1
|
Ren L, Li Y, Ye Z, Wang X, Luo X, Lu F, Zhao H. Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Foods 2025; 14:1047. [PMID: 40232101 PMCID: PMC11941655 DOI: 10.3390/foods14061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures.
Collapse
Affiliation(s)
- Lu Ren
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Ying Li
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Ziyu Ye
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xixi Wang
- China Animal Disease Control Center, Slaughtering Technology Center, Ministry of Agriculture and Rural Affairs, Beijing 102600, China; (Y.L.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| | - Huabing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education and Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (L.R.)
| |
Collapse
|
2
|
Chekole WS, Tessema TS, Sternberg-Lewerin S, Magnusson U, Adamu H. Molecular identification and antimicrobial resistance profiling of pathogenic E. coli isolates from smallholder livestock households in Central Ethiopia. J Glob Antimicrob Resist 2025; 41:59-67. [PMID: 39725321 DOI: 10.1016/j.jgar.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Escherichia coli of different pathotypes are frequently involved in morbidity and mortality in animals and humans. The study aimed to identify E. coli pathotypes and determine antimicrobial resistance (AMR) profiles in Ethiopian smallholder livestock households. The pathotyping included 198 E. coli isolates identified from human and environmental samples collected from 98 households. AMR profiling was conducted on selected E. coli pathotypes from 89 households, along with known isolates from calf samples obtained from the same households. Morphological and biochemical tests were used to identify presumptive E. coli isolates. DNA was extracted and then singleplex PCR was used to amplify virulence genes. A disc diffusion test was applied for AMR profilings in E. coli pathotypes. Data were evaluated using chi-square tests and logistic regression. Calf (79.8 %) and human (73.7 %) samples were more likely to contain pathotypes (OR 3.2; 95 % CI: 1.7, 5.9; p=0.001 and OR 2.3; 95 % CI: 1.2, 4.1; p=0.008, respectively) than the environmental samples (55.6 %). ETEC (32.3 %) and STEC (15.2 %) were the most common pathotypes detected in the study samples. Out of the 176 isolates selected for AMR profiling, 85 % were resistant to at least one drug and 36 % were multi-drug resistant (MDR). The MDR isolates were found in 44 households, with 11 sharing identical pathotypes and resistance profiles among the different samples. Thus, E. coli strains were likely circulated among humans, animals, and the environment. This in turn calls for a One-health approach to improve antimicrobial usage standards and promote proper waste disposal practices.
Collapse
Affiliation(s)
- Wagaw Sendeku Chekole
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala, Sweden; Institute of Biotechnology, Addis Ababa University, Addis Ababa 1176, Ethiopia; Institute of Biotechnology, University of Gondar, Gondar 196, Ethiopia.
| | | | - Susanna Sternberg-Lewerin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Ulf Magnusson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala, Sweden
| | - Haileeyesus Adamu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| |
Collapse
|
3
|
Plummer P, Fajt VR. Biosecurity Practices to Enhance Responsible Antimicrobial Use and Reduce the Burden of Antimicrobial Resistance. Vet Clin North Am Food Anim Pract 2025; 41:25-37. [PMID: 39550313 DOI: 10.1016/j.cvfa.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024] Open
Abstract
The article shows the case for using biosecurity measures to mitigate antimicrobial resistance (AMR) in beef and dairy production through actions of veterinarians and animal caretakers. The impact of biosecurity on the prevention of bacterial infections is discussed, with the goal being to reduce the need for antimicrobial drugs. This is expected to reduce the selection for AMR in pathogens and commensal bacterial organisms in beef and dairy animals. The potential impact of biosecurity on the prevention of dissemination of antimicrobial resistant bacteria and AMR genes in the environment is also described.
Collapse
Affiliation(s)
- Paul Plummer
- College of Veterinary Medicine, University of Tennessee, A102 Veterinary Medical Center, 2407 River Drive, Knoxville, TN 37996-4503, USA
| | - Virginia R Fajt
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA.
| |
Collapse
|
4
|
Miao W, Wang D, Li L, Hau E, Zhang J, Shi Z, Huang L, Zeng Q, Cui K. The Microbial Diversity and Traceability Analysis of Raw Milk from Buffalo Farms at Different Management Ranks in Guangxi Province. Foods 2024; 13:4080. [PMID: 39767020 PMCID: PMC11675397 DOI: 10.3390/foods13244080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Farm management has a significant impact on microbial composition and may affect the quality of raw buffalo milk. This study involved a diversity analysis and traceability of the microbial communities in raw buffalo milk from three buffalo farms at different management ranks in Guangxi Province, China. The microbial composition of the raw buffalo milk and its environmental sources were investigated using 16S rRNA gene sequencing and bioinformatics analysis. The results demonstrated that different management ranks significantly influenced microbial composition in milk, with the primary sources of contamination varying across farms. The env.OPS_17 was the predominant differential bacterium in farm rank A, whereas Enterobacteriaceae, Aerococcaceae, and Planococcaceae were dominant in farm rank B. The Fast Expectation-Maximization for Microbial Source Tracking model revealed that while the sources of microbial contamination varied across farms at different management ranks, the teat and teat liner consistently emerged as the primary sources of microbial contamination in raw buffalo milk. This study provides important insights into how different farm management ranks affect the microbial composition of raw buffalo milk, highlighting the importance of improved management practices during milk production, particularly in cleaning the milking equipment and farm environment, as these are key factors in ensuring the quality and safety of raw buffalo milk.
Collapse
Affiliation(s)
- Wenhao Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (W.M.); (D.W.); (L.L.)
| | - Dong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (W.M.); (D.W.); (L.L.)
| | - Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (W.M.); (D.W.); (L.L.)
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (E.H.); (J.Z.); (Z.S.); (L.H.)
| | - Enghuan Hau
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (E.H.); (J.Z.); (Z.S.); (L.H.)
| | - Jiaping Zhang
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (E.H.); (J.Z.); (Z.S.); (L.H.)
| | - Zongce Shi
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (E.H.); (J.Z.); (Z.S.); (L.H.)
| | - Li Huang
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (E.H.); (J.Z.); (Z.S.); (L.H.)
| | - Qingkun Zeng
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (E.H.); (J.Z.); (Z.S.); (L.H.)
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (W.M.); (D.W.); (L.L.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
5
|
Brulin L, Ducrocq S, Even G, Sanchez MP, Martel S, Merlin S, Audebert C, Croiseau P, Estellé J. Characterization of bovine vaginal microbiota using 16S rRNA sequencing: associations with host fertility, longevity, health, and production. Sci Rep 2024; 14:19277. [PMID: 39164272 PMCID: PMC11336114 DOI: 10.1038/s41598-024-69715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Due to their potential impact on the host's phenotype, organ-specific microbiotas are receiving increasing attention in several animal species, including cattle. Specifically, the vaginal microbiota of ruminants is attracting growing interest, due to its predicted critical role on cows' reproductive functions in livestock contexts. Notably, fertility disorders represent a leading cause for culling, and additional research would help to fill relevant knowledge gaps. In the present study, we aimed to characterize the vaginal microbiota of a large cohort of 1171 female dairy cattle from 19 commercial herds in Northern France. Vaginal samples were collected using a swab and the composition of the microbiota was determined through 16S rRNA sequencing targeting the V3-V4 hypervariable regions. Initial analyses allowed us to define the core bacterial vaginal microbiota, comprising all the taxa observed in more than 90% of the animals. Consequently, four phyla, 16 families, 14 genera and a single amplicon sequence variant (ASV) met the criteria, suggesting a high diversity of bacterial vaginal microbiota within the studied population. This variability was partially attributed to various environmental factors such as the herd, sampling season, parity, and lactation stage. Next, we identified numerous significant associations between the diversity and composition of the vaginal microbiota and several traits related to host's production and reproduction performance, as well as reproductive tract health. Specifically, 169 genera were associated with at least one trait, with 69% of them significantly associated with multiple traits. Among these, the abundances of Negativibacillus and Ruminobacter were positively correlated with the cows' performances (i.e., longevity, production performances). Other genera showed mixed relationships with the phenotypes, such as Leptotrichia being overabundant in cows with improved fertility records and reproductive tract health, but also in cows with lower production levels. Overall, the numerous associations underscored the complex interactions between the vaginal microbiota and its host. Given the large number of samples collected from commercial farms and the diversity of the phenotypes considered, this study marks an initial step towards a better understanding of the intimate relationship between the vaginal microbiota and the dairy cow's phenotypes.
Collapse
Affiliation(s)
- L Brulin
- GD Biotech-Gènes Diffusion, 59000, Lille, France.
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - S Ducrocq
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - G Even
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - M P Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - S Martel
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - S Merlin
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - C Audebert
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - P Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
6
|
Zhang F, Chen J, Zhao F, Liu M, Peng K, Pu Y, Sang Y, Wang S, Wang X. Microfabrication of engineered Lactococcus lactis biocarriers with genetically programmed immunorecognition probes for sensitive lateral flow immunoassay of antibiotic in milk and lake water. Biosens Bioelectron 2024; 252:116139. [PMID: 38412686 DOI: 10.1016/j.bios.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/20/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
Micro/nanomaterials display considerable potential for increasing the sensitivity of lateral flow immunoassay (LFIA) by acting as 3D carriers for both antibodies and signals. The key to achieving high detection sensitivity depends on the probe's orientation on the material surface and its multivalent biomolecular interactions with targets. Here, we engineer Lactococcus lactis as the bacterial microcarrier (BMC) for a multivalent immunorecognition probe that was genetically programmed to display multifunctional components including a phage-screened single-chain variable fragment (scFv), an enhanced green fluorescent protein (eGFP), and a C-terminal peptidoglycan-binding domain (AcmA) anchored on BMC through the cell wall peptidoglycan. The innovative design of this biocarrier system, which incorporates a lab-on-a-chip microfluidic device, allows for the rapid and non-destructive self-assembly of the multivalent scFv-eGFP-AcmA@BMC probe, in which the 3D structure of BMC with a large peptidoglycan surface area facilitates the precisely orientated attachment and immobilization of scFv-eGFP-AcmA. This leads to a remarkable fluorescence aggregation amplification effect in LFIA, outperforming a monovalent 2D scFv-eGFP-AcmA probe for florfenicol detection. By designing a portable sensing device, we achieved an exceptionally low detection limit of 0.28 pg/mL and 0.21 pg/mL for florfenicol in lake water and milk sample, respectively. The successful microfabrication of this biocarrier holds potential to inspire innovative biohybrid designs for environment and food safety biosensing applications.
Collapse
Affiliation(s)
- Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Jiajie Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Fangkun Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Minxuan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Kaige Peng
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yuanhao Pu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuo Wang
- Medical College, Nankai University, Tianjin, 300500, China.
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
7
|
Chen D, Cheng K, Wan L, Cui C, Li G, Zhao D, Yu Y, Liao X, Liu Y, D'Souza AW, Lian X, Sun J. Daily occupational exposure in swine farm alters human skin microbiota and antibiotic resistome. IMETA 2024; 3:e158. [PMID: 38868515 PMCID: PMC10989081 DOI: 10.1002/imt2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 06/14/2024]
Abstract
Antimicrobial resistance (AMR) is a major threat to global public health, and antibiotic resistance genes (ARGs) are widely distributed across humans, animals, and environment. Farming environments are emerging as a key research area for ARGs and antibiotic resistant bacteria (ARB). While the skin is an important reservoir of ARGs and ARB, transmission mechanisms between farming environments and human skin remain unclear. Previous studies confirmed that swine farm environmental exposures alter skin microbiome, but the timeline of these changes is ill defined. To improve understanding of these changes and to determine the specific time, we designed a cohort study of swine farm workers and students through collected skin and environmental samples to explore the impact of daily occupational exposure in swine farm on human skin microbiome. Results indicated that exposure to livestock-associated environments where microorganisms are richer than school environment can reshape the human skin microbiome and antibiotic resistome. Exposure of 5 h was sufficient to modify the microbiome and ARG structure in workers' skin by enriching microorganisms and ARGs. These changes were preserved once formed. Further analysis indicated that ARGs carried by host microorganisms may transfer between the environment with workers' skin and have the potential to expand to the general population using farm workers as an ARG vector. These results raised concerns about potential transmission of ARGs to the broader community. Therefore, it is necessary to take corresponding intervention measures in the production process to reduce the possibility of ARGs and ARB transmission.
Collapse
Affiliation(s)
- Dong‐Rui Chen
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Ke Cheng
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Lei Wan
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Chao‐Yue Cui
- Laboratory Animal CentreWenzhou Medical UniversityWenzhouChina
| | - Gong Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Dong‐Hao Zhao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Ya‐Hong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Alaric W. D'Souza
- Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Xin‐Lei Lian
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| |
Collapse
|
8
|
Yang H, Xu M, Wang L, Wang X, Jeppesen E, Zhang W. Metagenomic analysis to determine the characteristics of antibiotic resistance genes in typical antibiotic-contaminated sediments. J Environ Sci (China) 2023; 128:12-25. [PMID: 36801028 DOI: 10.1016/j.jes.2022.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/18/2023]
Abstract
Comprehensive studies of the effects of various physical and chemical variables (including heavy metals), antibiotics, and microorganisms in the environment on antibiotic resistance genes are rare. We collected sediment samples from the Shatian Lake aquaculture area and surrounding lakes and rivers located in Shanghai, China. The spatial distribution of sediment ARGs was assessed by metagenomic analysis that revealed 26 ARG types (510 subtypes), dominated by Multidrug, β-lactam, Aminoglycoside, Glycopeptides, Fluoroquinolone, and Tetracyline. Redundancy discriminant analysis indicated that antibiotics (SAs and MLs) in the aqueous environment and sediment along with water TN and TP were the key variables affecting the abundance distribution of total ARGs. However, the main environmental drivers and key influences differed among the different ARGs. For total ARGs, the environmental subtypes affecting their structural composition and distribution characteristics were mainly antibiotic residues. Procrustes analysis showed a significant correlation between ARGs and microbial communities in the sediment in the survey area. Network analysis revealed that most of the target ARGs were significantly and positively correlated with microorganisms, and a small number of ARGs (e.g., rpoB, mdtC, and efpA) were highly significantly and positively correlated with microorganisms (e.g., Knoellia, Tetrasphaera, and Gemmatirosa). Potential hosts for the major ARGs included Actinobacteria, Proteobacteria, and Gemmatimonadetes. Our study provides new insight and a comprehensive assessment of the distribution and abundance of ARGs and the drivers of ARG occurrence and transmission.
Collapse
Affiliation(s)
- Han Yang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Mu Xu
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqing Wang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xianyun Wang
- Shanghai National Engineering Research Center for Urban Water Resources Co., Ltd., Shanghai 200082, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731 Mersin, Turkey
| | - Wei Zhang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
9
|
Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12020333. [PMID: 36830244 PMCID: PMC9952537 DOI: 10.3390/antibiotics12020333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.
Collapse
|
10
|
Mu J, Lei L, Zheng Y, Li D, Li J, Fu Y, Wang G, Liu Y. Comparative study of subcutaneous, intramuscular, and oral administration of bovine pathogenic Escherichia coli bacterial ghost vaccine in mice. Front Immunol 2022; 13:1008131. [DOI: 10.3389/fimmu.2022.1008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1β, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.
Collapse
|
11
|
Kang J, Liu Y, Chen X, Xu F, Wang H, Xiong W, Li X. Metagenomic insights into the antibiotic resistomes of typical Chinese dairy farm environments. Front Microbiol 2022; 13:990272. [PMID: 36246251 PMCID: PMC9555277 DOI: 10.3389/fmicb.2022.990272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance genes (ARGs) in the environment pose a threat to human and animal health. Dairy cows are important livestock in China; however, a comprehensive understanding of antibiotic resistance in their production environment has not been well clarified. In this study, we used metagenomic methods to analyze the resistomes, microbiomes, and potential ARG bacterial hosts in typical dairy farm environments (including feces, wastewater, and soil). The ARGs resistant to tetracyclines, MLS, β-lactams, aminoglycoside, and multidrug was dominant in the dairy farm ecosystem. The abundance and diversity of total ARGs in dairy feces and wastewater were significantly higher than in soil (P < 0.05). The same environmental samples from different dairy have similar resistomes and microbiomes. A high detection rate of tet(X) in wastewater and feces (100% and 71.4%, respectively), high abundance (range from 5.74 to 68.99 copies/Gb), and the finding of tet(X5) challenged the clinical application of the last antibiotics resort of tigecycline. Network analysis identified Bacteroides as the dominant genus in feces and wastewater, which harbored the greatest abundance of their respective total ARG coverage and shared ARGs. These results improved our understanding of ARG profiles and their bacterial hosts in dairy farm environments and provided a basis for further surveillance.
Collapse
Affiliation(s)
- Jijun Kang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Chen
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Xu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutic Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiubo Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Brightwell G, Cookson AL. Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments. Front Microbiol 2022; 13:960748. [PMID: 36033848 PMCID: PMC9403332 DOI: 10.3389/fmicb.2022.960748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic “One Health” approach to address.
Collapse
Affiliation(s)
- Rose M. Collis
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Rose M. Collis,
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Adrian L. Cookson,
| |
Collapse
|
13
|
Excreted Antibiotics May Be Key to Emergence of Increasingly Efficient Antibiotic Resistance in Food Animal Production. Appl Environ Microbiol 2022; 88:e0079122. [PMID: 35867586 PMCID: PMC9361830 DOI: 10.1128/aem.00791-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
At a time when antibiotic resistance is seemingly ubiquitous worldwide, understanding the mechanisms responsible for successful emergence of new resistance genes may provide insights into the persistence and pathways of dissemination for antibiotic-resistant organisms in general. For example, Escherichia coli strains harboring a class A β-lactamase-encoding gene (blaCTX-M-15) appear to be displacing strains that harbor a class C β-lactamase gene (blaCMY-2) in Washington State dairy cattle. We cloned these genes with native promoters into low-copy-number plasmids that were then transformed into isogenic strains of E. coli, and growth curves were generated for two commonly administered antibiotics (ampicillin and ceftiofur). Both strains met the definition of resistance for ampicillin (≥32 μg/mL) and ceftiofur (≥16 μg/mL). Growth of the CMY-2-producing strain was compromised at 1,000 μg/mL ampicillin, whereas the CTX-M-15-producing strain was not inhibited in the presence of 3,000 μg/mL ampicillin or with most concentrations of ceftiofur, although there were mixed outcomes with ceftiofur metabolites. Consequently, in the absence of competing genes, E. coli harboring either gene would experience a selective advantage if exposed to these antibiotics. Successful emergence of CTX-M-15-producing strains where CMY-2-producing strains are already established, however, requires high concentrations of antibiotics that can only be found in the urine of treated animals (e.g., >2,000 μg/mL for ampicillin, based on literature). This ex vivo selection pressure may be important for the emergence of new and more efficient antibiotic resistance genes and likely for persistence of antibiotic-resistant bacteria in food animal populations. IMPORTANCE We studied the relative fitness benefits of a cephalosporin resistance enzyme (CTX-M-15) that is displacing a similar enzyme (CMY-2), which is extant in E. coli from dairy cattle in Washington State. In vitro experiments demonstrated that CTX-M-15 provides a significant fitness advantage, but only in the presence of very high concentrations of antibiotic that are only found when the antibiotic ampicillin, and to a lesser extent ceftiofur, is excreted in urine from treated animals. As such, the increasing prevalence of bacteria with blaCTX-M-15 is likely occurring ex vivo. Interventions should focus on controlling waste from treated animals and, when possible, selecting antibiotics that are less likely to impact the proximal environment of treated animals.
Collapse
|
14
|
Hu X, Fu Y, Shi H, Xu W, Shen C, Hu B, Ma L, Lou L. Neglected resistance risks: Cooperative resistance of antibiotic resistant bacteria influenced by primary soil components. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128229. [PMID: 35074748 DOI: 10.1016/j.jhazmat.2022.128229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Various antibiotic resistant bacteria (ARB) can thrive in soil and resist such environmental pressures as antibiotics through cooperative resistance, thereby promoting ARB retention and antibiotic resistance genes transmission. However, there has been finite knowledge in regard to the mechanisms and potential ecological risks of cooperative resistance in soil microbiome. In this study, soil minerals and organic matters were designed to treat a mixture of two Escherichia coli strains with different antibiotic resistance (E. coli DH5α/pUC19 and E. coli XL2-Blue) to determine how soil components affected cooperative resistance, and Luria-Bertani plates containing two antibiotics were used to observe dual-drug resistant bacteria (DRB) developed via cooperative resistance. Results showed quartz, humic acid, and biochar promoted E. coli XL2-Blue with high fitness costs, whereas kaolin, montmorillonite, and soot inhibited both strains. Using fluorescence microscope and PCR, it was speculated DRB could resist the antibiotic pressure via E. coli XL2-Blue coating E. coli DH5α/pUC19. E. coli DH5α/pUC19 dominated cooperative resistance. Correlation analysis and scanning electron microscope images indicated soil components influenced cooperative resistance. Biochar promoted cooperative resistance by increasing intracellular reactive oxygen species, thereby reducing the dominant strain concentration required for DRB development. Kaolin inhibited cooperative resistance the most, followed by soot and montmorillonite.
Collapse
Affiliation(s)
- Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Yulong Fu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Liping Ma
- School of Ecological and Environmental Sciences, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai 200062, People's Republic of China.
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China.
| |
Collapse
|
15
|
Haley BJ, Kim SW, Salaheen S, Hovingh E, Van Kessel JAS. Virulome and genome analyses identify associations between antimicrobial resistance genes and virulence factors in highly drug-resistant Escherichia coli isolated from veal calves. PLoS One 2022; 17:e0265445. [PMID: 35298535 PMCID: PMC8929554 DOI: 10.1371/journal.pone.0265445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Food animals are known reservoirs of multidrug-resistant (MDR) Escherichia coli, but information regarding the factors influencing colonization by these organisms is lacking. Here we report the genomic analysis of 66 MDR E. coli isolates from non-redundant veal calf fecal samples. Genes conferring resistance to aminoglycosides, β-lactams, sulfonamides, and tetracyclines were the most frequent antimicrobial resistance genes (ARGs) detected and included those that confer resistance to clinically significant antibiotics (blaCMY-2, blaCTX-M, mph(A), erm(B), aac(6’)Ib-cr, and qnrS1). Co-occurrence analyses indicated that multiple ARGs significantly co-occurred with each other, and with metal and biocide resistance genes (MRGs and BRGs). Genomic analysis also indicated that the MDR E. coli isolated from veal calves were highly diverse. The most frequently detected genotype was phylogroup A-ST Cplx 10. A high percentage of isolates (50%) were identified as sequence types that are the causative agents of extra-intestinal infections (ExPECs), such as ST69, ST410, ST117, ST88, ST617, ST648, ST10, ST58, and ST167, and an appreciable number of these isolates encoded virulence factors involved in the colonization and infection of the human urinary tract. There was a significant difference in the presence of multiple accessory virulence factors (VFs) between MDR and susceptible strains. VFs associated with enterohemorrhagic infections, such as stx, tir, and eae, were more likely to be harbored by antimicrobial-susceptible strains, while factors associated with extraintestinal infections such as the sit system, aerobactin, and pap fimbriae genes were more likely to be encoded in resistant strains. A comparative analysis of SNPs between strains indicated that several closely related strains were recovered from animals on different farms indicating the potential for resistant strains to circulate among farms. These results indicate that veal calves are a reservoir for a diverse group of MDR E. coli that harbor various resistance genes and virulence factors associated with human infections. Evidence of co-occurrence of ARGs with MRGs, BRGs, and iron-scavenging genes (sit and aerobactin) may lead to management strategies for reducing colonization of resistant bacteria in the calf gut.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
- * E-mail:
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States of America
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| |
Collapse
|
16
|
Competitiveness of Quantitative Polymerase Chain Reaction (qPCR) and Droplet Digital Polymerase Chain Reaction (ddPCR) Technologies, with a Particular Focus on Detection of Antibiotic Resistance Genes (ARGs). Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With fast-growing polymerase chain reaction (PCR) technologies and various application methods, the technique has benefited science and medical fields. While having strengths and limitations on each technology, there are not many studies comparing the efficiency and specificity of PCR technologies. The objective of this review is to summarize a large amount of scattered information on PCR technologies focused on the two majorly used technologies: qPCR (quantitative polymerase chain reaction) and ddPCR (droplet-digital polymerase chain reaction). Here we analyze and compare the two methods for (1) efficiency, (2) range of detection and limitations under different disciplines and gene targets, (3) optimization, and (4) status on antibiotic resistance genes (ARGs) analysis. It has been identified that the range of detection and quantification limit varies depending on the PCR method and the type of sample. Careful optimization of target gene analysis is essential for building robust analysis for both qPCR and ddPCR. In our era where mutation of genes may lead to a pandemic of viral infectious disease or antibiotic resistance-induced health threats, this study hopes to set guidelines for meticulous detection, quantification, and analysis to help future prevention and protection of global health, the economy, and ecosystems.
Collapse
|
17
|
Zhang J, Jiang Y, Wang Z, Yang X, Zhang M, Wang B, Zhang L, Li Z, Liang Z, Liu C, Wu H. Preparation of Pd/
PANI
/
ITO
composite electrode and its degradation of tetracycline wastewater. J Appl Polym Sci 2021. [DOI: 10.1002/app.51400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Zhang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Yuting Jiang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Ziyi Wang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Xue Yang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Mingrui Zhang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Bing Wang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Lanhe Zhang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Zheng Li
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Zilong Liang
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Congze Liu
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| | - Hao Wu
- School of Chemistry Engineering Northeast Electric Power University Jilin China
| |
Collapse
|
18
|
Sukhum KV, Vargas RC, Boolchandani M, D'Souza AW, Patel S, Kesaraju A, Walljasper G, Hegde H, Ye Z, Valenzuela RK, Gunderson P, Bendixsen C, Dantas G, Shukla SK. Manure Microbial Communities and Resistance Profiles Reconfigure after Transition to Manure Pits and Differ from Those in Fertilized Field Soil. mBio 2021; 12:e00798-21. [PMID: 33975936 PMCID: PMC8262906 DOI: 10.1128/mbio.00798-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
In agricultural settings, microbes and antimicrobial resistance genes (ARGs) have the potential to be transferred across diverse environments and ecosystems. The consequences of these microbial transfers are unclear and understudied. On dairy farms, the storage of cow manure in manure pits and subsequent application to field soil as a fertilizer may facilitate the spread of the mammalian gut microbiome and its associated ARGs to the environment. To determine the extent of both taxonomic and resistance similarity during these transitions, we collected fresh manure, manure from pits, and field soil across 15 different dairy farms for three consecutive seasons. We used a combination of shotgun metagenomic sequencing and functional metagenomics to quantitatively interrogate taxonomic and ARG compositional variation on farms. We found that as the microbiome transitions from fresh dairy cow manure to manure pits, microbial taxonomic compositions and resistance profiles experience distinct restructuring, including decreases in alpha diversity and shifts in specific ARG abundances that potentially correspond to fresh manure going from a gut-structured community to an environment-structured community. Further, we did not find evidence of shared microbial community or a transfer of ARGs between manure and field soil microbiomes. Our results suggest that fresh manure experiences a compositional change in manure pits during storage and that the storage of manure in manure pits does not result in a depletion of ARGs. We did not find evidence of taxonomic or ARG restructuring of soil microbiota with the application of manure to field soils, as soil communities remained resilient to manure-induced perturbation.IMPORTANCE The addition of dairy cow manure-stored in manure pits-to field soil has the potential to introduce not only organic nutrients but also mammalian microbial communities and antimicrobial resistance genes (ARGs) to soil communities. Using shotgun sequencing paired with functional metagenomics, we showed that microbial community composition changed between fresh manure and manure pit samples with a decrease in gut-associated pathobionts, while ARG abundance and diversity remained high. However, field soil communities were distinct from those in manure in both microbial taxonomic and ARG composition. These results broaden our understanding of the transfer of microbial communities in agricultural settings and suggest that field soil microbial communities are resilient against the deposition of ARGs or microbial communities from manure.
Collapse
Affiliation(s)
- Kimberley V Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Manish Boolchandani
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Akhil Kesaraju
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gretchen Walljasper
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Harshad Hegde
- Center for Oral Systemic Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Zhan Ye
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert K Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Paul Gunderson
- Lake Region State College, Devils Lake, North Dakota, USA
| | - Casper Bendixsen
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
- Computation and Informatics in Biology Program, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Wang M, Wu J, Zhou T, Liang Y, Zheng L, Sun Y. Effects of copper and florfenicol on nirS- and nirK-type denitrifier communities and related antibiotic resistance in vegetable soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112011. [PMID: 33592374 DOI: 10.1016/j.ecoenv.2021.112011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Denitrification play an important role in nitrogen cycle and is affected by veterinary drugs entering agricultural soils. In the present study, the effects of copper and florfenicol on denitrification, related antibiotic resistance and environmental variables were characterized using real-time quantitative PCR (qPCR) and amplicon sequencing in a short-term (30 d) soil model experiment. Drug additions significantly decreased the nirS gene abundance (P < 0.05) but maximized the abundance of gene nirK in soil containing florfenicol and moderate copper levels (150 mg kg-1). Surprisingly, copper additions decreased the fexB gene abundance, however, the abundance of gene pcoD significantly increased in soils containing florfenicol, moderate copper levels (150 mg kg-1), and florfenicol and low copper levels (30 mg kg-1), respectively (P < 0.05). Overall, the nirK-type community composition was more complex than that of nirS-type but Proteobacteria predominated (> 90%) in both communities. Correlation analysis indicated that the gene abundance of fexB was highly correlated with NH4+-N (P < 0.05) and NO3--N (P < -0.01), and floR gene abundance was positively correlated with nirK (P < 0.01). Besides, the abundance of nirS-type genera Bradyrhizobium and Pseudomonas were obviously related to total organic matter (TOM), total nitrogen (TN) or total phosphorus (TP) (P < 0.05), while the abundance of nirK-type Rhizobium, Sphingomonas and Bosea showed a significantly correlated with TOM, TN or copper contents (P < 0.05). Taken together, copper and florfenicol contamination increased the possibility of durg resistance genes spread in agricultural soils through nitrogen transformation.
Collapse
Affiliation(s)
- Mei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Jing Wu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yi Liang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Lixuan Zheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yongxue Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
20
|
Nobrega DB, Calarga AP, Nascimento LC, Chande Vasconcelos CG, de Lima EM, Langoni H, Brocchi M. Molecular characterization of antimicrobial resistance in Klebsiella pneumoniae isolated from Brazilian dairy herds. J Dairy Sci 2021; 104:7210-7224. [PMID: 33773789 DOI: 10.3168/jds.2020-19569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/16/2021] [Indexed: 11/19/2022]
Abstract
In this observational study, phenotypic and genotypic patterns of antimicrobial resistance (AMR) in Klebsiella pneumoniae isolated from intramammary infections, clinical mastitis, fresh feces, rectal swabs, animal hindlimbs, and bulk tank milk samples from Brazilian dairy herds were investigated. In addition, we identified specific genetic variants present among extended-spectrum β-lactamase (ESBL) producers. We obtained 169 isolates of K. pneumoniae from 2009 to 2011 on 24 Brazilian dairy farms located in 4 Brazilian states. The AMR profile of all isolates was determined using disk-diffusion assays. The antimicrobial panel included drugs commonly used as mastitis treatment in Brazilian dairy herds (gentamicin, cephalosporins, sulfamethoxazole-trimethoprim, tetracycline) as well as antimicrobials of critical importance for human health (meropenem, ceftazidime, fluoroquinolones). The K. pneumoniae isolates resistant to tetracycline, fluoroquinolones, sulfamethoxazole-trimethoprim, or chloramphenicol were screened for presence of drug-specific AMR genes [tet, qnr, aac(6')-Ib, floR, catA2, cm1A, dfr, sul] using PCR. In addition, we identified ESBL genes present among ESBL-producers by using whole genome sequencing. Genomes were assembled and annotated, and patterns of AMR genes were investigated. Resistance was commonly detected against tetracycline (22.5% of all isolates), streptomycin (20.7%), and sulfamethoxazole-trimethoprim (9.5%). Antimicrobial resistance rates were higher in K. pneumoniae isolated from intramammary infections in comparison with isolates from feces (19.2 and 0% of multidrug resistance in intramammary and fecal isolates, respectively). In contrast, no difference in AMR rates was observed when contrasting hind limbs and isolates from intramammary infections. The genes tetA, sul2, and floR were the most frequently observed AMR genes in K. pneumoniae resistant to tetracycline, sulfamethoxazole-trimethoprim, and chloramphenicol, respectively. The tetA gene was present exclusively in isolates from milk. The genes blaCTX-M8 and blaSHV-108 were present in 3 ESBL-producing K. pneumoniae, including an isolate from bulk tank milk. The 3 isolates were of sequence type 281 and had similar mobile genetic elements and virulence genes. Our study reinforced the epidemiological importance and dissemination of blaCTX-M-8 pST114 plasmid in food-producing animals in Brazil.
Collapse
Affiliation(s)
- Diego Borin Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 13083-650, Campinas, São Paulo, Brazil.
| | - Aline Parolin Calarga
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 13083-650, Campinas, São Paulo, Brazil
| | - Leandro Costa Nascimento
- Central Laboratory for High Performance Technologies (LaCTAD), University of Campinas (UNICAMP), 13083-886, Campinas, São Paulo, Brazil
| | | | | | - Helio Langoni
- Department of Veterinary Hygiene and Public Health, São Paulo State University (UNESP), 16618-681, Botucatu, São Paulo, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 13083-650, Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Salaheen S, Kim SW, Hovingh E, Van Kessel JAS, Haley BJ. Metagenomic Analysis of the Microbial Communities and Resistomes of Veal Calf Feces. Front Microbiol 2021; 11:609950. [PMID: 33633694 PMCID: PMC7899987 DOI: 10.3389/fmicb.2020.609950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major public health concern, and dairy calves, including veal calves, are known reservoirs of resistant bacteria. To investigate AMR in the fecal microbial communities of veal calves, we conducted metagenomic sequencing of feces collected from individual animals on four commercial veal operations in Pennsylvania. Fecal samples from three randomly selected calves on each farm were collected soon after the calves were brought onto the farms (n = 12), and again, just before the calves from the same cohorts were ready for slaughter (n = 12). Results indicated that the most frequently identified phyla were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Fecal microbial communities in samples collected from the calves at the early and late stages of production were significantly different at the genus level (analysis of similarities [ANOSIM] on Bray-Curtis distances, R = 0.37, p < 0.05), but not at the phylum level. Variances among microbial communities in the feces of the younger calves were significantly higher than those from the feces of calves at the late stage of production (betadisper F = 8.25, p < 0.05). Additionally, our analyses identified a diverse set of mobile antimicrobial resistance genes (ARGs) in the veal calf feces. The fecal resistomes mostly consisted of ARGs that confer resistance to aminoglycosides, tetracyclines, and macrolide-lincosamide-streptogramin B (MLS), and these ARGs represented more than 70% of the fecal resistomes. Factors that are responsible for selection and persistence of resistant bacteria in the veal calf gut need to be identified to implement novel control points and interrupt detrimental AMR occurrence and shedding.
Collapse
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
22
|
Wang Y, Li X, Fu Y, Chen Y, Wang Y, Ye D, Wang C, Hu X, Zhou L, Du J, Shen J, Xia X. Association of florfenicol residues with the abundance of oxazolidinone resistance genes in livestock manures. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123059. [PMID: 32516648 DOI: 10.1016/j.jhazmat.2020.123059] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Livestock and poultry manures are major reservoirs of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Linezolid is a clinical medicine for humans and has never been approved for use in livestock. Interestingly, three linezolid resistance genes (cfr, optrA, and poxtA) have been detected in bacteria of animal origin, arousing public concern. This study investigated the abundance of three ARGs, cfr, optrA, and poxtA, in manures from 157 large-scale farms in China using real-time quantitative polymerase chain reaction. The residual concentrations of linezolid, florfenicol, tiamulin, and valnemulin were determined using ultra-high performance liquid chromatography-tandem mass spectrometry. A total of 140 livestock farms were tested positive for ARGs, and the positive detection rate was 89.17 %. OptrA was the most commonly detected ARG. The diversity and abundance of ARGs were significantly higher in poultry and swine manure than in bovine manure. Redundancy analysis presented a strong association between florfenicol and all the three ARGs targeted in the study, and tiamulin showed a significant correlation with optrA. Our results indicated that the residual concentration of florfenicol had a major effect on the distribution of the three ARGs in livestock manures, and extensive use of florfenicol may lead to the production of linezolid resistance genes.
Collapse
Affiliation(s)
- Yingyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dongyang Ye
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengfei Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xue Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lan Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingjing Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Qin K, Wei L, Li J, Lai B, Zhu F, Yu H, Zhao Q, Wang K. A review of ARGs in WWTPs: Sources, stressors and elimination. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Yun MJ, Yoon S, Lee YJ. Monitoring and Characteristics of Major Mastitis Pathogens from Bulk Tank Milk in Korea. Animals (Basel) 2020; 10:E1562. [PMID: 32887504 PMCID: PMC7552175 DOI: 10.3390/ani10091562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022] Open
Abstract
In many countries, bulk tank milk (BTM) has been used for examining milk and analyzed as an important part of milk quality assurance programs. The objectives of this study were to investigate milk quality and the presence of major mastitis pathogens in BTM, and to compare the characteristics of BTM by dairy factory or company. A total of 1588 batches of BTM samples were collected from 396 dairy farms of seven dairy factories owned by four companies in Korea. The means of individual bacterial counts (IBC) and somatic cell count (SCC) were 3.7 × 104 cells/mL and 1.1 × 105 cells/mL, respectively, and no significant differences among dairy factories were observed. The most common pathogen was Staphylococcus spp. (60.1%), followed by E. faecalis (53.8%), E. coli (37.6%) and Streptococcus spp. (22.5%). Enterococcus spp. showed the highest resistance to tetracyclines (51.1% to 73.9%) and macrolides (46.5%). S. aureus and coagulase-negative staphylococci (CNS) showed the highest resistance to penicillin (28.4% and 40.2%, respectively), and three (3.2%) S. aureus and seven (3.3%) CNS were also methicillin-resistant. These data show the diverse prevalence and characteristics of major mastitis pathogens among factories, and support the development of strong monitoring and prevention programs of mastitis pathogens by commercial dairy operations.
Collapse
Affiliation(s)
- Mun-Jo Yun
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea; (M.-J.Y.); (S.Y.)
- Gyeongsangbuk-do Provincial Government Office, Andong 36759, Korea
| | - Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea; (M.-J.Y.); (S.Y.)
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea; (M.-J.Y.); (S.Y.)
| |
Collapse
|
25
|
Chen YR, Guo XP, Niu ZS, Lu DP, Sun XL, Zhao S, Hou LJ, Liu M, Yang Y. Antibiotic resistance genes (ARGs) and their associated environmental factors in the Yangtze Estuary, China: From inlet to outlet. MARINE POLLUTION BULLETIN 2020; 158:111360. [PMID: 32573452 DOI: 10.1016/j.marpolbul.2020.111360] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of antibiotic resistance genes (ARGs) and their associated environmental factors in estuaries are poorly understood. In this study, we comprehensively analyzed ARGs in both water and sediments from inlet to outlet of the Yangtze Estuary, China. The relative abundances of ARGs were higher in the turbidity maximum zone (TMZ) than other sites, implying that suspended particulate matter (SPM) was the major reservoir for ARGs in water. ARGs showed an increasing trend from inlet to outlet in sediments. Positively correlation between intI1 and sul1 in both water and sediments indicated that sul1 may be regulated by intI1. Correlation analysis and redundancy analysis showed that the spatial variations of estuarine ARGs were positively correlated with sample properties (e.g., temperature, SPM, pH) and chemical pollutants (e.g., heavy metals and antibiotic residues), among which chemical pollutants were the major drivers for the ARG distribution in both water and sediments.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Sai Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
26
|
Haley BJ, Kim SW, Salaheen S, Hovingh E, Van Kessel JAS. Differences in the Microbial Community and Resistome Structures of Feces from Preweaned Calves and Lactating Dairy Cows in Commercial Dairy Herds. Foodborne Pathog Dis 2020; 17:494-503. [PMID: 32176535 DOI: 10.1089/fpd.2019.2768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Preweaned dairy calves and lactating dairy cows are known reservoirs of antibiotic-resistant bacteria. To further understand the differences in the resistomes and microbial communities between the two, we sequenced the metagenomes of fecal composite samples from preweaned dairy calves and lactating dairy cows on 17 commercial dairy farms (n = 34 samples). Results indicated significant differences in the structures of the microbial communities (analysis of similarities [ANOSIM] R = 0.81, p = 0.001) and resistomes (ANOSIM R = 0.93 to 0.96, p = 0.001) between the two age groups. Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria were the predominant members of the communities, but when the groups were compared, Bacteroidetes and Verrumicrobia were significantly more abundant in calf fecal composite samples, whereas Firmicutes, Spirochaetes, Deinococcus-Thermus, Lentisphaerae, Planctomycetes, Chlorofexi, and Saccharibacteria-(TM7) were more abundant in lactating cow samples. Diverse suites of antibiotic resistance genes (ARGs) were identified in all samples, with the most frequently detected being assigned to tetracycline and aminoglycoside resistance. When the two groups were compared, ARGs were significantly more abundant in composite fecal samples from calves than those from lactating cows (calf median ARG abundance = 1.8 × 100 ARG/16S ribosomal RNA [rRNA], cow median ARG abundance = 1.7 × 10-1 ARG/16S rRNA) and at the antibiotic resistance class level, the relative abundance of tetracycline, trimethoprim, aminoglycoside, macrolide-lincosamide-streptogramin B, β-lactam, and phenicol resistance genes was significantly higher in calf samples than in cow samples. Results of this study indicate that composite feces from preweaned calves harbor different bacterial communities and resistomes than composite feces from lactating cows, with a greater abundance of resistance genes detected in preweaned calf feces.
Collapse
Affiliation(s)
- Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Seon-Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland
| |
Collapse
|