1
|
Ashrafi P, Nematollahi D, Shabanloo A, Ansari A, Sadatnabi A, Sadeghinia A. Enhanced favipiravir drug degradation using the synergy of PbO 2-based anodic oxidation and Fe-MOF-based cathodic electro-Fenton. ENVIRONMENTAL RESEARCH 2024; 262:119883. [PMID: 39214488 DOI: 10.1016/j.envres.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.
Collapse
Affiliation(s)
- Parva Ashrafi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amir Shabanloo
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Ansari
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran; Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ali Sadatnabi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Armin Sadeghinia
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
2
|
Khajvand M, Drogui P, Arab H, Tyagi RD, Brien E. Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater. CHEMOSPHERE 2024; 363:142931. [PMID: 39053780 DOI: 10.1016/j.chemosphere.2024.142931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD0 = 239 ± 6 mg.L-1) and NPEO (NPEO0 = 341 ± 8 μg.L-1) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO3-17 degradation were recorded. This included achieving 97% degradation of NPEO3-17 and 61% degradation of COD, with a total operating cost of 3.65 USD·m-3. These optimal conditions were recorded at a current density of 15 mA cm-2 for a 120-min reaction period in the presence of 4 g·Na2SO4 L-1 using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L-1, COD <100 mg.L-1) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO3-17), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.
Collapse
Affiliation(s)
- Mahdieh Khajvand
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Patrick Drogui
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Hamed Arab
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rajeshwar Dayal Tyagi
- Research Centre for Eco-Environmental Engineering, Dongguan University of Technology, China; BOSK Bioproducts, Québec, Québec, Canada
| | - Emmanuel Brien
- Groupe Veos Inc, 1552 Rue Nationale, Terrebonne, Québec, J6W 6M1, Canada
| |
Collapse
|
3
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
4
|
Guo H, Zhao C, Xu H, Hao H, Yang Z, Li N, Xu W. Enhanced H 2O 2 formation and norfloxacin removal by electro-Fenton process using a surface-reconstructed graphite felt cathode: New insight into synergistic mechanism of defective active sites. ENVIRONMENTAL RESEARCH 2023; 220:115221. [PMID: 36610538 DOI: 10.1016/j.envres.2023.115221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The efficient catalytic activity and strong durability possibility of carbon-based three-dimensional fiber materials remains an important challenge in Electro-Fenton advanced oxidation technology. Graphite felt (GF) is a promising electrode material for 2-electron oxygen reduction reaction but with higher catalytic inertia. Anodizing modification of GF has been proved to enhance it electro-catalytic property, but the disadvantages of excessive or insufficient oxidation of GF need further improved. Herein, the surface reconstituted graphite felt by anodizing and HNO3 ultrasonic integrated treatment was used as cathode to degrade norfloxacin (NOR) and the substantial role of different modification processes was essentially investigated. Compared with the single modification process, the synergistic interaction between these two methods can generate more defective active sites (DASs) on GF surface and greatly improved 2-electron ORR activity. The H2O2 can be further co-activated by Fe2+ and DASs into •OH(ads and free) and •O2- to efficiently degrade NOR. The treated GF with 20 min anodizing and 1 h HNO3 ultrasound had the highest electrocatalytic activity in a wide electric potential (-0.4 V to -0.8 V) and pH range (3-9) in system and the efficient removal rate of NOR was basically maintained after 5 cycles. Under optimal reaction conditions, 50 mg L-1 NOR achieved 93% degradation and almost 63% of NOR was completely mineralized within 120 min. The possible NOR degradation pathways and ecotoxicity of intermediates were analyzed by LC-MS and T.E.S.T. theoretical calculation. This paper provided the underlying insights into designing a high-efficiency carbon-based cathode materials for commercial antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Hongkai Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Chengwen Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Hu Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Honglin Hao
- Gansu HaoShi Carbon Fiber Co., LTD, Baiyin, 730900, Gansu, China
| | - Ziyuan Yang
- Gansu HaoShi Carbon Fiber Co., LTD, Baiyin, 730900, Gansu, China
| | - Na Li
- Gansu HaoShi Carbon Fiber Co., LTD, Baiyin, 730900, Gansu, China
| | - Weijun Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
5
|
Fan L, Gong Y, Wan J, Wei Y, Shi H, Liu C. Flower-like molybdenum disulfide decorated ZIF-8-derived nitrogen-doped dodecahedral carbon for electro-catalytic degradation of phenol. CHEMOSPHERE 2022; 298:134315. [PMID: 35301999 DOI: 10.1016/j.chemosphere.2022.134315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
In this work, flower-like molybdenum disulfide was constructed on the surface of ZIF-8-derived nitrogen-doped dodecahedral carbon (ZNC) for the electrocatalytic degradation of phenol. The flower-like nanostructure of MoS2@ZNC contributed to the exposure of more edge-active sites of MoS2. At the same time, Mo4+ and Mo6+ co-existed in MoS2@ZNC, which promoted the generation of H2O2 and •OH, and improved the catalytic activity of composite materials. In addition, electrochemical performance analysis showed that MoS2 loaded on the surface of ZNC significantly improved the redox capacity of the material, and the composite ratio of MoS2 and ZNC affected the structure and properties of MoS2@ZNC composites. Moreover, the electrochemical performance of prepared MoS2@ZNC was evaluated by the generation of hydroxyl (•OH) and the degradation efficiency of phenol. The results showed that MoS2@ZNC-2 had an excellent phenol degradation efficiency (98.8%) and COD removal efficiency (86.8%) within 120 min. Furthermore, MoS2@ZNC cathode still maintained good performance after being experimented with 20 times, indicated the excellent stability of MoS2@ZNC.
Collapse
Affiliation(s)
- Lei Fan
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Yuguo Gong
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Jiafeng Wan
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Yuhan Wei
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Haolin Shi
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Chuntao Liu
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
6
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
7
|
Xiao Z, Cui T, Wang Z, Dang Y, Zheng M, Lin Y, Song Z, Wang Y, Liu C, Xu B, Ikhlaq A, Kumirska J, Siedlecka EM, Qi F. Energy-efficient removal of carbamazepine in solution by electrocoagulation-electrofenton using a novel P-rGO cathode. J Environ Sci (China) 2022; 115:88-102. [PMID: 34969480 DOI: 10.1016/j.jes.2021.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 06/14/2023]
Abstract
In this study, carbamazepine (CBZ) decay in solution has been studied by coupling electrocoagulation with electro-Fenton (EC-EF) with a novel P-rGO/carbon felt (CF) cathode, aiming to accelerate the in-situ generation of •OH, instead of adding Fe2+ and H2O2. Firstly, the fabricated P-rGO and its derived cathode were characterized by XRD, SEM, AFM, XPS and electrochemical test (EIS, CV and LSV). Secondly, it was confirmed that the performance in removal efficiency and electric energy consumption (EEC) by EC-EF (kobs=0.124 min-1, EEC=43.98 kWh/kg CBZ) was better than EF (kobs=0.069 min-1, EEC=61.04 kWh/kg CBZ). Then, P-rGO/CF (kobs=0.248 min-1, EEC=29.47 kWh/kg CBZ, CE=61.04%) showed the best performance in EC-EF, among all studied heteroatom-doped graphene/CF. This superior performance may be associated with its largest layer spacing and richest C=C, which can promote the electron transfer rate and conductivity of the cathode. Thus, more H2O2 and •OH could be produced to degrade CBZ, and almost 100% CBZ was removed with kobs being 0.337 min-1 and the EEC was only 24.18 kWh/kg CBZ, under the optimal conditions (P-rGO loading was 6.0 mg/cm2, the current density was 10.0 mA/cm2, the gap between electrode was 2.0 cm). Additionally, no matter the influent is acidic, neutral or alkaline, no additional pH adjustment is required for the effluent of EC-EF. At last, an inconsecutive empirical kinetic model was firstly established to predict the effect of operating parameters on CBZ removal.
Collapse
Affiliation(s)
- Zhihui Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tingyu Cui
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Meijie Zheng
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yixinfei Lin
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Bingbing Xu
- State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| | - Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ewa Maria Siedlecka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Li X, Wu D, Hua T, Lan X, Han S, Cheng J, Du KS, Hu Y, Chen Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150096. [PMID: 34798724 DOI: 10.1016/j.scitotenv.2021.150096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/24/2023]
Abstract
Advanced oxidation processes (AOPs) have demonstrated an effective wastewater treatment method. But the application of AOPs using nanomaterials as catalysts is challenged with a series of problems, including limited mass transfer, surface fouling, poor stability, and difficult recycling. Recently, metal-organic frameworks (MOFs) with high tunability and ultrahigh porosity are emerging as excellent precursors for the delicate design of the structure/composition of catalysts and many MOF-derived catalysts with distinct physicochemical characteristics have shown optimized performance in various AOPs. Herein, to elucidate the structure-composition-performance relationship, a review on the performance optimization of MOF-derived catalysts to overcome the existing problems in AOPs by micro/macrostructure and multicomponent design is given. Impressively, MOF-derived strategy for the design of catalyst materials from the aspects of microstructure, macrostructure, and multicomponent (polymetallic, heteroatom doping, M/C hybrids, etc.) is firstly presented. Moreover, important advances of MOF-derived catalysts in the application of various AOPs (Fenton, persulfate-based AOPs, photocatalysis, electrochemical processes, hybrid AOPs) are summarized. The relationship between the unique micro/macrostructure and/or multicomponent features and performance optimization in mass transfer, catalytic efficiency, stability, and recyclability is clarified. Furthermore, the challenges and future work directions for the practical application of MOF-derived catalysts in AOPs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Xiaoman Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danhui Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Hua
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiuquan Lan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaipeng Han
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Ke-Si Du
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Guo H, Xu H, Zhao C, Hao X, Yang Z, Xu W. High-effective generation of H2O2 by oxygen reduction utilizing organic acid anodized graphite felt as cathode. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Liu J, Jia J, Yu H, Zhang J, Li J, Ge H, Zhao Y. Graphite felt modified by nanoporous carbon as a novel cathode material for the EF process. NEW J CHEM 2022. [DOI: 10.1039/d2nj01679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoporous carbon prepared by carbonizing ZIF-8@MWCNTs can greatly improve the performance of graphite felt as an electro-Fenton cathode.
Collapse
Affiliation(s)
- Jiaman Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiping Jia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaqiang Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
11
|
Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of OH in metal-free EAOPs to degrade organic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Cui T, Xiao Z, Wang Z, Liu C, Song Z, Wang Y, Zhang Y, Li R, Xu B, Qi F, Ikhlaq A. FeS 2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117023. [PMID: 33823313 DOI: 10.1016/j.envpol.2021.117023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Carbamazepine (CBZ) decay by electro-Fenton (EF) oxidation using a novel FeS2/carbon felt (CF) cathode, instead of a soluble iron salt, was studied with the aim to accelerate the reaction between H2O2 and ferrous ions, which helps to produce more hydroxyl radicals (•OH) and eliminate iron sludge. First, fabricated FeS2 and its derived cathode were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Anodes were then screened, with DSA (Ti/IrO2-RuO2) showing the best performance under EF oxidation regarding CBZ degradation and electrochemical characterization. Several operating parameters of this EF process, such as FeS2 loading, current density, gap between electrodes (GBE), initial [CBZ], and electrolyte type, were also investigated. Accordingly, a nonconsecutive empirical kinetic model was established to predict changes in CBZ concentration under the given operational parameters. The contribution of different oxidation types to the EF process was calculated using kinetic analysis and quenching experiments to verify the role of the FeS2-modified cathode. The reaction contributions of anodic oxidation (AO), H2O2 electrolysis (EP), and EF oxidation to CBZ removal were 12.81%, 7.41%, and 79.77%, respectively. The •OH exposure of EP and EF oxidation was calculated, confirming that •OH exposure was approximately 22.45-fold higher using FeS2-modified CF. Finally, the 19 intermediates formed by CBZ degradation were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Accordingly, four CBZ degradation pathways were proposed. ECOSAR software was used to assess the ecotoxicity of intermediates toward fish, daphnia, and green algae, showing that this novel EF oxidation process showed good toxicity reduction performance. A prolonged EF retention time was proposed to be necessary to obtain clean and safe water, even if the targeted compound was removed at an earlier time.
Collapse
Affiliation(s)
- Tingyu Cui
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhihui Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bingbing Xu
- State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| |
Collapse
|
13
|
Wei Z, Xu H, Lei Z, Yi X, Feng C, Dang Z. A binder-free electrode for efficient H2O2 formation and Fe2+ regeneration and its application to an electro-Fenton process for removing organics in iron-laden acid wastewater. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Qiu S, Wang Y, Wan J, Ma Y, Yan Z, Yang S. Enhanced electro-Fenton catalytic performance with in-situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism. CHEMOSPHERE 2021; 273:130269. [PMID: 33773811 DOI: 10.1016/j.chemosphere.2021.130269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Heterogeneous electro-Fenton (E-F) is considered as an attractive technique for efficient removal of refractory organic pollutants in wastewater. The regeneration of FeII and catalyst reusability are key issues for effective and sustainable degradation. Developing binder-free iron phase/carbon composite cathode is a feasible strategy. In this work, the stable Ce/Fe-nanoporous carbon modified graphite felt electrode (Ce/Fe@NPC-GF) was fabricated using in situ solvothermal method and subsequent carbonization treatment, which worked as the cathode in a heterogeneous electro-Fenton system to degrade sulfamethoxazole. The electrocatalytic activity was significantly improved with doping of Ce. It was found that mesoporous Ce/Fe@NPC-GF cathode demonstrated high oxygen reduction activity and low resistance. The co-existence of FeⅡ/FeⅢ and CeⅢ/CeⅣ redox couples enhanced remarkably interfacial electron transfer, promoting in-situ H2O2 generation and decomposition, sequentially boosting the production of reactive radicals (·OH and ·O2-). Under 20 mA and pH 3, Sulfamethoxazole (SMX) was basically degraded in 120 min, and the removal rate was satisfactory in wide pH (2-6). After 8 cycles, the electrode could still maintain high stability and outstanding catalytic capacity. This work displayed a novel in-situ preparation method of composite cathode with excellent catalytic performance in E-F system, which offered inspiration for developing efficient heterogeneous electro-Fenton cathode material.
Collapse
Affiliation(s)
- Shuying Qiu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China.
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China.
| | - Zhicheng Yan
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Shou Yang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Chen Z, Lai W, Xu Y, Xie G, Hou W, Zhanchang P, Kuang C, Li Y. Anodic oxidation of ciprofloxacin using different graphite felt anodes: Kinetics and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124262. [PMID: 33213981 DOI: 10.1016/j.jhazmat.2020.124262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Ciprofloxacin (CIP) is ubiquitous in the environment which poses a certain threat to human and ecology. In this investigation, the physical and electrochemical properties of graphite felt (GF) anodes which affected the anodic oxidation (AO) performance, and the CIP removal effect of GF were evaluated. The GFs were used as anodes for detection of ·OH with coumarin (COU) as molecule probe and removal of CIP in a 150 mL electrolytic cell with Pt cathode (AO-GF/Pt system). The results showed that hydrophilic GF (B-GF) owned higher sp3/sp2 and more oxygen-containing and nitrogen-containing functional groups than the hydrophobic GF (A-GF). Moreover, B-GF possessed higher oxygen evolution potential (1.12 V), more active sites and stronger ·OH generation capacity. Above mentioned caused that B-GF exhibited more superior properties for CIP removal. The best efficiencies (96.95%, 99.83%) were obtained in the AO-B-GF/Pt system at 6.25 mAcm-2 after 10 min (k1, 0.356 min-1) and 60 min (k2, 0.224 min-1), respectively. Furthermore, nine degradation pathways of CIP in AO-B-GF/Pt system were summarized as the cleavage of the piperazine ring, cyclopropyl group, quinolone ring and F atom by ·OH. It provides new insights into the removal and degradation pathways of CIP with GF in AO system.
Collapse
Affiliation(s)
- Zhuoyao Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Waner Hou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Pan Zhanchang
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Karuppasamy K, Rabani I, Vikraman D, Bathula C, Theerthagiri J, Bose R, Yim CJ, Kathalingam A, Seo YS, Kim HS. ZIF-8 templated assembly of La 3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116018. [PMID: 33257147 DOI: 10.1016/j.envpol.2020.116018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh-B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh-B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh-B.
Collapse
Affiliation(s)
- K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Iqra Rabani
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - J Theerthagiri
- Centre of Excellence for Energy Research, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, 600119, India
| | - Ranjith Bose
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Chang-Joo Yim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - A Kathalingam
- Millimeter-Wave Innovation Technology Research Center (MINT), Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Soo Seo
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
17
|
Lu J, Ayele BA, Liu X, Chen Q. Electrochemical removal of RRX-3B in residual dyeing liquid with typical engineered carbonaceous cathodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111669. [PMID: 33234317 DOI: 10.1016/j.jenvman.2020.111669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Electro-catalytic activities of carbonaceous cathodes including graphite plate, graphite felt, carbon felt, activated carbon felt (ACF) and carbon fiber felt (CFF) for degradation of Reactive Red X-3B (RRX-3B) in residual dyeing liquid were compared. The best electrochemical performance was obtained using dimensional stable anode (DSA) and CFF cathode due to the higher capacity for electro-generation of H2O2 by selective two-electron oxygen reduction. The CFF/DSA electrolysis system realized 78.2% COD removal and complete decolorization over a wide pH range. The efficacy of RRX-3B degradation was found to be dependent on the nature of carbonaceous materials. Electrochemical measurements showed that CFF possessed higher electrochemical surface area and hydrogen evolution reaction over-potential. Furthermore, the intrinsic graphitic N in CFF was proved to be catalytic active site by DFT calculations. Reactive Red X-3B degradation intermediates with benzene structures and carboxylic acids via hydroxylation in RRX-3B oxidation were identified by GC-MS. It was found that S/Cl/N-containing groups in RRX-3B molecule were mineralized to SO42-, NO3- and Cl- ions in the electrolysis.
Collapse
Affiliation(s)
- Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Befkadu A Ayele
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
18
|
Electrocatalytic activities of engineered carbonaceous cathodes for generation of hydrogen peroxide and oxidation of recalcitrant reactive dye. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Yu T, Breslin CB. Graphene-Modified Composites and Electrodes and Their Potential Applications in the Electro-Fenton Process. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2254. [PMID: 32422892 PMCID: PMC7288041 DOI: 10.3390/ma13102254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
In recent years, graphene-based materials have been identified as an emerging and promising new material in electro-Fenton, with the potential to form highly efficient metal-free catalysts that can be employed in the removal of contaminants from water, conserving precious water resources. In this review, the recent applications of graphene-based materials in electro-Fenton are described and discussed. Initially, homogenous and heterogenous electro-Fenton methods are briefly introduced, highlighting the importance of the generation of H2O2 from the two-electron reduction of dissolved oxygen and its catalysed decomposition to produce reactive and oxidising hydroxy radicals. Next, the promising applications of graphene-based electrodes in promoting this two-electron oxygen reduction reaction are considered and this is followed by an account of the various graphene-based materials that have been used successfully to give highly efficient graphene-based cathodes in electro-Fenton. In particular, graphene-based composites that have been combined with other carbonaceous materials, doped with nitrogen, formed as highly porous aerogels, three-dimensional materials and porous gas diffusion electrodes, used as supports for iron oxides and functionalised with ferrocene and employed in the more effective heterogeneous electro-Fenton, are all reviewed. It is perfectly clear that graphene-based materials have the potential to degrade and mineralise dyes, pharmaceutical compounds, antibiotics, phenolic compounds and show tremendous potential in electro-Fenton and other advanced oxidation processes.
Collapse
Affiliation(s)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland;
| |
Collapse
|
20
|
Yu F, Wang L, Ma H, Pan Y. Zeolitic imidazolate framework-8 modified active carbon fiber as an efficient cathode in electro-Fenton for tetracycline degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116342] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|