need to be filled in, before we can fully explore earthworms as models in this field. These include detailed characterization of the methylome using next-generation sequencing tools, exploration of multigenerational and transgenerational effects of pollutants, and information about other epigenetic mechanisms apart from DNA methylation. Moreover, the connection between epigenetic effects and phenotype has to be further explored.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Ghosh A. Biological and cellular responses of humans to high-level natural radiation: A clarion call for a fresh perspective on the linear no-threshold paradigm. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503478. [PMID: 35649671 DOI: 10.1016/j.mrgentox.2022.503478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
There remains considerable uncertainty in obtaining risk estimates of adverse health outcomes of chronic low-dose radiation. In the absence of reliable direct data, extrapolation through the linear no-threshold (LNT) hypothesis forms the cardinal tenet of all risk assessments for low doses (≤ 100 mGy) and for the radiation protection principle of As Low As Reasonably Achievable (ALARA). However, as recent evidences demonstrate, LNT assumptions do not appropriately reflect the biology of the cell at the low-dose end of the dose-response curve. In this regard, human populations living in high-level natural radiation areas (HLNRA) of the world can provide valuable insights into the biological and cellular effects of chronic radiation to facilitate improved precision of the dose-response relationship at low doses. Here, data obtained over decades of epidemiological and radiobiological studies on HLNRA populations is summarized. These studies do not show any evidence of unfavourable health effects or adverse cellular effects that can be correlated with high-level natural radiation. Contrary to the assumptions of LNT, no excess cancer risks or untoward pregnancy outcomes have been found to be associated with cumulative radiation dose or in-utero exposures. Molecular biology-driven studies demonstrate that chronic low-dose activates several cellular defence mechanisms that help cells to sense, recover, survive, and adapt to radiation stress. These mechanisms include stress-response signaling, DNA repair, immune alterations and most importantly, the radiation-induced adaptive response. The HLNRA data is consistent with the new evolving paradigms of low-dose radiobiology and can help develop the theoretical framework of an alternate dose-response model. A rational integration of radiobiology with epidemiology data is imperative to reduce uncertainties in predicting the potential health risks of chronic low doses of radiation.
Collapse
Affiliation(s)
- Anu Ghosh
- Animal House Facility & Radiation Signaling Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
20
|
Li B, Zhao L, Zhang S, Cai H, Xu L, An B, Wang R, Liu G, He Y, Jiao C, Liu L, Xu Y. The Mutational, Epigenetic, and Transcriptional Effects Between Mixed High-Energy Particle Field (CR) and 7Li-Ion Beams (LR) Radiation in Wheat M 1 Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:878420. [PMID: 35646033 PMCID: PMC9131052 DOI: 10.3389/fpls.2022.878420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Ionizing radiation (IR) is an effective approach for mutation breeding. Understanding the mutagenesis and transcriptional profiles induced by different mutagens is of great significance for improving mutation breeding efficiency. Here, using RNA sequencing and methylation-sensitive amplification polymorphism (MSAP) approaches, we compared the genetic variations, epigenetics, and transcriptional responses induced by the mixed high-energy particle field (CR) and 7Li-ion beam (LR) radiation in M1 seedlings of two wheat genotypes (Yangmai 18 and Yangmai 20). The results showed that, in both wheat genotypes, CR displayed significantly a higher mutation efficiency (1.79 × 10-6/bp) than that by LR (1.56 × 10-6/bp). The induced mutations were not evenly distributed across chromosomes and varied across wheat genotypes. In Y18 M1, the highest number of mutations were detected on Chr. 6B and Chr. 6D, whilst in Y20 M1, Chr. 7A and Chr. 3A had the highest mutations. The transcript results showed that total of 4,755 CR-regulated and 1,054 LR-regulated differentially expressed genes (DEGs) were identified in the both genotypes. Gene function enrichment analysis of DEGs showed that these DEGs overlapped or diverged in the cascades of molecular networks involved in "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways. Moreover, IR type specific responses were observed between CR an LR irradiation, including specific TFs and response pathways. MSAP analysis showed that DNA methylation level increased in LR treatment, while decreased at CR. The proportion of hypermethylation was higher than that of hypomethylation at LR, whereas a reverse pattern was observed at CR, indicating that DNA methylation plays critical roles in response to IR irradiation. All these results support that the response to different IRs in wheat includes both common and unique pathways, which can be served as a useful resource to better understand the mechanisms of responses to different IRs in other plants.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Haiya Cai
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Le Xu
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Bingzhuang An
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Rong Wang
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Gang Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yonggang He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
21
|
Rasnaca I, Kille P, Newbold LK, Spurgeon DJ. Impacts of Life-Time Exposure of Arsenic, Cadmium and Fluoranthene on the Earthworms’ L. rubellus Global DNA Methylation as Detected by msAFLP. Genes (Basel) 2022; 13:genes13050770. [PMID: 35627155 PMCID: PMC9140603 DOI: 10.3390/genes13050770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
This study reports on the effects of long-term exposure to the metals arsenic (As), cadmium (Cd) and the polycyclic aromatic hydrocarbon fluoranthene on the survival, growth, development and DNA methylation status of the earthworm Lumbricus rubellus. Exposures to the three chemicals were conducted over their whole juvenile developmental period from egg to adult. Significant effects on one or more measured endpoints were found for all three chemicals. Arsenic had no effect on survival, but had a significant effect on growth rates at concentrations of 36 mg/kg or higher and also slowed the rate of maturation. Cadmium significantly reduced juvenile survival at 500 mg/kg, juvenile growth at 148 mg/kg and maturation rates at all tested concentrations. Fluoranthene had no effect on survival or the developmental period, but did significantly reduce growth rates at 800 mg/kg. Effects at these concentrations are consistent with the known effects of these three chemicals on earthworms from previous studies conducted mainly with Eisenia fetida. Both As and Cd had no effect on DNA methylation patterning in earthworms measured at the end of the exposure. Fluoranthene was shown, for the first time. to have an effect on a species’ DNA methylation levels. These results suggest that apical phenotypic changes for As and Cd are not necessarily associated with changes in DNA methylation profiles. However, exposure to the organic chemical fluoranthene influenced DNA methylation patterns, suggesting wider remodelling of the epigenome for this chemical.
Collapse
Affiliation(s)
- Ilze Rasnaca
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK; (I.R.); (L.K.N.)
- Cardiff School of Biosciences, University of Cardiff, P.O. Box 915, Cardiff CF10 3TL, UK;
| | - Peter Kille
- Cardiff School of Biosciences, University of Cardiff, P.O. Box 915, Cardiff CF10 3TL, UK;
| | - Lindsay K. Newbold
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK; (I.R.); (L.K.N.)
| | - David J. Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK; (I.R.); (L.K.N.)
- Correspondence: ; Tel.: +44-1487-772-561; Fax: +44-1487-773-467
| |
Collapse
|
22
|
Seong KM, Cenci G. Editorial: The Genetic and Epigenetic Bases of Cellular Response to Ionizing Radiation. Front Genet 2022; 13:857168. [PMID: 35309150 PMCID: PMC8931710 DOI: 10.3389/fgene.2022.857168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- *Correspondence: Ki Moon Seong, ; Giovanni Cenci,
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Fondazione Cenci Bolognetti/Istituto Pasteur Italia, Rome, Italy
- *Correspondence: Ki Moon Seong, ; Giovanni Cenci,
| |
Collapse
|
23
|
Antonova EV, Röder MS. Evaluation of the genetic structure of Bromus inermis populations from chemically and radioactively polluted areas using microsatellite markers from closely related species. Int J Radiat Biol 2021; 98:1289-1300. [PMID: 34855571 DOI: 10.1080/09553002.2022.2013569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hypothesis The ecotoxicological and radiobiological effects can be manifested in a decrease in genetic diversity with an increase in toxic and radiation load, in an increase in the frequencies of rare and/or unique (private) alleles in impact samples, and in a decrease in the differentiation of B. inermis populations within each pollution area.Materials and methods We have selected a collection of primers for Bromus inermis, consisting of 21 microsatellite (SSR) loci from B. sterilis, B. tectorum and Triticum aestivum. The level of toxic load (chemically polluted area) was 4-19 conventional units, and the absorbed dose rate (the Kyshtym accident area) varied from 0.153 to 21.5 μGy h-1, which is up to two orders higher than the natural background radiation level (≈ 0.1 μGy h-1).Results Only eight of 21 (38%) of SSR primers showed good transferability and were used for B. inermis population studies from areas of technogenic pollution (heavy metals and radionuclides). We revealed 42 alleles at eight loci, and the number of alleles per locus varied from one to 13 in B. inermis populations. The percentage of polymorphic loci in B. inermis populations was 48.44%, the polymorphism information content (PIC) value was 0.556, and Shannon information index was 0.69 ± 0.3. A total of 22 rare, 14 private and 9 both rare and private alleles were reported for all B. inermis populations. There were no correlations between geographic and genetic distances. Only 6.8% of the genetic variability was distributed among B. inermis populations.Conclusion There was no decrease in genetic diversity ("genetic erosion") found in B. inermis populations growing for a long time under anthropogenic stress. No significant differences in the number of rare and private alleles in the background and impact populations of B. inermis were found. The smooth brome is characterized by low differentiation of the populations. Possible reasons for this phenomenon are discussed.
Collapse
Affiliation(s)
- Elena V Antonova
- Laboratory of Population Radiobiology, Institute of Plant & Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str. 202, Ekaterinburg 620144, Russia
| | - Marion S Röder
- Group of Gene and Genome Mapping, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben 06466, Germany
| |
Collapse
|
24
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
25
|
Kugathasan T, Mothersill C. Radiobiological and social considerations following a radiological terrorist attack; mechanisms, detection and mitigation: review of new research developments. Int J Radiat Biol 2021; 98:855-864. [PMID: 34644238 DOI: 10.1080/09553002.2021.1988180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE This review focuses on recent research in understanding the different aspects of what society should expect from a radiological attack. Although some scenarios of a radiologic event can be impossible to be prepared for, the effort put toward educating and better preparing for these types of events can help minimize some of the issues. The different areas discussed in this review include radioisotopes of concern, detection of radiation dose, biological effects of ionizing radiation exposures, low dose effects, targeted and non-targeted effects (NTE), psychological effects, mitigations, with a brief mention of other considerations such as medical preparedness, communication, policy implications and ethical issues. This review also discusses solutions to rectify the issues faced at hand that may come up in the event of a radiologic terrorist attack. CONCLUSIONS A review of recent work in the area shows that a multi-layered and interdisciplinary approach is needed to prepare for a radiological terrorist attack. As well as medical preparedness, the approach needs to include sociological and psychological planning as well as an understanding of ethical issues. Since the likely 'dirty bomb' scenarios may involve low dose exposures to high numbers of people, a much better theoretical and practical understanding of low dose radiobiology and the development of robust low dose exposure biomarkers is needed as part of an integrated plan.
Collapse
Affiliation(s)
- Tanya Kugathasan
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | | |
Collapse
|
26
|
Gilbin R, Arnold T, Beresford NA, Berthomieu C, Brown JE, de With G, Horemans N, Madruga MJ, Masson O, Merroun M, Michalik B, Muikku M, O'Toole S, Mrdakovic Popic J, Nogueira P, Real A, Sachs S, Salbu B, Stark K, Steiner M, Sweeck L, Vandenhove H, Vidal M, Vives I Batlle J. An updated strategic research agenda for the integration of radioecology in the european radiation protection research. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106697. [PMID: 34334231 DOI: 10.1016/j.jenvrad.2021.106697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The ALLIANCE Strategic Research Agenda (SRA) for radioecology is a living document that defines a long-term vision (20 years) of the needs for, and implementation of, research in radioecology in Europe. The initial SRA, published in 2012, included consultation with a wide range of stakeholders (Hinton et al., 2013). This revised version is an update of the research strategy for identified research challenges, and includes a strategy to maintain and develop the associated required capacities for workforce (education and training) and research infrastructures and capabilities. Beyond radioecology, this SRA update constitutes a contribution to the implementation of a Joint Roadmap for radiation protection research in Europe (CONCERT, 2019a). This roadmap, established under the H2020 European Joint Programme CONCERT, provides a common and shared vision for radiation protection research, priority areas and strategic objectives for collaboration within a European radiation protection research programme to 2030 and beyond. Considering the advances made since the first SRA, this updated version presents research challenges and priorities including identified scientific issues that, when successfully resolved, have the potential to impact substantially and strengthen the system and/or practice of the overall radiation protection (game changers) in radioecology with regard to their integration into the global vision of European research in radiation protection. An additional aim of this paper is to encourage contribution from research communities, end users, decision makers and other stakeholders in the evaluation, further advancement and accomplishment of the identified priorities.
Collapse
|
27
|
Setou N, Suzuki S, Matsuzuka T, Iwadate M, Maeda M, Namekata Y, Yoshida F, Oshima K, Ohira T, Yasumura S, Ohto H, Kamiya K, Yokoya S, Shimura H. Psychosocial support for the examinees and their families during the secondary confirmatory examination:Analyses of support records at first visit. Fukushima J Med Sci 2021; 67:53-63. [PMID: 34373400 PMCID: PMC8460285 DOI: 10.5387/fms.2021-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background and Purpose The Thyroid Ultrasound Examination (TUE) program is conducted as part of the Fukushima Health Management Survey. Following the established criteria, examinees are called in for a secondary confirmation examination, which may induce high anxiety related to a thyroid cancer for both the examinees and their families. Therefore, Fukushima Medical University created the Thyroid Support Team to reduce anxiety. The purpose of this study is to analyze the psychosocial support for examinees and their families through two types of records, and to clarify the current issues and determine future directions of support. Materials and methods We analyzed 223 records of support for the first visit of examinees who attended the secondary confirmatory examination, conducted at Fukushima Medical University from September 2018 to March 2019. Results During the first visit, frequent topics and questions brought up by the examinees and their families were about the “Thyroid Ultrasound Examination (TUE) program” and “Examination findings”. The Thyroid Support Team members assisted them by “Responding to questions”, “Confirming the doctor’s explanation” and “Providing information”. The percentage of people with high anxiety decreased in both examinees and their family members after the examination. The level of anxiety was lower among those who had already taken the secondary confirmatory examination. Family members’ anxiety was significantly higher than that of the examinees, and anxiety levels were highly correlated between examinees and their families. Conclusion The psychosocial support for examinees and their families was important in reducing their anxiety. Currently there are changes in social conditions and various opinions concerning the TUE. Thus, careful explanation and the need for decision-making supports for the examinees and their families increased. Also, we should take into account the aging of the examinees and expanding the available psychosocial support.
Collapse
Affiliation(s)
- Noriko Setou
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University.,Department of Disaster Psychiatry, School of Medicine, Fukushima Medical University
| | - Satoru Suzuki
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Takashi Matsuzuka
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University.,School of Health Sciences, Asahi University
| | - Manabu Iwadate
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University.,Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University
| | - Masaharu Maeda
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University.,Department of Disaster Psychiatry, School of Medicine, Fukushima Medical University
| | - Yuko Namekata
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Fusae Yoshida
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Kayoko Oshima
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Tetsuya Ohira
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Seiji Yasumura
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Hitoshi Ohto
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Kenji Kamiya
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University
| | - Susumu Yokoya
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University.,Thyroid and Endocrine Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Hiroki Shimura
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University.,Department of Laboratory Medicine, School of Medicine, Fukushima Medical University
| |
Collapse
|
28
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|
29
|
Zhang X, Chen X, Wang L, He C, Shi Z, Fu Q, Xu W, Zhang S, Hu S. Review of the Efficacy and Mechanisms of Traditional Chinese Medicines as a Therapeutic Option for Ionizing Radiation Induced Damage. Front Pharmacol 2021; 12:617559. [PMID: 33658941 PMCID: PMC7917257 DOI: 10.3389/fphar.2021.617559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation damage refers to acute, delayed, or chronic tissue damage associated with ionizing radiation. Specific or effective therapeutic options for systemic injuries induced by ionizing radiation have not been developed. Studies have shown that Chinese herbal Medicine or Chinese Herbal Prescription exhibit preventive properties against radiation damage. These medicines inhibit tissue injuries and promote repair with very minimal side effects. This study reviews traditional Chinese herbal medicines and prescriptions with radiation protective effects as well as their mechanisms of action. The information obtained will guide the development of alternative radioprotectants.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Xu
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Perez-Gelvez YNC, Unger S, Kurz S, Rosenbalm K, Wright WM, Rhodes OE, Tiemeyer M, Bergmann CW. Chronic exposure to low doses of ionizing radiation impacts the processing of glycoprotein N-linked glycans in Medaka ( Oryzias latipes). Int J Radiat Biol 2021; 97:401-420. [PMID: 33346724 DOI: 10.1080/09553002.2021.1864500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Ionizing radiation is found naturally in the environment. Low doses of IR may have beneficial applications, yet there is also potential for detrimental long-term health effects. Impacts following exposure to low levels of IR have been refractory to identification and quantification. Glycoprotein glycosylation is vital to cell-cell communication and organismal function, and sensitive to changes in an organism's macro- and cellular environment. We investigated whether accumulated low doses of IR (LoDIR) affect the N-linked glycoprotein glycans using Medaka fish (Oryzias latipes). MATERIALS AND METHODS State-of-the-art methods in radiation exposure and glycan analysis were applied to study N-glycan changes after 190 day exposure at three different rates of gamma irradiation (2.25, 21.01, and 204.3 mGy/day) in wild-type adult Medaka. Tissue N-glycans were analyzed following enzymatic release from extracted proteins. RESULTS N-linked glycan profiles are dominated by complex type N-glycans modified with terminal sialic acid and core fucose. Fucosylation and sialylation of N-linked glycoprotein glycans are affected by LoDIR and a subset of N-glycans are involved in the organismal radio-response. CONCLUSION This is the first indication that the glycome can be interrogated for biomarkers that report the impact of chronic exposure to environmental stressors, such as low-level IR.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Shem Unger
- Savannah River Ecology Laboratory, The University of Georgia, Aiken, GA, USA
| | - Simone Kurz
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Katelyn Rosenbalm
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | | | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Michael Tiemeyer
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
Laanen P, Saenen E, Mysara M, Van de Walle J, Van Hees M, Nauts R, Van Nieuwerburgh F, Voorspoels S, Jacobs G, Cuypers A, Horemans N. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:611783. [PMID: 33868326 PMCID: PMC8044457 DOI: 10.3389/fpls.2021.611783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Previous studies have found indications that exposure to ionising radiation (IR) results in DNA methylation changes in plants. However, this phenomenon is yet to be studied across multiple generations. Furthermore, the exact role of these changes in the IR-induced plant response is still far from understood. Here, we study the effect of gamma radiation on DNA methylation and its effect across generations in young Arabidopsis plants. A multigenerational set-up was used in which three generations (Parent, generation 1, and generation 2) of 7-day old Arabidopsis thaliana plants were exposed to either of the different radiation treatments (30, 60, 110, or 430 mGy/h) or to natural background radiation (control condition) for 14 days. The parental generation consisted of previously non-exposed plants, whereas generation 1 and generation 2 plants had already received a similar irradiation in the previous one or two generations, respectively. Directly after exposure the entire methylomes were analysed with UPLC-MS/MS to measure whole genome methylation levels. Whole genome bisulfite sequencing was used to identify differentially methylated regions (DMRs), including their methylation context in the three generations and this for three different radiation conditions (control, 30 mGy/h, and 110 mGy/h). Both intra- and intergenerational comparisons of the genes and transposable elements associated with the DMRs were made. Taking the methylation context into account, the highest number of changes were found for cytosines followed directly by guanine (CG methylation), whereas only limited changes in CHG methylation occurred and no changes in CHH methylation were observed. A clear increase in IR-induced DMRs was seen over the three generations that were exposed to the lowest dose rate, where generation 2 had a markedly higher number of DMRs than the previous two generations (Parent and generation 1). Counterintuitively, we did not see significant differences in the plants exposed to the highest dose rate. A large number of DMRs associated with transposable elements were found, the majority of them being hypermethylated, likely leading to more genetic stability. Next to that, a significant number of DMRs were associated with genes (either in their promoter-associated region or gene body). A functional analysis of these genes showed an enrichment for genes related to development as well as various stress responses, including DNA repair, RNA splicing, and (a)biotic stress responses. These observations indicate a role of DNA methylation in the regulation of these genes in response to IR exposure and shows a possible role for epigenetics in plant adaptation to IR over multiple generations.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jorden Van de Walle
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | | | - Griet Jacobs
- Vlaamse Instelling voor Technologisch Onderzoek, VITO, Mol, Belgium
| | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
- *Correspondence: Nele Horemans,
| |
Collapse
|
32
|
Thaulow J, Song Y, Lindeman LC, Kamstra JH, Lee Y, Xie L, Aleström P, Salbu B, Tollefsen KE. Epigenetic, transcriptional and phenotypic responses in Daphnia magna exposed to low-level ionizing radiation. ENVIRONMENTAL RESEARCH 2020; 190:109930. [PMID: 32738623 DOI: 10.1016/j.envres.2020.109930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation is known to induce oxidative stress and DNA damage as well as epigenetic effects in aquatic organisms. Epigenetic changes can be part of the adaptive responses to protect organisms from radiation-induced damage, or act as drivers of toxicity pathways leading to adverse effects. To investigate the potential roles of epigenetic mechanisms in low-dose ionizing radiation-induced stress responses, an ecologically relevant crustacean, adult Daphnia magna were chronically exposed to low and medium level external 60Co gamma radiation ranging from 0.4, 1, 4, 10, and 40 mGy/h for seven days. Biological effects at the molecular (global DNA methylation, histone modification, gene expression), cellular (reactive oxygen species formation), tissue/organ (ovary, gut and epidermal histology) and organismal (fecundity) levels were investigated using a suite of effect assessment tools. The results showed an increase in global DNA methylation associated with loci-specific alterations of histone H3K9 methylation and acetylation, and downregulation of genes involved in DNA methylation, one-carbon metabolism, antioxidant defense, DNA repair, apoptosis, calcium signaling and endocrine regulation of development and reproduction. Temporal changes of reactive oxygen species (ROS) formation were also observed with an apparent transition from ROS suppression to induction from 2 to 7 days after gamma exposure. The cumulative fecundity, however, was not significantly changed by the gamma exposure. On the basis of the new experimental evidence and existing knowledge, a hypothetical model was proposed to provide in-depth mechanistic understanding of the roles of epigenetic mechanisms in low dose ionizing radiation induced stress responses in D. magna.
Collapse
Affiliation(s)
- Jens Thaulow
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Leif C Lindeman
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Jorke H Kamstra
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, NL-3508 TD, Utrecht, the Netherlands
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of BioSciences, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
33
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
34
|
Lerebours A, Robson S, Sharpe C, Nagorskaya L, Gudkov D, Haynes-Lovatt C, Smith JT. Transcriptional Changes in the Ovaries of Perch from Chernobyl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10078-10087. [PMID: 32686935 DOI: 10.1021/acs.est.0c02575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fish have been highly exposed to radiation in freshwater systems after the Chernobyl Nuclear Power Plant (NPP) accident in 1986 and in freshwater and marine systems after the more recent Fukushima NPP accident in 2011. In the years after the accident, the radioactivity levels rapidly declined due to radioactive decay and environmental processes, but chronic lower dose exposures persisted. To gain insights into the long-term effects of environmental low dose radiation on fish ovaries development, a high-throughput transcriptomic approach including a de novo assembly was applied to different gonad phenotypes of female perch: developed gonads from reference lakes, developed/irradiated from medium contaminated lake, and both developed/irradiated and undeveloped from more highly contaminated lakes. This is the most comprehensive analysis to date of the gene responses in wildlife reproductive system to radiation. Some gene responses that were modulated in irradiated gonads were found to be involved in biological processes including cell differentiation and proliferation (ggnb2, mod5, rergl), cytoskeleton organization (k1C18, mtpn), gonad development (nell2, tcp4), lipid metabolism (ldah, at11b, nltp), reproduction (cyb5, cyp17A, ovos), DNA damage repair (wdhd1, rad51, hus1), and epigenetic mechanisms (dmap1). Identification of these genes provides a better understanding of the underlying molecular mechanisms underpinning the development of the gonad phenotypes of wild perch and how fish may respond to chronic exposure to radiation in their natural environment, though causal attribution of gene responses remains unclear in the undeveloped gonads.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Samuel Robson
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Colin Sharpe
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Liubov Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Dmitri Gudkov
- Institute of Hydrobiology of the National Academy of Sciences of Ukraine, Kiev UA-04210, Ukraine
| | | | - Jim T Smith
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| |
Collapse
|
35
|
Bertucci EM, Mason MW, Camus AC, Rhodes OE, Parrott BB. Chronic low dose irradiation alters hepatic transcriptional profiles, but not global DNA methylation in medaka (Oryzias latipes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138680. [PMID: 32361431 DOI: 10.1016/j.scitotenv.2020.138680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation (IR) resulting from both natural and anthropogenic sources is ubiquitous throughout the environment. Historically, studies on the biological impacts of radiation primarily focused on responses to acute doses of radiation, with little advancement in our understanding of environmentally relevant exposures. Epigenetic mechanisms are capable of mediating organismal responses to environmental stressors and DNA methylation plays important roles in gene regulation and promoting chromosomal stability. Here, we assess broad-scale transcriptional and epigenetic variation resulting from chronic exposure to low doses of ionizing radiation (LDIR; 5.78, 53.76, or 520.23 mGy/day) using Japanese medaka fish (Oryzias latipes) in a replicated mesocosm design. We observed significant changes to the hepatic transcriptome induced by a 3-month chronic exposure to IR, whereas global DNA methylation appeared largely unaffected. Our findings reveal a set of genes, including those involved in immune function, responding to environmentally relevant IR exposures, which do not appear to be mediated by a systemic global shift in DNA methylation.
Collapse
Affiliation(s)
- Emily M Bertucci
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Marilyn W Mason
- Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Alvin C Camus
- College of Veterinary Medicine Department of Pathology, University of Georgia, 501 D.W. Brooks Drive, Athens 30602, GA, USA.
| | - Olin E Rhodes
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Benjamin B Parrott
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| |
Collapse
|
36
|
Mothersill CE, Oughton DH, Schofield PN, Abend M, Adam-Guillermin C, Ariyoshi K, Beresford NA, Bonisoli-Alquati A, Cohen J, Dubrova Y, Geras’kin SA, Hevrøy TH, Higley KA, Horemans N, Jha AN, Kapustka LA, Kiang JG, Madas BG, Powathil G, Sarapultseva EI, Seymour CB, Vo NTK, Wood MD. From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. Int J Radiat Biol 2020; 98:1185-1200. [DOI: 10.1080/09553002.2020.1793022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima City, Japan
| | | | | | - Jason Cohen
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Yuri Dubrova
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed services University of the Health Sciences, Bethesda, MD, USA
| | - Balázs G. Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Gibin Powathil
- Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK
| | | | | | - Nguyen T. K. Vo
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Michael D. Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| |
Collapse
|
37
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, Smith JT, Bonzom JM, Gagnaire B, Adam-Guillermin C, Gashchak S, Jha AN, de Menezes A, Willey N, Spurgeon D. Towards solving a scientific controversy - The effects of ionising radiation on the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106033. [PMID: 31451195 DOI: 10.1016/j.jenvrad.2019.106033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 05/12/2023]
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP, United Kingdom; School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom.
| | - N Horemans
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - K E Raines
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - G Orizaola
- Universidad de Oviedo - Campus de Mieres, Edificio de Investigación 5a Planta, C/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres-Asturias, Spain
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - P Laanen
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium; University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - H C Whitehead
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - J E Burrows
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - M C Tinsley
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - J T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| | - J-M Bonzom
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | - B Gagnaire
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | | | - S Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, 77th Gvardiiska Dyviiya Str.11, P.O. Box 151, 07100, Slavutych, Kiev Region, Ukraine
| | - A N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - A de Menezes
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - N Willey
- Centre for Research in Bioscience, Dept. of Applied Sciences, University of the West of England, Frenchay, BS16 1QY, Bristol, United Kingdom
| | - D Spurgeon
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| |
Collapse
|
39
|
Newbold LK, Robinson A, Rasnaca I, Lahive E, Soon GH, Lapied E, Oughton D, Gashchak S, Beresford NA, Spurgeon DJ. Genetic, epigenetic and microbiome characterisation of an earthworm species (Octolasion lacteum) along a radiation exposure gradient at Chernobyl. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113238. [PMID: 31655460 DOI: 10.1016/j.envpol.2019.113238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the "hologenome" of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.
Collapse
Affiliation(s)
- Lindsay K Newbold
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Alex Robinson
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - I Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Elma Lahive
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Gweon H Soon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK; School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AH, UK
| | - Emmanuel Lapied
- Centre for Environmental Radioactivity, Norwegian University of Life Science, 1430 As, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity, Norwegian University of Life Science, 1430 As, Norway
| | - Sergey Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, Slavutych, Kiev Region, Ukraine
| | - Nicholas A Beresford
- NERC Centre for Ecology & Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA14AP, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK.
| |
Collapse
|