1
|
Li J, Liu M, Tong L, Zhou Y, Kong L. Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135598. [PMID: 39178781 DOI: 10.1016/j.jhazmat.2024.135598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)3 hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)3 dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.
Collapse
Affiliation(s)
- Jining Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Mengdi Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Lizhi Tong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, Guangdong 510655, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Pan Y, Deng R, Jin C, Li Y, Ren B, Hou B, Wang C, Yang X, Hursthouse A. Isolation and Identification of Highly Sb-Resistant Rhodotorula glutinis Strain J5 and its Mechanism of Resistance to Sb(III). Curr Microbiol 2024; 81:335. [PMID: 39215822 DOI: 10.1007/s00284-024-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Sb-resistant strains can detoxify antimony through metabolic mechanisms such as oxidation and affect the migration, transformation, and ultimate fate of antimony in the environment. In this study, a strain of Sb-resistant fungi, Rhodotorula glutinis sp. Strain J5, was isolated from Xikuangshan mine and its growth characteristics, gene expression differences, and functional annotation under Sb(III) stress were further investigated to reveal the mechanism of resistance to Sb(III). We identified strain J5 as belonging to the Rhodotorula glutinis species optimally growing at pH 5.0 and at 28 °C of temperature. According to gene annotation and differential expression, the resistance mechanism of Strain J5 includes: reducing the endocytosis of antimony by aquaporin AQP8 and transmembrane transporter pst, enhancing the efflux of Sb(III) by the gene expression of acr2, acr3 and ABC, improving the oxidation of Sb(III) by iron-sulfur protein and Superoxide dismutase (SOD), glutathione (GSH) and cysteine (Cys) chelation, methylation of methyltransferase and N-methyltransferase, accelerating cell damage repair and EPS synthesis and other biochemical reaction mechanisms. FT-IR analysis shows that the -OH, -COOH, -NH, -PO, C-O, and other active groups of Strain J5 can be complexed with Sb(III), resulting in chemical adsorption. Strain J5 displays significant resistance to Sb(III) with the MIC of 1300 mg/L, playing a crucial role in the global biochemical transformation of antimony and its potential application in soil microbial remediation.
Collapse
Affiliation(s)
- Yulin Pan
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Changsheng Jin
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Yinfu Li
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiuzhen Yang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| |
Collapse
|
3
|
Li J, Gao Y, Li C, Wang F, Chen H, Yang X, Jeyakumar P, Sarkar B, Luo Z, Bolan N, Li X, Meng J, Wang H. Pristine and Fe-functionalized biochar for the simultaneous immobilization of arsenic and antimony in a contaminated mining soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133937. [PMID: 38460259 DOI: 10.1016/j.jhazmat.2024.133937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
This study examined the effectiveness of pristine biochar (BC) and Fe-functionalized biochar (FBC) in remediating As-Sb co-contaminated soil, and revealed the resulting impact on soil enzymatic activities and bacterial communities. Results from incubation experiments showed that the 1.5% FBC treatment reduced the bioavailable As and Sb concentration by 13.5% and 27.1%, respectively, in compared to the control, and reduced the proportion of specifically adsorbed and amorphous Fe-Mn oxide-bound metal(loid) fractions in the treated soil. Among the BC treatments, only the 1.5% BC treatment resulted in a reduction of bioavailable As by 11.7% and Sb by 21.4%. The 0.5% BC treatment showed no significant difference. The FBC achieved high As/Sb immobilization efficiency through Fe-induced electrostatic attraction, π-π electron donor-acceptor coordination, and complexation (Fe-O(H)-As/Sb) mechanisms. Additionally, the 1.5% FBC treatment led to a 108.2% and 367.4% increase in the activities of N-acetyl-β-glucosaminidase and urease in soils, respectively, compared to the control. Furthermore, it significantly increased the abundance of Proteobacteria (15.2%), Actinobacteriota (37.0%), Chloroflexi (21.4%), and Gemmatimonadota (43.6%) at the phylum level. Co-occurrence network analysis showed that FBC was better than BC in increasing the complexity of bacterial communities. Partial least squares path modeling further indicated that the addition of biochar treatments can affect soil enzyme activities by altering soil bacterial composition. This study suggests that FBC application offers advantages in simultaneous As and Sb immobilization and restructuring the bacterial community composition in metal(loid)-contaminated soil.
Collapse
Affiliation(s)
- Jiayi Li
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China; School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yurong Gao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Caibin Li
- Yancao Production Technology Center, Bijie Yancao Company of Guizhou Province, Bijie 551700, China
| | - Fenglin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture & Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zhenbao Luo
- Yancao Production Technology Center, Bijie Yancao Company of Guizhou Province, Bijie 551700, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| | - Hailong Wang
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China; School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
4
|
Zhang Y, Wu P, Zhu J, Liao P, Niyuhire E, Fan F, Mao W, Dong L, Zheng R, Li Y. Investigation of the migration of natural organic matter-iron-antimony nano-colloids in acid mine drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170666. [PMID: 38316310 DOI: 10.1016/j.scitotenv.2024.170666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Colloids can potentially affect the efficacy of traditional acid mine drainage (AMD) treatment methods such as precipitation and filtration. However, it is unclear how colloids affect antimony (Sb) migration in AMD, especially when natural organic matter (NOM) is present. To conduct an in-depth investigation on the formation and migration behavior of NOM, iron (Fe), Sb and NOM-Fe-Sb colloids in AMD, experiments were performed under simulated AMD conditions. The results demonstrate significant variations in the formation of NOM-Fe-Sb colloids (1-3-450 nm) as the molar ratio of carbon to iron (C/Fe) increases within acidic conditions (pH = 3). Increasing the C/Fe molar ratio from 0.1 to 1.2 resulted in a decrease in colloid formation but an increase in particulate fraction. The distribution of colloidal Sb, Sb(III), and Fe(III) within the NOM-Fe-Sb colloids decreased from 68 % to 55 %, 72 % to 57 %, and 68 % to 55 %, respectively. Their distribution in the particulate fraction increased from 28 % to 42 %, 21 % to 34 %, and 8 % to 27 %. XRD, FTIR, and SEM-EDS analyses demonstrated that NOM facilitates the formation and crystallization of Fe3O4 and FeSbO4 crystalline phases. The formation of the colloids depended on pH. Our results indicate that NOM-Fe-Sb colloids can form when the pH ≤ 4, and the proportion of colloidal Sb fraction within the NOM-Fe-Sb colloids increased from 9 % to a maximum of 73 %. Column experiments show that the concentration of NOM-Fe-Sb colloids reaches its peak and remains stable at approximately 3.5 pore volumes (PVs), facilitating the migration of Sb in the porous media. At pH ≥ 5, stable NOM-Fe-Sb colloids do not form, and the proportion of colloidal Sb fraction decreases from 7 % to 0 %. This implies that as pH increases, the electrostatic repulsion between colloidal particles weakens, resulting in a reduction in the colloidal fraction and an increase in the particulate fraction. At higher pH values (pH ≥ 5), the repulsive forces between colloidal particles nearly disappear, promoting particle aggregation. The findings of this study provide important scientific evidence for understanding the migration behavior of NOM-Fe-Sb colloids in AMD. As the pH gradually shifts from acidic to near-neutral pH during the remediation process of AMD, these results could be applied to develop new strategies for this purpose.
Collapse
Affiliation(s)
- Yuqin Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Elias Niyuhire
- Ecole Normale Supérieure, Département des Sciences Naturelles, Centre de Recherche en Sciences et de Perfectionnement Professionnel, Boulevard Mwezi Gisabo, B.P.: 6983 Bujumbura, Burundi
| | - Feifei Fan
- Guizhou Institute of Soil and Fertilizer, Guiyang 550006, China
| | - Wenjian Mao
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lisha Dong
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ruyi Zheng
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yi Li
- Guizhou Institute of Technology, Guiyang 550003, China
| |
Collapse
|
5
|
Zhao Y, Moore OW, Xiao KQ, Otero-Fariña A, Banwart SA, Wu FC, Peacock CL. Behavior and Fate of Chromium and Carbon during Fe(II)-Induced Transformation of Ferrihydrite Organominerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17501-17510. [PMID: 37921659 DOI: 10.1021/acs.est.3c05487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The mobility of chromium (Cr) is controlled by minerals, especially iron (oxyhydr)oxides. The influence of organic carbon (OC) on the mobility and fate of Cr(VI) during Fe(II)-induced transformation of iron (oxyhydr)oxide, however, is still unclear. We investigate how low-weight carboxyl-rich OC influences the transformation of ferrihydrite (Fh) and controls the mobility of Cr(VI/III) in reducing environments and how Cr influences the formation of secondary Fe minerals and the stabilization of OC. With respect to the transformation of Fe minerals, the presence of low-weight carboxyl-rich OC retards the growth of goethite crystals and stabilizes lepidocrocite for a longer time. With respect to the mobility of Cr, low-weight carboxyl-rich OC suppresses the Cr(III)non-extractable associated with Fe minerals, and this suppression is enhanced with increasing carboxyl-richness of OC and decreasing pH. The presence of Cr(III) mitigates the decrease in total C associated with Fe minerals and increases the Cnon-extractable especially for Fh organominerals made with carboxyl-rich OC. Our study sheds new light on the mobility and fate of Cr in reducing environments and suggests that there is a potential synergy between Cr(VI) remediation and OC stabilization.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Earth & Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Oliver W Moore
- School of Earth & Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Ke-Qing Xiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100864, China
| | - Alba Otero-Fariña
- School of Earth & Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Steven A Banwart
- School of Earth & Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Feng-Chang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | | |
Collapse
|
6
|
Jia X, Majzlan J, Ma L, Liu P, Fan P, Li W, Zhou J, Wen B. Novel insights into the mechanisms for Sb mobilization in groundwater in a mining area: A colloid field study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132212. [PMID: 37579718 DOI: 10.1016/j.jhazmat.2023.132212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Colloids may play an important role in the geochemical cycle of antimony (Sb). However, the controlling behaviors of colloids on Sb fate in contaminated groundwater are not available. To investigate the effects of colloids on Sb mobility, groundwater samples from Xikuangshan Sb Mine's two main aquifers (the D3s2 aquifer and the D3x4 aquifer) were successively (ultra)filtered through progressively decreasing pore sizes (0.45 µm, 100 kDa, 50 kDa and 5 kDa). The results showed that 0.1-84.1% of Sb was adsorbed or carried by colloids, which corresponded to Sb concentration ranging between 0 and 2973 μg/L in the colloids (0.45 µm - 5 kDa). In both aquifers, Sb was closely associated with organic colloids (r = 0.72 p < 0.05 for the D3x4 aquifer, r = 0.94 p < 0.01 for the D3s2 aquifer). Parallel factor analysis of the three-dimensional fluorescence spectra determined that the protein-like substances in the D3x4 aquifer and the humus-like substances in the D3s2 aquifer controlled Sb behavior. X-ray absorption spectroscopy confirmed Sb complexing with organic substances. Competitive adsorption of As and Sb suppressed the complexation of colloids with Sb, particularly in the D3x4 aquifer (r = -0.71, p < 0.05). Sb mobility was also influenced by the redox of the groundwater system. As the oxidation-reduction potential and dissolved oxygen increased, Sb in the colloidal fractions decreased. These findings provide new insights into the mechanisms involved in Sb fate affected by colloids, establishing the theoretical basis for developing effective Sb and even metalloid pollution remediation strategies.
Collapse
Affiliation(s)
- Xiaocen Jia
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Juraj Majzlan
- Institute of Geosciences, Friedrich Schiller University Jena, 07749 Jena, Germany
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Peikuan Fan
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Wanyu Li
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, 430078 Wuhan, PR China; Key Laboratory of Mine Ecological Effects and System Restoration, Ministry of Natural Resources, 100081 Beijing, PR China.
| | - Bing Wen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, PR China.
| |
Collapse
|
7
|
Liu X, Wang Y, Xiang H, Wu J, Yan X, Zhang W, Lin Z, Chai L. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water. ECO-ENVIRONMENT & HEALTH 2023; 2:176-183. [PMID: 38074990 PMCID: PMC10702924 DOI: 10.1016/j.eehl.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 06/24/2024]
Abstract
Antimony (Sb) in natural water has long-term effects on both the ecological environment and human health. Iron mineral phase transformation (IMPT) is a prominent process for removing Sb(V) from natural water. However, the importance of IMPT in eliminating Sb remains uncertain. This study examined the various Sb-Fe binding mechanisms found in different IMPT pathways in natural water, shedding light on the underlying mechanisms. The study revealed that the presence of goethite (Goe), hematite (Hem), and magnetite (Mag) significantly affected the concentration of Sb(V) in natural water. Elevated pH levels facilitated higher Fe content in iron solids but impeded the process of removing Sb(V). To further our understanding, polluted natural water samples were collected from various locations surrounding Sb smelter sites. Results confirmed that converting ferrihydrite (Fhy) to Goe significantly reduced Sb levels (<5 μg/L) in natural water. The emergence of secondary iron phases resulted in greater electrostatic attraction and stabilized surface complexes, which was the most likely cause of the decline of Sb concentration in natural water. The comprehensive findings offer new insights into the factors governing IMPT as well as the Sb(V) behavior control.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiahui Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
8
|
Jiang Z, Nie K, Arinzechi C, Li J, Liao Q, Si M, Yang Z, Li Q, Yang W. Cooperative effect of slow-release ferrous and phosphate for simultaneous stabilization of As, Cd and Pb in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131232. [PMID: 36940528 DOI: 10.1016/j.jhazmat.2023.131232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The different chemical behavior of anionic As and cationic Cd and Pb makes the simultaneous stabilization of soils contaminated with arsenic (As), cadmium (Cd), and lead (Pb) challenging. The use of soluble, insoluble phosphate materials and iron compounds cannot simultaneously stabilize As, Cd, and Pb in soil effectively due to the easy re-activation of heavy metals and poor migration. Herein, we propose a new strategy of "cooperatively stabilizing Cd, Pb, and As with slow-release ferrous and phosphate". To very this theory, we developed ferrous and phosphate slow-release materials to simultaneously stabilize As, Cd, and Pb in soil. The stabilization efficiency of water-soluble As, Cd and Pb reached 99% within 7d, and the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 92.60%, 57.79% and 62.81%, respectively. The chemical speciation analysis revealed that soil As, Cd and Pb were transformed into more stable states with the reaction time. The proportion of residual fraction of As, Cd, and Pb increased from 58.01% to 93.82%, 25.69 to 47.86%, 5.58 to 48.54% after 56 d, respectively. Using ferrihydrite as a representative soil component, the beneficial interactions of phosphate and slow-release ferrous material in stabilizing Pb, Cd, and As were demonstrated. The slow-release ferrous and phosphate material reacted with As and Cd/Pb to form stable ferrous arsenic and Cd/Pb phosphate. Furthermore, the slow-release phosphate converted the adsorbed As into dissolved As, then the dissolved As reacted with released ferrous to form a more stable form. Concurrently, As, Cd and Pb were structurally incorporated into the crystalline iron oxides during the ferrous ions-catalyzed transformation of amorphous iron (hydrogen) oxides. The results demonstrates that the use of slow-release ferrous and phosphate materials can aid in the simultaneous stabilization of As, Cd, and Pb in soil.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kai Nie
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaxin Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
9
|
Jiang Z, Nie K, Yu L, Arinzechi C, Zhao F, Liao Q, Yang Z, Si M, Yang W. Synchronous stabilization of As, Cd, and Pb in soil by sustained-release of iron-phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161369. [PMID: 36626993 DOI: 10.1016/j.scitotenv.2022.161369] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Anionic arsenic (As) exhibits geochemical behavior opposite to those of cationic cadmium (Cd), and lead (Pb), which makes the synchronous remediation of As, Cd, and Pb challenging. The synchronous stabilization of As, Cd, and Pb to form Cd/Pb-phosphate and iron‑arsenic precipitates is a promising strategy. However, the effectiveness of soluble phosphate or iron-based materials is limited by the activation of Cd, Pb, or As, while low mobility hinders insoluble particles. In this study, we developed an amorphous structure that releases iron and phosphate at a sustained rate. Thus, the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 44.6 %, 40.8 %, and 48.1 %, respectively. The proportion of residual fraction of As, Cd, and Pb increased by 12.1 %, 14.5 %, and 36.4 %, respectively, after 28 d. Ferrihydrite was chosen as the soil component to monitor the chemical behavior and speciation transformation of As, Cd, and Pb in the reaction. During the process, the released iron directly reacted with dissolved As to form iron‑arsenic precipitation and phosphate directly reacted with Cd/Pb to form Cd/Pb-phosphate precipitation. Simultaneously, phosphate replaced the adsorbed As and transformed into a dissolved state, which could be re-precipitated with the released iron ions. Thus, this study provides a reliable strategy for the remediation of As, Cd, and Pb combined pollution in soil.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kai Nie
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lin Yu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
10
|
Bu H, Lei Q, Tong H, Liu C, Hu S, Xu W, Wang Y, Chen M, Qiao J. Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160624. [PMID: 36460100 DOI: 10.1016/j.scitotenv.2022.160624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Abiotic reduction of iron (oxyhydr)oxides by aqueous Fe(II) is one of the key processes affecting the Fe cycle in soil. Lepidocrocite (Lep) occurs naturally in anaerobic, clayey, non-calcareous soils in cooler and temperate regions; however, little is known about the impacts of co-precipitated humic acid (HA) on Fe(II)-induced Lep transformation and its consequences for heavy metal immobilization. In this study, the Fe(II)-induced phase transformation of Lep-HA co-precipitates was analyzed as a function of the C/Fe ratio, and its implications for subsequent Cd(II) concentration dynamic in dissolved and solid form was further investigated. The results revealed that secondary Fe(II)-bearing magnetite commonly formed during the Fe(II)-induced transformation of Lep, which further changed the mobility and distribution of Cd(II). The co-precipitated HA resulted in a decrease in the Fe solid phase transformation as the C/Fe ratios increased. Magnetite was found to be a secondary mineral in the 0.3C/Fe ratio Lep-HA co-precipitate, while only Lep was observed at a C/Fe ratio of 1.2 using X-ray diffraction (XRD) and Mössbauer spectroscopy. Based on XRD, scanning electron microscopy (SEM), Mössbauer, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) results, newly formed magnetite may immobilize Cd(II) through surface complexes, incorporation, or structural substitution. The presence of HA was beneficial for binding Cd(II) and affected the mineralogical transformation of Lep into magnetite, which further induced the distribution of Cd(II) into the newly formed secondary minerals. These results provide insights into the behavior of Cd(II) in response to reaction between humic matter and iron (oxyhydr)oxides in anaerobic environments.
Collapse
Affiliation(s)
- Hongling Bu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinkai Lei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shujie Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenpo Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Jiangtao Qiao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
11
|
Yang W, Huang C, Wan X, Zhao Y, Bao Z, Xiang W. Enhanced Adsorption of Cd on Iron-Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15650. [PMID: 36497725 PMCID: PMC9737542 DOI: 10.3390/ijerph192315650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The objectives of this study were to evaluate the cadmium adsorption capacity of iron-organic associations (Fe-OM) formed by laccase-mediated modification and assess the effect of Fe-OM on the immobilization of cadmium in paddy soil. Leaf organic matter (OM) was extracted from Changshan grapefruit leaves, and then dissolved organic matter (Lac-OM) and precipitated organic matter (Lac-P) were obtained by laccase catalytic modification. Different Fe-OM associations were obtained by co-precipitation of Fe with OM, Lac-OM, and Lac-P, respectively, and the adsorption kinetics, adsorption edge, and isothermal adsorption experiments of Cd on Fe-OM were carried out. Based on the in situ generation of Fe-OM, passivation experiments on Cd-contaminated soils with a high geological background were carried out. All types of Fe-OM have a better Cd adsorption capacity than ferrihydrite (FH). The theoretical maximum adsorption capacity of the OM-FH, Lac-OM-FH, and Lac-P-FH were 2.2, 2.53, and 2.98 times higher than that of FH, respectively. The adsorption of Cd on Fe-OM is mainly chemisorption, and the -OH moieties on the Fe-OM surface form an inner-sphere complex with the Cd ions. Lac-OM-FH showed a higher Cd adsorption capacity than OM-FH, which is related to the formation of more oxygen-containing groups in the organic matter modified by laccase. The immobilization effect of Lac-OM-FH on active Cd in soil was also higher than that of OM-FH. The Lac-OM-FH formed by laccase-mediated modification has better Cd adsorption performance, which can effectively inactivate the activity of Cd in paddy soil.
Collapse
Affiliation(s)
- Weilin Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunlei Huang
- Zhejiang Institute of Geological Survey, Hangzhou 312000, China
| | - Xiang Wan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Geological Survey, Wuhan 430034, China
| | - Yunyun Zhao
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wu Xiang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Caplette JN, Gfeller L, Lei D, Liao J, Xia J, Zhang H, Feng X, Mestrot A. Antimony release and volatilization from rice paddy soils: Field and microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156631. [PMID: 35691353 DOI: 10.1016/j.scitotenv.2022.156631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The fate of antimony (Sb) in submerged soils and the impact of common agricultural practices (e.g., manuring) on Sb release and volatilization is understudied. We investigated porewater Sb release and volatilization in the field and laboratory for three rice paddy soils. In the field study, the porewater Sb concentration (up to 107.1 μg L-1) was associated with iron (Fe) at two sites, and with pH, Fe, manganese (Mn), and sulfate (SO42-) at one site. The surface water Sb concentrations (up to 495.3 ± 113.7 μg L-1) were up to 99 times higher than the regulatory values indicating a potential risk to aquaculture and rice agriculture. For the first time, volatile Sb was detected in rice paddy fields using a validated quantitative method (18.1 ± 5.2 to 217.9 ± 160.7 mg ha-1 y-1). We also investigated the influence of two common rice agriculture practices (flooding and manuring) on Sb release and volatilization in a 56-day microcosm experiment using the same soils from the field campaign. Flooding induced an immediate, but temporary, Sb release into the porewater that declined with SO42-, indicating that SO42- reduction may reduce porewater Sb concentrations. A secondary Sb release, corresponding to Fe reduction in the porewater, was observed in some of the microcosms. Our results suggest flooding-induced Sb release into rice paddy porewaters is temporary but relevant. Manuring the soils did not impact the porewater Sb concentration but did enhance Sb volatilization. Volatile Sb (159.6 ± 108.4 to 2237.5 ± 679.7 ng kg-1 y-1) was detected in most of the treatments and was correlated with the surface water Sb concentration. Our study indicates that Sb volatilization could be occurring at the soil-water interface or directly in the surface water and highlights that future works should investigate this potentially relevant mechanism.
Collapse
Affiliation(s)
| | - L Gfeller
- Institute of Geography, University of Bern, Switzerland
| | - D Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - H Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - X Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China.
| | - A Mestrot
- Institute of Geography, University of Bern, Switzerland.
| |
Collapse
|
13
|
Meng F, Huang Q, Cai Y, Yuan G, Xiao L, Han FX. Effect of humic acid derived from leonardite on the redistribution of uranium fractions in soil. PeerJ 2022; 10:e14162. [PMID: 36225909 PMCID: PMC9549884 DOI: 10.7717/peerj.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
Humic acids (HAs) are complex organic substances with abundant functional groups (e.g., carboxyl, phenolic-OH, etc.). They are commonly distributed in the soil environment and exert a double-edged sword effect in controlling the migration and transformation of uranium. However, the effects of HAs on dynamic processes associated with uranium transformation are still unclear. In this study, we used HAs derived from leonardite (L-HA) and commercial HA (C-HA) as exogenous organic matter and C-HA as the reference. UO2, UO3, and UO2(NO3)2 were used as the sources of U to explore the fractionations of uranium in the soil. We also studied the behavior of the HA. The incubation experiments were designed to investigate the effects of HA on the soil pH, uranium fraction transformation, dynamic behavior of exchangeable, weak acid, and labile uranium. The observations were made for one month. The results showed that soil pH decreased for L-HA but increased for C-HA. Under these conditions, uranium tended to transform into an inactive fraction. The dynamic behavior of exchangeable, weak acid, and labile uranium varied with the sources of HA and uranium. This study highlighted that HA could affect soil pH and the dynamic redistribution of U fractions. The results suggest that the sources of HA and U should be considered when using HA as the remediation material for uranium-contaminated soils.
Collapse
Affiliation(s)
- Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, Anhui Province, China,Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, United States of America,Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing, Guangdong Province, China
| | - Qiuxiang Huang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, Anhui Province, China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, Anhui Province, China
| | - Guodong Yuan
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing, Guangdong Province, China
| | - Liang Xiao
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing, Guangdong Province, China
| | - Fengxiang X. Han
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, United States of America
| |
Collapse
|
14
|
Abbasi S, Lamb DT, Choppala G, Burton ED, Megharaj M. Antimony speciation, phytochelatin stimulation and toxicity in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119305. [PMID: 35430314 DOI: 10.1016/j.envpol.2022.119305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) is a toxic metalloid that has been listed as a priority pollutant. The environmental impacts of Sb have recently attracted attention, but its phytotoxicity and biological transformation remain poorly understood. In this study, Sb speciation and transformation in plant roots was quantified by Sb K-edge X-ray absorption spectroscopy. In addition, the phytotoxicity of antimonate (SbV) on six plant species was assessed by measuring plant photosynthesis, growth, and phytochelatin production induced by SbV. Linear combination fitting of the Sb K-edge X-ray absorption near-edge structure (XANES) spectra indicated reduction of SbV was limited to ∼5-33% of Sb. The data confirmed that Sb-polygalacturonic acid was the predominant chemical form in all plant species (up to 95%), indicating Sb was primarily bound to the cell walls of plant roots. Shell fitting of Sb K-edge X-ray absorption fine-structure (EXAFS) spectra confirmed Sb-O and Sb-C were the dominant scattering paths. The fitting indicated that SbV was bound to hydroxyl functional groups of cell walls, via development of a local coordination environment analogous to Sb-polygalacturonic acid. This is the first study to demonstrate the key role of plant cell walls in Sb metabolism.
Collapse
Affiliation(s)
- Sepide Abbasi
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales, Australia; Environmental Resources Management (ERM), Sydney, Australia
| | - Dane T Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales, Australia
| | - Edward D Burton
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
15
|
Wu T, Cui X, Ata-Ul-Karim ST, Cui P, Liu C, Fan T, Sun Q, Gong H, Zhou D, Wang Y. The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. CHEMOSPHERE 2022; 297:134147. [PMID: 35240148 DOI: 10.1016/j.chemosphere.2022.134147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of trace elements in rice, such as antimony (Sb), has drawn special attention owing to the potential increased risk to human health. However, the effects of two common irrigation methods, alternate wetting and drying and continuous flooding, on Sb behaviors and subsequent accumulation in rice is unclear. In this study a pot experiment with various Sb additions (0, 50, 200, 1000 mg Sb kg-1) was carried out with these two irrigation methods in two contrasting paddy soils (an Anthrosol and a Ferralic Cambisol). The dynamics of Sb in soil porewater indicated that continuous flooding generally immobilized more Sb than alternate wetting and drying, concomitant with a pronounced reduction of Sb(V) in porewater. However, a higher phytoavailable fraction of Sb was observed under continuous flooding. The content of Sb in the rice plant decreased in the order of root > shoot > husk > grain, and continuous flooding facilitated Sb accumulation in rice root and shoot as compared with alternate wetting and drying. The differences of Sb content in root, shoot, and husk between the two irrigation methods was smaller in aboveground parts, and almost no difference in Sb was observed in grain between the two methods. The findings of this study facilitates the understanding of Sb speciation and behavior in soils with these common yet different water management regimes.
Collapse
Affiliation(s)
- Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaodan Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Syed Tahir Ata-Ul-Karim
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tingting Fan
- Nanjing Institute of Environmental Science, State Environmental Protection Administration, Nanjing 210042, China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Hua Gong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Ma X, Li Q, Li R, Zhang W, Sun X, Li J, Shen J, Han W. Efficient removal of Sb(Ⅴ) from water using sulphidated ferrihydrite via tripuhyite (FeSbO 4) precipitation and complexation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114675. [PMID: 35180437 DOI: 10.1016/j.jenvman.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Elevated concentrations of antimony (Sb) in the ecological environment have received considerable attention due to the harmful consequence involved. This study synthesized sulphidated ferrihydrite with different S:Fe molar ratios to efficiently remove Sb(V) from water. As the S:Fe molar ratio ranged from 0.00 to 1.48, the removal efficiency of Sb(V) by sulphidated ferrihydrite first decreased before increasing considerably. Sulphidated ferrihydrite with an S:Fe molar ratio of 0.74 exhibited a strong affinity towards Sb(V) with an optimal removal capacity of 963.74 mg Sb/g, which was 3.2-fold higher than that of ferrihydrite. In the kinetic experiments, the removal behavior of Sb(V) was well described by the pseudo-second-order model, suggesting that the removal process was controlled via chemisorption. Moreover, Sb(V) was efficiently removed over a wide pH range of 3.00-11.00, and coexisting anions (NO3-, Cl-, SO42-, SiO32-, CO32- and PO43-) exhibited marginal impact on the Sb(V) removal by sulphidated ferrihydrite (S:Fe ≥ 0.44). The characterization results of XRD, SEM, TEM mapping and etched XPS revealed goethite to be the dominant phase of sulphidated ferrihydrite with an S:Fe molar ratio of 0.15, while a mixed constitution of mixed-valent iron (hydro)oxides and iron sulphide was formed when the S:Fe molar ratio exceeded 0.44. Moreover, sulphidated ferrihydrite acted as a donor for Fe and S for the effective retention of Sb(V) by two main pathways: precipitation (tripuhyite, FeSbO4) and complexation (≡S-H and ≡Fe-OH). Therefore, sulphidated ferrihydrite is a promising material for eliminating Sb(V) contamination from water.
Collapse
Affiliation(s)
- Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
17
|
Chang C, Li F, Wang Q, Hu M, Du Y, Zhang X, Zhang X, Chen C, Yu HY. Bioavailability of antimony and arsenic in a flowering cabbage-soil system: Controlling factors and interactive effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152920. [PMID: 35007579 DOI: 10.1016/j.scitotenv.2022.152920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with antimony (Sb) and arsenic (As) has become a well-recognized environmental and human health issue. Consumption of vegetables, especially leafy vegetables, is one of the most important sources of Sb and As exposure in humans. Accordingly, it is necessary to understand the behaviors of Sb and As in the vegetable-soil system. Moreover, although Sb and As are often assumed to have similar biogeochemical behavior, identified differences in the controlling factors affecting mobility and bioavailability of Sb and As in soils need further investigation. In this study, 112 pairs of soil and flowering cabbage samples were collected from typical farmland protection areas and vegetable-producing regions across the Pearl River Delta (PRD), South China. The contamination levels of Sb and As in soils and harvested cabbages across the PRD were investigated. The main factors affecting the mobility and bioavailability of Sb and As in the cabbage-soil system were disentangled using a random forest model. The contamination levels of Sb in the cabbages and soils of the PRD were generally low, but the soils were moderately polluted by As. Increased concentrations of Fe oxides could decrease Sb accumulation in cabbages but increased the mobilization of As in soils to some extent. In contrast, Al oxides contributed strongly to the mobilization of Sb and the immobilization of As. Moreover, an increased sand content promoted the mobility of Sb and As, whereas increased silt and clay contents showed inhibitory effects. The interactions of As and Sb with Fe oxides decreased the mobility of Sb but moderately increased the mobility of As in soils. Overall, the behaviors of Sb and As in the cabbage-soil system under the effect of several important environmental factors showed some differences indicating that these differences should be considered in the remediation of co-contaminated soils.
Collapse
Affiliation(s)
- Chunying Chang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong Key Laboratory of Contaminated Sited Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoqing Zhang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, Hubei Province 430081, China
| | - Xiaolu Zhang
- Guangdong Key Laboratory of Contaminated Sited Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Chunyi Chen
- Monitoring Center of Eco-Environment of Guangdong Province, China
| | - Huan-Yun Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
18
|
Yan L, Chan T, Jing C. Mechanistic Study for Antimony Adsorption and Precipitation on Hematite Facets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3138-3146. [PMID: 35138089 DOI: 10.1021/acs.est.1c07801] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterogeneous reactions at the mineral-water interface are of paramount importance in controlling the transport of contaminants. Herein, antimony (Sb) adsorption and subsequent precipitation on Fe2O3 facets were explored to understand its partitioning mechanisms by multiple complementary techniques. Our extended X-ray absorption fine structure spectroscopy and density functional theory results provided a consensus on the local coordination environment of Sb(III) and Sb(V) on Fe2O3 facets. We observed that Sb adsorption and the following precipitation are associated with both Sb concentrations and Fe2O3 facets, and a change in the Sb surface-binding mode from edge-sharing to corner-sharing is preferred in precipitation. Fe2O3 facets determine Sb binding structures, resulting in a facet-dependent transformation of adsorption to precipitation. The preferred corner-sharing complexes on the {001} facet facilitated the formation of Sb2O3 and NaSb(OH)6 precipitates at a lower Sb concentration compared with other two {110} and {214} facets. In addition, the facet-specific binding configuration renders a heterogeneous epitaxial growth of Sb2O3. Our study provides a molecular understanding of facet effects on Sb adsorption and precipitation on minerals.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingshan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
19
|
Peng J, Fu F, Ye C, Tang B. Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118552. [PMID: 34801618 DOI: 10.1016/j.envpol.2021.118552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) is regarded as a trace element for humans, but it is toxic in excess. In natural environments, the mobility of Se is dominantly controlled by the Se oxyanions with high solubility such as selenite (Se(IV)). Se(IV) is often associated with the omnipresent ferrihydrite and coexisting organic matter. However, there is little information on the dynamic interactions among Se(IV), fulvic acid, and ferrihydrite. This study investigated the influence of fulvic acid on ferrihydrite-Se(IV) coprecipitates (Fh-Se) transformation for 8 days and the subsequent behavior of Se(IV) at varied pH (5.0, 7.5, and 10.0). Results showed that fulvic acid had different effects on Fh-Se transformation at varied pH values. Fh-Se transformation was promoted by fulvic acid at initial pH 5.0 whereas it was inhibited at initial pH 10.0. Interestingly, at initial pH 7.5, Fh-Se transformation was promoted at a low C/Fe ratio while it was suppressed at a high C/Fe ratio. Besides, fulvic acid induced the generation of more extractable Se(IV) at initial pH 5.0 and more coprecipitated Se(IV) at initial pH 7.5 and blocked the release of Se(IV) at initial pH 10.0. Fulvic acid possibly interacted with Se(IV) via carboxyl complexation and weakened the inhibition of Se(IV) on Fh-Se transformation. Thus, fulvic acid increased the transformation rate of Fh-Se. These findings help to uncover the environmental behavior of Se(IV) and organic matter during ferrihydrite transformation.
Collapse
Affiliation(s)
- Jinlong Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chujia Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
20
|
Du H, Nie N, Rao W, Lu L, Lei M, Tie B. Ferrihydrite-organo composites are a suitable analog for predicting Cd(II)-As(V) coexistence behaviors at the soil solid-liquid interfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118040. [PMID: 34454194 DOI: 10.1016/j.envpol.2021.118040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Organomineral assemblages are building units of soil micro-aggregates and exert their essential roles in immobilizing toxic elements. Currently, our knowledge of the adsorption and partitioning behaviors of coexisting Cd-As onto organomineral composites is limited. Herein, we carefully studied Cd-As cosorption onto ferrihydrite organomineral composites made with either living or non-living organics, i.e., bacteria (Delftia sp.) or humic acid (HA), using batch adsorption and various spectroscopies. Batch results show that As(V) only enhances Cd(II) sorption on pure Fh at pH < 6 but cannot promote Cd(II) sorption to Fh-organo composites. However, Cd(II) noticeably promotes As(V) sorption at pH>~5-6. Synchrotron micro X-ray fluorescence indicates that Cd(II) adsorbs predominately to the bacterial fraction (Cd versus P, r = 0.924), whereas As(V) binds mainly to the Fh fraction (As versus Fe, r = 0.844) of the Fh-bacteria composite. On Fh-HA composite, however, Cd(II) and As(V) are both primarily sorbed by the Fh fraction (Cd/As versus P, r > 0.8), based on the scanning transmission electron microscopy-energy disperse spectroscopy analyses. Elemental distribution characterization also manifests the co-localization of Cd(II) and As(V) within the organomineral composite, particular in Fh-HA composite (Cd versus As, r = 0.8), which is further identified as the Fh-As-Cd ternary complex based on the observations (higher frequencies at ~753-761 cm-1) of attenuated total reflection Fourier-transform infrared spectroscopy. Moreover, this ternary interaction is more pronounced in Fh-HA than in Fh-bacteria. In summary, our results suggest that Cd-As coadsorption behaviors on Fh-organo composites are different from those on pure minerals, and the presence of bacteria/HA can significantly affect metal (loid)s speciation, distribution, and ternary interaction. Therefore organomineral composites are a more suitable analog than pure mineral phases to predict the mobility and fate of Cd-As in natural environments.
Collapse
Affiliation(s)
- Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenkai Rao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Lei Lu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
21
|
Deng R, Chen Y, Deng X, Huang Z, Zhou S, Ren B, Jin G, Hursthouse A. A Critical Review of Resistance and Oxidation Mechanisms of Sb-Oxidizing Bacteria for the Bioremediation of Sb(III) Pollution. Front Microbiol 2021; 12:738596. [PMID: 34557178 PMCID: PMC8453088 DOI: 10.3389/fmicb.2021.738596] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
Antimony (Sb) is a priority pollutant in many countries and regions due to its chronic toxicity and potential carcinogenicity. Elevated concentrations of Sb in the environmental originating from mining and other anthropogenic sources are of particular global concern, so the prevention and control of the source of pollution and environment remediation are urgent. It is widely accepted that indigenous microbes play an important role in Sb speciation, mobility, bioavailability, and fate in the natural environment. Especially, antimony-oxidizing bacteria can promote the release of antimony from ore deposits to the wider environment. However, it can also oxidize the more toxic antimonite [Sb(III)] to the less-toxic antimonate [Sb(V)], which is considered as a potentially environmentally friendly and efficient remediation technology for Sb pollution. Therefore, understanding its biological oxidation mechanism has great practical significance to protect environment and human health. This paper reviews studies of the isolation, identification, diversity, Sb(III) resistance mechanisms, Sb(III) oxidation characteristics and mechanism and potential application of Sb-oxidizing bacteria. The aim is to provide a theoretical basis and reference for the diversity and metabolic mechanism of Sb-oxidizing bacteria, the prevention and control of Sb pollution sources, and the application of environment treatment for Sb pollution.
Collapse
Affiliation(s)
- Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yilin Chen
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xinpin Deng
- Hunan 402 Geological Prospecting Part, Changsha, China
| | - Zhongjie Huang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Saijun Zhou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Guizhong Jin
- Hsikwangshan Twinkling Star Co., Ltd., Lengshuijiang, China
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
- School of Computing, Engineering and Physical Sciences, The University of the West of Scotland, Paisley, United Kingdom
| |
Collapse
|
22
|
Karimian N, Hockmann K, Planer-Friedrich B, Johnston SG, Burton ED. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9854-9863. [PMID: 34228928 DOI: 10.1021/acs.est.1c00916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) oxides, such as birnessite (δ-MnO2), are ubiquitous mineral phases in soils and sediments that can interact strongly with antimony (Sb). The reaction between birnessite and aqueous Mn(II) can induce the formation of secondary Mn oxides. Here, we studied to what extent different loadings of antimonate (herein termed Sb(V)) sorbed to birnessite determine the products formed during Mn(II)-induced transformation (at pH 7.5) and corresponding changes in Sb behavior. In the presence of 10 mM Mn(II)aq, low Sb(V)aq (10 μmol L-1) triggered the transformation of birnessite to a feitknechtite (β-Mn(III)OOH) intermediary phase within 1 day, which further transformed into manganite (γ-Mn(III)OOH) over 30 days. Medium and high concentrations of Sb(V)aq (200 and 600 μmol L-1, respectively) led to the formation of manganite, hausmannite (Mn(II)Mn(III)2O4), and groutite (αMn(III)OOH). The reaction of Mn(II) with birnessite enhanced Sb(V)aq removal compared to Mn(II)-free treatments. Antimony K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that heterovalent substitution of Sb(V) for Mn(III) occurred within the secondary Mn oxides, which formed via the Mn(II)-induced transformation of Sb(V)-sorbed birnessite. Overall, Sb(V) strongly influenced the products of the Mn(II)-induced transformation of birnessite, which in turn attenuated Sb mobility via incorporation of Sb(V) within the secondary Mn oxide phases.
Collapse
Affiliation(s)
- Niloofar Karimian
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Kerstin Hockmann
- Department of Hydrology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95447 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95447 Bayreuth, Germany
| | - Scott G Johnston
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
23
|
Sun G, Fu F, Yu G, Yu P, Tang B. Migration behavior of Cr(VI) during the transformation of ferrihydrite-Cr(VI) co-precipitates: The interaction between surfactants and co-precipitates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145429. [PMID: 33550060 DOI: 10.1016/j.scitotenv.2021.145429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Redistribution of Cr(VI) in ferrihydrite-Cr(VI) co-precipitates (Fh-Cr) was affected by co-precipitates transformation and coexisting substances. These effects were crucial for predicting the migration path of Cr(VI) in ferrihydrite-Cr(VI) co-precipitates. This work investigated the effects of the extensively used surfactants of anionic surfactant sodium dodecylbenzene sulfonate (SDBS) and cationic surfactant cetyltrimethylammonium bromide (CTAB) on the Fh-Cr transformation and redistribution of Cr(VI) for 10 days at different pH values (5.0, 7.5 and 9.0) and concentration of surfactants (0.5, 2.0 and 5.0 mM). The results showed that SDBS hindered the transformation of Fh-Cr to hematite and tended to transform into goethite. SDBS inhibited hematite formation by inhibiting the aggregation of Fh-Cr particles, and it enhanced the dissolution of Fh-Cr to facilitate the formation of goethite. Affected by the inhibition of Fh-Cr transformation, the process of Cr(VI) redistribution was delayed. CTAB did not affect the transformation of Fh-Cr, but allowed more Cr(VI) to enter the interior of iron minerals. When the surfactants were adsorbed on the Fh-Cr, SDBS decreased the adsorption of Cr(VI) by Fh-Cr, while CTAB increased the Cr(VI) adsorption. The findings of this study contribute to understand the effects of surfactants on the transformation of Fh-Cr and the behaviors of Cr(VI) during this process.
Collapse
Affiliation(s)
- Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Peijing Yu
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Hockmann K, Karimian N, Schlagenhauff S, Planer-Friedrich B, Burton ED. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4954-4963. [PMID: 33710876 DOI: 10.1021/acs.est.0c08660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The environmental mobility of antimony (Sb) is controlled by interactions with iron (Fe) oxides, such as ferrihydrite. Under near-neutral pH conditions, Fe(II) catalyzes the transformation of ferrihydrite to more stable phases, thereby potentially altering the partitioning and speciation of associated Sb. Although largely unexplored, Sb itself may also influence ferrihydrite transformation pathways. Here, we investigated the impact of Sb on the Fe(II)-induced transformation of ferrihydrite at pH 7 across a range of Sb(V) loadings (Sb:Fe(III) molar ratios of 0, 0.003, 0.016, and 0.08). At low and medium Sb loadings, Fe(II) induced rapid transformation of ferrihydrite to goethite, with some lepidocrocite forming as an intermediate phase. In contrast, the highest Sb:Fe(III) ratio inhibited lepidocrocite formation, decreased the extent of goethite formation, and instead resulted in substantial formation of feroxyhyte, a rarely reported FeOOH polymorph. At all Sb loadings, the transformation of ferrihydrite was paralleled by a decrease in aqueous and phosphate-extractable Sb concentrations. Extended X-ray absorption fine structure spectroscopy showed that this Sb immobilization was attributable to incorporation of Sb into Fe(III) octahedral sites of the neo-formed minerals. Our results suggest that Fe oxide transformation pathways in Sb-contaminated systems may strongly differ from the well-known pathways under Sb-free conditions.
Collapse
Affiliation(s)
- Kerstin Hockmann
- Department of Hydrology, University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Niloofar Karimian
- Southern Cross GeoScience, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Sara Schlagenhauff
- Environmental Geochemistry, University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, 95440 Bayreuth, Germany
- Alfred Wegener Institute, Helmholz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University, Lismore New South Wales 2480, Australia
| |
Collapse
|
25
|
Rahman MA, Rahman MM, Bahar MM, Sanderson P, Lamb D. Antimonate sequestration from aqueous solution using zirconium, iron and zirconium-iron modified biochars. Sci Rep 2021; 11:8113. [PMID: 33854093 PMCID: PMC8046795 DOI: 10.1038/s41598-021-86978-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Antimony (Sb) is increasingly being recognized as an important contaminant due to its various industrial applications and mining operations. Environmental remediation approaches for Sb are still lacking, as is the understanding of Sb environmental chemistry. In this study, biosolid biochar (BSBC) was produced and utilized to remove antimonate (Sb(V)) from aqueous solution. Zirconium (Zr), Zirconium-iron (Zr-Fe) and Fe-O coated BSBC were synthesized for enhancing Sb(V) sorption capacities of BSBC. The combined results of specific surface area, FTIR, SEM-EDS, TEM-EDS, and XPS confirmed that Zr and/or Zr-Fe were successfully coated onto BSBC. The effects of reaction time, pH, initial Sb(V) concentration, adsorbate doses, ionic strength, temperature, and the influence of major competitive co-existing anions and cations on the adsorption of Sb(V) were investigated. The maximum sorption capacity of Zr-O, Zr-Fe, Zr-FeCl3, Fe-O, and FeCl3 coated BSBC were 66.67, 98.04, 85.47, 39.68, and 31.54 mg/g respectively under acidic conditions. The XPS results revealed redox transformation of Sb(V) species to Sb(III) occurred under oxic conditions, demonstrating the biochar's ability to behave as an electron shuttle during sorption. The sorption study suggests that Zr-O and Zr-O-Fe coated BSBC could perform as favourable adsorbents for mitigating Sb(V) contaminated waters.
Collapse
Affiliation(s)
- Md Aminur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, Australia
- Department of Public Health Engineering (DPHE), Zonal Laboratory, Khulna, 9100, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, Australia
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, Australia
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, Australia
| | - Dane Lamb
- Global Innovation Centre for Advanced Nanomaterials, The University of Newcastle, Advanced Technology Centre - Room 181, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
26
|
Teng F, Zhang Y, Wang D, Shen M, Hu D. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122977. [PMID: 32474324 DOI: 10.1016/j.jhazmat.2020.122977] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/24/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Cationic and anionic heavy metal contamination sometimes co-exists in soil systems, such as mining areas and shooting ranges, seriously threatens human health and ecological stability. In this study, iron-modified rice husk hydrochar showed commendable ability to immobilize both heavy metal cation (Pb) and anion (Sb) simultaneously in soils. Iron-modified rice husk hydrochar (HC12.5-180) (5%) amendment reduced the bioavailability (EX- and CB-fraction) of Pb and Sb by 25 and 40%, respectively, which were 8 and 5 times higher than that of pristine rice husk hydrochar (HC0-180) (5%) amendment. The cation (Pb) immobilization mainly depends on cation exchange with mineral components (K+, Ca2+, Na+, Mg2+), precipitation with nonmetallic anions (Cl- and SO42-), and complexation. Meanwhile, the iron oxides (FeO, Fe2O3, Fe3O4), formed during hydrothermal process, can be easily combined with anion (Sb) to form geochemically stable minerals. In conclusion, this work offered a practical and cost-effective technology based on the iron modification rice husk hydrochar for the immobilization of both anionic and cationic heavy metal contaminants in soils.
Collapse
Affiliation(s)
- Fengyun Teng
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dequan Wang
- Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Yinchuan 750021, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Duofei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
27
|
Yan L, Chan T, Jing C. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114309. [PMID: 32155558 DOI: 10.1016/j.envpol.2020.114309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Stibnite (Sb2S3) dissolution and transformation on mineral surfaces are the fundamental steps controlling the fate of antimony (Sb) in the environment. The molecular-level understanding of Sb2S3-mineral-water interfacial reactions is of great importance. Herein, Sb2S3 oxidative dissolution and sequestration on pyrite (FeS2) were explored. The results show that FeS2 accelerated the rate of Sb2S3 oxidative dissolution by a factor of 11.4-fold under sunlight due to heterogeneous electron transfer. The electron transfer from Sb2S3 to FeS2 separated photogenerated hole (h+) and electron (e-) pairs, facilitating the generation of hydroxyl radicals (OH) on Sb2S3 and FeS2, and superoxide radicals (O2-) on FeS2. Surface O2- was the dominant oxidant for Sb(III) oxidation with 91% contribution, as evidenced by radical trapping experiments. OH was preferentially adsorbed on Sb2S3, but was released with Sb2S3 dissolution, and subsequently contributable to Sb(III) oxidation in solution. The Sb(III) oxidation and sequestration on FeS2 surface coupled Fe2+/Fe3+ cycling and inhibited FeS2 dissolution, as evidenced by X-ray absorption near edge structure and X-ray photoelectron spectroscopy. The insights gained from this study further our understanding of Sb2S3 transformation and transport at the environmental mineral-water interfaces.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingshan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Johnston SG, Bennett WW, Doriean N, Hockmann K, Karimian N, Burton ED. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136354. [PMID: 32050372 DOI: 10.1016/j.scitotenv.2019.136354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The Macleay River in eastern Australia is severely impacted by historic stibnite- and arsenopyrite-rich mine-tailings. We explore the partitioning, speciation, redox-cycling, mineral associations and mobility of antimony and arsenic along >70 km reach of the upper Macleay River. Elevated Sb/As occur throughout the active channel-zone and in floodplain pockets up to the regolith margin, indicating broad dispersal during floods. Sb concentrations in bulk-sediments decay exponentially downstream more efficiently than As, likely reflecting sediment dilution, hydraulic sorting and comparatively greater leaching of (more mobile) Sb(V) species. However, Sb in bulk-sediments becomes proportionally more bio-available downstream. Sb(V) and As(V) species dominate stream fine-grained (<180 μm) bulk-sediments, reflecting oxidative weathering downstream. Increasing poorly-crystalline Fe(III) [Fe(III)HCl] in bulk-sediments also indicates progressive oxidative weathering of Fe(II)-bearing minerals downstream and significant (P < .05) correlations exist between PO4-3-exchangeable As and Sb fractions and Fe(III)HCl. Accumulations of poorly-crystalline Fe(III) precipitates (mainly ferrihydrite/feroxyhyte) occur intermittently in hyporheic-zone seeps and are enriched in As relative to Sb and contain some As(III) and Sb(III) (~30-40%). There is dynamic in-stream redox-cycling of both Sb and As, with localised S-coordinated As and Sb species re-forming in organic-rich, hyporheic sediments subject to contemporary sulfidogenesis. Sb [mainly Sb(V)] is comparatively more mobile in hyporheic and surface waters under oxic conditions, whereas As [mainly As(III)] is more mobile in hyporheic porewaters subject to reducing/sulfidogenic conditions. Repeat water-leaching of bulk-sediments confirms that Sb is proportionally more mobile than As. Mean concentrations of Sb in river water 168 km downstream from the mine are significantly (P < .05) higher than As, while Kd data indicate Sb is more strongly partitioned to the aqueous phase than As. Although the (mainly) oxic flow path of this river favours aqueous Sb mobility compared to As, localised redox-driven shifts in speciation of both elements strongly influence their respective mobility and partitioning.
Collapse
Affiliation(s)
- Scott G Johnston
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia.
| | - William W Bennett
- Environmental Futures Research Institute, Griffith University Gold Coast campus, Southport, QLD 4215, Australia
| | - Nicholas Doriean
- Environmental Futures Research Institute, Griffith University Gold Coast campus, Southport, QLD 4215, Australia
| | - Kerstin Hockmann
- University of Bayreuth, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, D-95440 Bayreuth, Germany
| | - Niloofar Karimian
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Southern Cross Geoscience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|