1
|
Wang H, Tang LX, Ye YF, Ma JX, Li X, Si J, Cui BK. Laccase immobilization and its degradation of emerging pollutants: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120984. [PMID: 38678905 DOI: 10.1016/j.jenvman.2024.120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The chronic lack of effective disposal of pollutants has resulted in the detection of a wide variety of EPs in the environment, with concentrations high enough to affect ecological health. Laccase, as a versatile oxidase capable of catalyzing a wide range of substrates and without producing toxic by-products, is a potential candidate for the biodegradation of pollutants. Immobilization can provide favorable protection for free laccase, improve the stability of laccase in complex environments, and greatly enhance the reusability of laccase, which is significant in reducing the cost of industrial applications. This study introduces the properties of laccase and subsequently elaborate on the different support materials for laccase immobilization. The research advances in the degradation of EDs, PPCPs, and PAHs by immobilized laccase are then reviewed. This review provides a comprehensive understanding of laccase immobilization, as well as the advantages of various support materials, facilitating the development of more economical and efficient immobilization systems that can be put into practice to achieve the green degradation of EPs.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Lu-Xin Tang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Fan Ye
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Barati F, Hosseini F, Vafaee R, Sabouri Z, Ghadam P, Arab SS, Shadfar N, Piroozmand F. In silico approaches to investigate enzyme immobilization: a comprehensive systematic review. Phys Chem Chem Phys 2024; 26:5744-5761. [PMID: 38294035 DOI: 10.1039/d3cp03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Enzymes are popular catalysts with many applications, especially in industry. Biocatalyst usage on a large scale is facing some limitations, such as low operational stability, low recyclability, and high enzyme cost. Enzyme immobilization is a beneficial strategy to solve these problems. Bioinformatics tools can often correctly predict immobilization outcomes, resulting in a cost-effective experimental phase with the least time consumed. This study provides an overview of in silico methods predicting immobilization processes via a comprehensive systematic review of published articles till 11 December 2022. It also mentions the strengths and weaknesses of the processes and explains the computational analyses in each method that are required for immobilization assessment. In this regard, Web of Science and Scopus databases were screened to gain relevant publications. After screening the gathered documents (n = 3873), 60 articles were selected for the review. The selected papers have applied in silico procedures including only molecular dynamics (MD) simulations (n = 20), parallel tempering Monte Carlo (PTMC) and MD simulations (n = 3), MD and docking (n = 1), density functional theory (DFT) and MD (n = 1), only docking (n = 11), metal ion binding site prediction (MIB) server and docking (n = 2), docking and DFT (n = 1), docking and analysis of enzyme surfaces (n = 1), only DFT (n = 1), only MIB server (n = 2), analysis of an enzyme structure and surface (n = 12), rational design of immobilized derivatives (RDID) software (n = 3), and dissipative particle dynamics (DPD; n = 2). In most included studies (n = 51), enzyme immobilization was investigated experimentally in addition to in silico evaluation.
Collapse
Affiliation(s)
- Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Fakhrisadat Hosseini
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Rayeheh Vafaee
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sabouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Shadfar
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Firoozeh Piroozmand
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Aslanli A. Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life (Basel) 2023; 13:841. [PMID: 36983996 PMCID: PMC10052509 DOI: 10.3390/life13030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The review focuses on the appearance of various pharmaceutical pollutants in various water sources, which dictates the need to use various methods for effective purification and biodegradation of the compounds. The use of various biological catalysts (enzymes and cells) is discussed as one of the progressive approaches to solving problems in this area. Antibiotics, hormones, pharmaceuticals containing halogen, nonsteroidal anti-inflammatory drugs, analgesics and antiepileptic drugs are among the substrates for the biocatalysts in water purification processes that can be carried out. The use of enzymes in soluble and immobilized forms as effective biocatalysts for the biodegradation of various pharmaceutical compounds (PCPs) has been analyzed. Various living cells (bacteria, fungi, microalgae) taken as separate cultures or components of natural or artificial consortia can be involved in biocatalytic processes under aerobic or anaerobic conditions. Cells as biocatalysts introduced into water treatment systems in suspended or immobilized form are used for deep biodegradation of PCPs. The potential of combinations of biocatalysts with physical-chemical methods of wastewater treatment is evaluated in relation to the effective removing of PCPs. The review analyzes recent results and the main current trends in the development of biocatalytic approaches to biodegradation of PCPs, the pros and cons of the processes and the biocatalysts used.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
4
|
Liu Z, Gao H, Wen S, Lin H. Effect of quinacridone content on the performance of graphene/epoxy coatings. J Appl Polym Sci 2023. [DOI: 10.1002/app.53780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Ziqiang Liu
- Department of Engineering Mechanics Northwestern Polytechnical University Xi'an People's Republic of China
| | - Hangshan Gao
- Department of Engineering Mechanics Northwestern Polytechnical University Xi'an People's Republic of China
| | - Shifeng Wen
- Department of Engineering Mechanics Northwestern Polytechnical University Xi'an People's Republic of China
| | - Hongjiao Lin
- Department of Engineering Mechanics Northwestern Polytechnical University Xi'an People's Republic of China
| |
Collapse
|
5
|
Aggarwal S, Ikram S. A comprehensive review on bio-mimicked multimolecular frameworks and supramolecules as scaffolds for enzyme immobilization. Biotechnol Bioeng 2023; 120:352-398. [PMID: 36349456 DOI: 10.1002/bit.28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host-guest complexation, π - π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules 2022; 12:biom12101489. [PMID: 36291698 PMCID: PMC9599273 DOI: 10.3390/biom12101489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The worldwide access to pharmaceuticals and their continuous release into the environment have raised a serious global concern. Pharmaceuticals remain active even at low concentrations, therefore their occurrence in waterbodies may lead to successive deterioration of water quality with adverse impacts on the ecosystem and human health. To address this challenge, there is currently an evolving trend toward the search for effective methods to ensure efficient purification of both drinking water and wastewater. Biocatalytic transformation of pharmaceuticals using oxidoreductase enzymes, such as peroxidase and laccase, is a promising environmentally friendly solution for water treatment, where fungal species have been used as preferred producers due to their ligninolytic enzymatic systems. Enzyme-catalyzed degradation can transform micropollutants into more bioavailable or even innocuous products. Enzyme immobilization on a carrier generally increases its stability and catalytic performance, allowing its reuse, being a promising approach to ensure applicability to an industrial scale process. Moreover, coupling biocatalytic processes to other treatment technologies have been revealed to be an effective approach to achieve the complete removal of pharmaceuticals. This review updates the state-of-the-art of the application of oxidoreductases enzymes, namely laccase, to degrade pharmaceuticals from spiked water and real wastewater. Moreover, the advances concerning the techniques used for enzyme immobilization, the operation in bioreactors, the use of redox mediators, the application of hybrid techniques, as well as the discussion of transformation mechanisms and ending toxicity, are addressed.
Collapse
|
7
|
Magnetic casein aggregates as an innovative support platform for laccase immobilization and bioremoval of crystal violet. Int J Biol Macromol 2022; 202:150-160. [PMID: 35031314 DOI: 10.1016/j.ijbiomac.2021.12.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
In this study, casein@CoFe2O4 was fabricated through a green synthesis methodology and applied to immobilize laccase. The constructed casein@CoFe2O4 exhibited porous structures with distinct cavities and suitable magnetic properties. The abundance of aromatic functional groups on the surface renneted casein and possible π-type interaction between laccase and para-κ-casein resulted in a successful immobilization. The biocatalyst retained 50% of its initial activity after 24 reusability cycles, indicating stable immobilization of laccase onto the casein microstructures. The stability of laccase after immobilization was improved by 300% in comparison with the free enzyme, especially in basic pH values. The constructed laccase@casein@CoFe2O4 was then incorporated to remove crystal violet (CV) as an environmentally harmful synthetic tri-phenylmethane dye. The prepared heterogeneous biocatalyst effectively diminished the antimicrobial activity of CV up to 81.3% in 40 min against some bacterial strains, resulting from the formation of more minor toxic metabolites identified by liquid chromatography coupled with mass spectroscopy after degradation procedure. The proposed green and feasible method for the preparation of magnetic casein aggregates has not been previously reported. The incorporation of casein, which acted as a molecular chaperon, resulted in a significant improvement in the enzymatic stability and exhibited appropriate reusability for the constructed biocatalytic system.
Collapse
|
8
|
Mashile PP, Nomngongo PN. Magnetic Cellulose-Chitosan Nanocomposite for Simultaneous Removal of Emerging Contaminants: Adsorption Kinetics and Equilibrium Studies. Gels 2021; 7:gels7040190. [PMID: 34842666 PMCID: PMC8628732 DOI: 10.3390/gels7040190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of pharmaceuticals in water systems threatens both terrestrial and aquatic life across the globe. Some of such contaminants are β-blockers and anticonvulsants, which have been constantly detected in different water systems. Various methodologies have been introduced for the removal of these emerging pollutants from different waters. Among them, adsorption using nanomaterials has proved to be an efficient and cost-effective process for the removal of pharmaceuticals from contaminated water. In this this study, a firsthand/time approach applying a recyclable magnetic cellulose-chitosan nanocomposite for effective simultaneous removal of two β-blockers (atenolol (ATN)) and propranolol (PRP) and an anticonvulsant (carbamazepine (CBZ)) is reported. A detailed characterization of the eco-friendly, biocompatible cellulose-chitosan nanocomposite with magnetic properties was performed at various rates of synthesis using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) spectroscopy. A N2c adsorption-desorption test showed that the prepared nanocomposite is mesoporous, with a BET area of 112 m2 g-1. The BET isotherms results showed that the magnetic cellulose-chitosan nanocomposite has a pore size of 24.1 nm. The adsorption equilibrium of PRP and CBZ fitted with the Langmuir isotherm was consistent with the highest coefficient of determination (R2 = 0.9945) and (R2 = 0.9942), respectively, while the Sips model provided a better fit for ATN, with a coefficient of determination R2 = 0.9956. The adsorption rate was accompanied by a pseudo-second-order kinetics. Moreover, the swelling test showed that up to 100 percent swelling of the magnetic cellulose-chitosan nanocomposite was achieved.
Collapse
Affiliation(s)
- Phodiso Prudence Mashile
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| |
Collapse
|
9
|
Imam A, Suman SK, Singh R, Vempatapu BP, Ray A, Kanaujia PK. Application of laccase immobilized rice straw biochar for anthracene degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115827. [PMID: 33096462 DOI: 10.1016/j.envpol.2020.115827] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The present study explores the immobilization of ligninolytic enzyme-laccase on the surface of rice straw biochar and evaluates its application for anthracene biodegradation. The rice straw biochar was acid-treated to generate carboxyl functionality on its surface, followed by detailed morphological and chemical characterization. The surface area of functionalized biochar displayed a two-fold increase compared to the untreated biochar. Laccase was immobilized on functionalized biochar, and an immobilization yield of 66% was obtained. The immobilized enzyme demonstrated operational stability up to six cycles while retaining 40% of the initial activity. Laccase immobilization was further investigated by performing adsorption and kinetic studies, which revealed the highest immobilization concentration of 500 U g-1 at 25 °C. The adsorption followed the Langmuir isotherm model at equilibrium, and the kinetic study confirmed pseudo-second-order kinetics. The equilibrium rate constant (K2) at 25 °C and 4 °C were 3.6 × 10-3 g U-1 min-1 and 4 × 10-3 g U-1 min-1 respectively for 100 U g-1 of enzyme loading. This immobilized system was applied for anthracene degradation in the aqueous batch mode, which resulted in complete degradation of 50 mg L-1 anthracene within 24 h of interaction exposure.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Material Resource Efficiency Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raghuvir Singh
- Analytical Sciences Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Bhanu Prasad Vempatapu
- Analytical Sciences Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Anjan Ray
- Analytical Sciences Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Bilal M, Ashraf SS, Cui J, Lou WY, Franco M, Mulla SI, Iqbal HMN. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review. Int J Biol Macromol 2021; 166:352-373. [PMID: 33129906 DOI: 10.1016/j.ijbiomac.2020.10.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
In the recent past, numerous new types of nanostructured carriers, as support matrices, have been engineered to advance the traditional enzyme immobilization strategies. The current research aimed to develop a robust enzyme-based biocatalytic platform and its effective deployment in the industrial biotechnology sectors at large and catalysis area, in particular, as low-cost biocatalytic systems. Suitable coordination between the target enzyme molecules and surface pendent multifunctional entities of nanostructured carriers has led an effective and significant contribution in myriad novel industrial, biotechnological, and biomedical applications. As compared to the immobilization on planar two-dimensional (2-D) surface, the unique physicochemical, structural and functional attributes of nano-engineered matrices, such as high surface-to-volume ratio, surface area, robust chemical and mechanical stability, surface pendant functional groups, outstanding optical, thermal, and electrical characteristics, resulted in the concentration of the immobilized entity being substantially higher, which is highly requisite from applied bio-catalysis perspective. Besides inherited features, nanostructured materials-based enzyme immobilization aided additional features, such as (1) ease in the preparation or green synthesis route, (2) no or minimal use of surfactants and harsh reagents, (3) homogeneous and well-defined core-shell nanostructures with thick enzyme shell, and (4) nano-size can be conveniently tailored within utility limits, as compared to the conventional enzyme immobilization. Moreover, the growing catalytic needs can be fulfilled by multi-enzymes co-immobilization on these nanostructured materials-based support matrices. This review spotlights the unique structural and functional attributes of several nanostructured materials, including carbon nanotubes, graphene, and its derivate constructs, nanoparticles, nanoflowers, and metal-organic frameworks as robust matrices for laccase immobilization. The later half of the review focuses on the applied perspective of immobilized laccases for the degradation of emergent contaminants, biosensing cues, and lignin deconstruction and high-value products.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
11
|
Zhang Y, Piao M, He L, Yao L, Piao T, Liu Z, Piao Y. Immobilization of laccase on magnetically separable biochar for highly efficient removal of bisphenol A in water. RSC Adv 2020; 10:4795-4804. [PMID: 35495269 PMCID: PMC9049069 DOI: 10.1039/c9ra08800h] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Laccase was stably immobilized on a cost effective and nanosized magnetic biochar (L-MBC) by adsorption, precipitation and crosslinking, and it was used for high performance BPA removal. A large amount of enzyme could be immobilized on the magnetic biochar with high activity (2.251 U per mg MBC), and the L-MBC could be magnetically separated from the aqueous solution in 20 seconds. The successful immobilization of laccase was also confirmed via FTIR, SEM, and EDS analyses. The L-MBC presented better storage and stability performances, pH tolerance and thermal stability than the free laccase. It was found that BPA with an initial concentration of 25 mg L-1 could be thoroughly removed within 75 min, where BPA removal was attributed to enzymatic degradation and adsorption. In addition, the BPA removal efficiency by the L-MBC could be maintained above 85% even after seven cycles of repeated use. Due to high stability and efficient recyclability, the L-MBC-based biocatalyst has the potential to be a reliable method for treating BPA in environmental water sources.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Mingyue Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
- College of Environmental Science and Engineering, Jilin Normal University Siping Jilin 136000 China
| | - Lingzhi He
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Lan Yao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Tiezhu Piao
- Department of Biological and Chemical Engineering, Yanbian University of Science and Technology Yanji 133000 China
| | - Zairan Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Yunxian Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| |
Collapse
|
12
|
Feng Y, Shen M, Wang Z, Liu G. Transformation of atenolol by a laccase-mediator system: Efficiencies, effect of water constituents, and transformation pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109555. [PMID: 31419699 DOI: 10.1016/j.ecoenv.2019.109555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the transformation of atenolol (ATL) by the naturally occurring laccase from Trametes versicolor in aqueous solution. Removal efficiency of ATL via laccase-catalyzed reaction in the presence of various laccase mediators was examined, and found that only the mediator 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) was able to greatly promote ATL transformation. The influences of TEMPO concentration, laccase dosage, as well as solution pH and temperature on ATL transformation efficiency were tested. As TEMPO concentrations was increased from 0 to 2000 μM, ATL transformation efficiency first increased and then decreased, and the optimal TEMPO concentration was determined as 500 μM. ATL transformation efficiency was gradually increased with increasing laccase dosage. ATL transformation was highly pH-dependent with an optimum pH of 7.0, and it was almost constant over a temperature range of 25-50 °C. Humic acid inhibited ATL transformation through competition reaction with laccase. The presence of anions HCO3- and CO32- reduced ATL transformation due to both anions enhanced solution pHs, while Cl-, SO42-, and NO3- at 10 mM showed no obvious influence. The main transformation products were identified, and the potential transformation pathways were proposed. After enzymatic treatment, the toxicity of ATL and TEMPO mixtures was greatly reduced. The results of this study might present an alternative clean strategy for the remediation of ATL contaminated water matrix.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mengyao Shen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhu Wang
- Research Institute of Environmental Studies at Greater Bay, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|