1
|
Zhu J, Yu Z, Cao X, Jiang W, He L, Zang X, Song X. Double effects of mitigating cyanobacterial blooms using modified clay technology: regulation and optimization of the microbial community structure. Front Microbiol 2024; 15:1480069. [PMID: 39564487 PMCID: PMC11573764 DOI: 10.3389/fmicb.2024.1480069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Harmful algal blooms (HABs) are global hazards under global climate change and eutrophication conditions. Modified clay (MC) method is widely used to control HABs in Asian and American coastal waters. However, little research has been conducted on the underlying mechanisms by which MC controls blooms in freshwater environments. Herein, experiments and bioinformatics analyses were conducted for MC-based control of freshwater blooms in a closed water body with an area of approximately 240 m2 in the Fuchun River, China. Results revealed that the dominant bloom species were Microcystis, and an 87.68-97.01% removal efficiency of whole algal biomass was achieved after 3 h of MC treatment. The weaker zeta potentials of Microcystis species and hydrophilic groups such as O-H and P-O-P in the extracellular polymeric substances (EPS) surrounding Microcystis cells made them easier to be flocculated and removed by MC particles, and the relative abundance of Microcystis decreased to 29.12% and that of Cyanobium increased to 40.97%. Therefore, MC changes the cyanobacterial community structure, which is accompanied by the elimination of Microcystis sp. apical dominance and enhanced competition between Cyanobium and Microcystis in the phytoplankton community, increasing cyanobacterial community diversity. Under MC treatment, residual microorganisms, including cyanobacteria, had a high potential for DNA damage repair and were more likely to survive after being subjected to oxidative stress. In the meanwhile, the abundance of genes involved in genetic information processing, signal transduction, and photosynthesis was decreased indicating that the residual microbiome was week in proliferation and light energy harvesting. Therefore, accompanied with the destruction of Microcystis colonies, MC changes the function of cyanobacteria and phycosphere microbiome, further hindering bloom development. These findings illustrate that MC can regulate and optimize the microbial community structure through which MC controls cyanobacterial blooms in ecosystems.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbin Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiaomiao Zang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Feng L, Wang Y, Hou X, Qin B, Kuster T, Qu F, Chen N, Paerl HW, Zheng C. Harmful algal blooms in inland waters. NATURE REVIEWS. EARTH & ENVIRONMENT 2024; 5:631-644. [PMID: 39995947 PMCID: PMC11849997 DOI: 10.1038/s43017-024-00578-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 02/26/2025]
Abstract
Harmful algal blooms can produce toxins that pose threats to aquatic ecosystems and human health. In this Review, we outline the global trends in harmful algal bloom occurrence and explore the drivers, future trajectories and potential mitigation strategies. Globally, harmful algal bloom occurrence has risen since the 1980s, including a 44% increase from the 2000s to 2010s, especially in Asia and Africa. Enhanced nutrient pollution owing to urbanization, wastewater discharge and agricultural expansion are key drivers of these increases. In contrast, changes have been less substantial in high-income regions such as North America, Europe and Oceania, where policies to mitigate nutrient pollution have stabilized bloom occurrences since the 1970s. However, since the 1990s, climate warming and legacy nutrient pollution have driven a resurgence in toxic algal blooms in some US and European lakes, highlighting the inherent challenges in mitigating harmful blooms in a warming climate. Indeed, advancing research on harmful algal bloom dynamics and projections largely depends on effectively using data from multiple sources to understand environmental interactions and enhance modelling techniques. Integrated monitoring networks across various spatiotemporal scales and data-sharing frameworks are essential for improving harmful algal bloom forecasting and mitigation.
Collapse
Affiliation(s)
- Lian Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xuejiao Hou
- School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Tiit Kuster
- Estonian Marine Institute, University of Tartu, Tallinn, Estonia
| | - Fan Qu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hans W. Paerl
- Institute of Marine Sciences, Department of Earth, Marine and Environmental Sciences, UNC Chapel Hill, Morehead City, NC, USA
| | - Chunmiao Zheng
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| |
Collapse
|
3
|
Liu Z, Wan L, Zhang J, Bai D, Song C, Zhou Y, Shen H, Cao X. A novel strategy of bloom forming cyanobacteria Microcystis sp. in response to phosphorus deficiency: Using non-phosphorus lipids substitute phospholipids. HARMFUL ALGAE 2024; 138:102694. [PMID: 39244230 DOI: 10.1016/j.hal.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 09/09/2024]
Abstract
Despite significant reductions in phosphorus (P) loads, lakes still experience cyanobacterial blooms. Little is known regarding cellular P regulation in response to P deficiency in widely distributed bloom causing species such as Microcystis. In this study, we investigated changes in P containing and non-P lipids contents and their ratios concomitantly with the determinations of expression levels of genes encoding these lipids in cultural and field Microcystis samples. In the culture, the content of phosphatidylglycerol (PG) decreased from 2.1 μg g-1 in P replete control to 1.2 μg g-1 in P-deficient treatment, while non-P lipids, like sulfoquinovosyldiacylglycerol (SQDG) and monogalactosyldiacylglycerol (MGDG), increased dramatically from 13.6 μg g-1 to 142.3 μg g-1, and from 0.9 μg g-1 to 16.74 μg g-1, respectively. The expression of the MGDG synthesis gene, mgdE, also increased under low P conditions. Significant positive relationships between soluble reactive phosphorus (SRP) and ratios of P-containing lipids (PG) to non-P lipids, including SQDG, MGDG and digalactosyldiacylglycerol (DGDG) (P < 0.05) were observed in the field investigations. Both cultural and field data indicated that Microcystis sp. might increase non-P lipids proportion to lower P demand when suffering from P deficiency. Furthermore, despite lipid remodeling, photosynthetic activity remained stable, as indicated by comparable chlorophyll fluorescence and Fv/Fm ratios among cultural treatments. These findings suggested that Microcystis sp. may dominate in P-limited environments by substituting glycolipids and sulfolipids for phospholipids to reduce P demand without compromising the photosynthetic activity. This effective strategy in response to P deficiency meant a stricter P reduction threshold is needed in terms of Microcystis bloom control.
Collapse
Affiliation(s)
- Zhenghan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Lingling Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Jingjie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Dong Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Chunlei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Yiyong Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Hong Shen
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China; Donghu Experimental Station of Lake Ecosystems, institute of hydrobiology, Chinese Academy of Sciences, PR China
| | - Xiuyun Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China.
| |
Collapse
|
4
|
Wang M, Bian W, Qi X, He D, Lu H, Yang L. Cycles of solar ultraviolet radiation favor periodic expansions of cyanobacterial blooms in global lakes. WATER RESEARCH 2024; 255:121471. [PMID: 38503183 DOI: 10.1016/j.watres.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Global warming and eutrophication are known to increase the prevalence of cyanobacterial blooms, posing a severe threat to the ecological stability and sustainability of water bodies. The long-term (over an annual time frame) effect of UV radiation on cyanobacterial blooms in lakes are rarely discussed though the substantial effects of high-intensity UV radiation on the growth inhibition of marine phytoplankton were studied. Here, we employed the datasets on surface solar UV radiation, nitrogen and phosphorus concentrations, and the annual scales and frequencies of cyanobacterial blooms in lakes across long-term spatial scales to probe the relationship of UV radiation with cyanobacterial blooms. The results indicated that enhanced solar UV radiation may unintentionally stimulate cyanobacterial growth and favor the expansions of cyanobacterial blooms in lakes around the world. The fluctuating UV radiation significantly affects the annual scales of cyanobacterial blooms in both eutrophic and oligotrophic lakes. Solar UV radiation enhances the positive impact of rising phosphorus levels on cyanobacterial blooms because UV radiation prompts the synthesis of polyphosphate in cyanobacteria cells, which helps cyanobacteria to alleviate the stress of UV light. The scales of cyanobacterial blooms are significantly impacted by solar UV radiation intensities as opposed to the annual frequency of cyanobacterial blooms. Furthermore, solar UV radiation fluctuation with a 9-year period over a 14-year main cycles significantly affects the periodicities of cyanobacterial blooms in global lakes, which provides a basis for predicting the peak value of the scales of cyanobacterial blooms in lakes. These findings opened up new avenues of inquiry into the mechanism and management strategies of cyanobacterial blooms in lakes worldwide.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenbin Bian
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Di He
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hao Lu
- Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Shi T, Lure M, Zhang R, Liu Z, Hu Q, Liu J, Yang S, Jing L. Indole-3-acetic acid improves periphyton's resistance to ultraviolet-B: From physiological-biochemical properties and bacteria community to livestock-polluted water purification. ENVIRONMENTAL RESEARCH 2024; 246:118029. [PMID: 38160980 DOI: 10.1016/j.envres.2023.118029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Livestock-polluted water is a pressing water environmental issue in plateau pastoral regions, necessitating the adoption of eco-friendly solutions. Despite periphyton being a promising alternative, its efficacy is limited by the prevalence of intense ultraviolet radiation, particularly ultraviolet-B (UVB), in these regions. Therefore, this study employs molecular tools and small-scale trials to explore the crucial role of indole-3-acetic acid (IAA) in modulating periphyton characteristics and mediating nutrient removal from livestock-polluted water under UVB exposure. The results revealed that IAA augments periphyton's resilience to UVB stress through several pathways, including increasing periphyton's biomass, producing more extracellular polymeric substances (EPS), and enhancing antioxidant enzyme activities and photosynthetic activity of periphyton. Moreover, IAA addition increased periphyton's bacterial diversity, reshaped bacterial community structure, enhanced community stability, and elevated the R2 value of neutral processes in bacterial assembly from 0.257 to 0.651 under UVB. Practically, an IAA concentration of 50 mg/L was recommended. Small-scale trials confirmed the effectiveness of IAA in assisting UVB-stressed periphyton to remove nitrogen and phosphorus from livestock-polluted water, without the risk of nitrogen accumulation. These findings offer valuable insights into the protection of aquatic ecosystems in plateau pastoral regions based on periphyton property in an eco-friendly manner.
Collapse
Affiliation(s)
- Tianyu Shi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Maobulin Lure
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Run Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Zhiheng Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Qianming Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Jia Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional, Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Song Y, Li R, Song W, Tang Y, Sun S, Mao G. Microcystis spp. and phosphorus in aquatic environments: A comprehensive review on their physiological and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163136. [PMID: 37001662 DOI: 10.1016/j.scitotenv.2023.163136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Cyanobacterial blooms caused by eutrophication have become a major environmental problem in aquatic ecosystems worldwide over the last few decades. Phosphorus is a limiting nutrient that affects the growth of cyanobacteria and plays a role in dynamic changes in algal density and the formation of cyanobacterial blooms. Therefore, identifying the association between phosphorus sources and Microcystis, which is the most representative and harmful cyanobacteria, is essential for building an understanding of the ecological risks of cyanobacterial blooms. However, systematic reviews summarizing the relationships between Microcystis and phosphorus in aquatic environments are rare. Thus, this study provides a comprehensive overview of the physiological and ecological interactions between phosphorus sources and Microcystis in aquatic environments from the following perspectives: (i) the effects of phosphorus source and concentration on Microcystis growth, (ii) the impacts of phosphorus on the environmental behaviors of Microcystis, (iii) mechanisms of phosphorus-related metabolism in Microcystis, and (iv) role of Microcystis in the distribution of phosphorus sources within aquatic environments. In addition, relevant unsolved issues and essential future investigations (e.g., secondary ecological risks) have been highlighted and discussed. This review provides deeper insights into the relationship between phosphorus sources and Microcystis and can serve as a reference for the evaluation, monitoring, and effective control of cyanobacterial blooms.
Collapse
Affiliation(s)
- Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Ruikai Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Wenjia Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yulu Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Shuangyan Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guannan Mao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
8
|
Lai JL, Wang Y, Li ZG, Xi HL, Luo XG. Assessing the ecological risk of tritium and Carbon-14 discharge on cyanobacteria through metabolic profiling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121279. [PMID: 36791945 DOI: 10.1016/j.envpol.2023.121279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The ecological risk posed by tritium (T) and carbon-14 (C-14) discharge from nuclear accidents has gained attention. This study evaluated the toxic impact of T and C-14 (at a concentration of 37 kBq/L for 15 days) on the cyanobacteria (Synechococcus elongatus). The results showed that the assimilation efficiency of cyanobacteria was significantly higher for C-14 than T, and the intracellular C-14 activity reached 30.62-40.58 kBq/kg. T and C-14 exposure had no significant effect on cell proliferation but impacted photosynthesis and respiration. T exposure increased the content of Ca, Mg, Na, P, K, and Mn, while C-14 exposure primarily affected trace element absorption in cyanobacteria. 31, 27, and 58 different metabolites (DEMs) were identified under T, C-14, and combined exposure conditions. These DEMs were enriched in the amino acid biosynthesis pathway, and nitrogen assimilation was one of the crucial pathways affected by T and C-14 exposure. The absorption of mineral elements by cyanobacteria was influenced by the variation in metabolites in the ABC transporter pathway caused by T and C-14 exposure. Our findings provide insights into the metabolic response of cyanobacteria to T and C-14 exposure and will help to guide the ecological risk evaluation of nuclear accidents.
Collapse
Affiliation(s)
- Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
9
|
Xiao M, Burford MA, Wood SA, Aubriot L, Ibelings BW, Prentice MJ, Galvanese EF, Harris TD, Hamilton DP. Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiol Rev 2022; 46:fuac029. [PMID: 35749580 PMCID: PMC9629505 DOI: 10.1093/femsre/fuac029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, China
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, 7010, New Zealand
| | - Luis Aubriot
- Phytoplankton Physiology and Ecology Group, Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias; Universidad de la República, Montevideo, 11400, Uruguay
| | - Bas W Ibelings
- Department F.-A. Forel for Aquatic and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Geneva, 1290, Switzerland
| | - Matthew J Prentice
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Elena F Galvanese
- Laboratório de Análise e Síntese em Biodiversidade, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 81531-998, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 80060-140, Brazil
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, Lawrence, KS, 66047, United States
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
10
|
Anam GB, Guda DR, Ahn YH. Impact of melatonin on the hydrogen peroxide treatment efficacy in Microcystis aeruginosa: Cell growth, oxidative stress response, and gene transcription. CHEMOSPHERE 2022; 307:136036. [PMID: 36007744 DOI: 10.1016/j.chemosphere.2022.136036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A study was conducted to determine how melatonin (MLT), a growth regulator, affects Microcystis aeruginosa cell behaviour and how MLT exposed cells respond to hydrogen peroxide (H2O2) treatment. MLT promotes the growth, chl-a content, Fv/Fm values, and microcystins (MCs) production of M. aeruginosa at low concentrations of 1-2.5 μmol/L but suppresses the growth at high concentrations (5-10 μmol/L). The cellular and genetic responses of MLT pre-treated cells to H2O2 treatment were examined further. Further research found that the cells pre-treated with MLT were susceptible to a range of growth-promoting, inhibiting and lethal effects when exposed to higher levels of H2O2. A dose-dependent pattern was observed under conditions of 0.05-0.2 mmol/L H2O2 with 0.5-2.5 μmol/L MLT concentrations to different degrees. High doses of H2O2 (0.2 and 0.3 mmol/L) typically lead to cell lysis and release of MCs in 5.0 and 10 μmol/L MLT pre-treated cells. A decrease in SOD/CAT activities and an increase in MDA levels validated the growth reduction. Furthermore, higher cell lysis and release of intracellular MCs were observed when H2O2 was increased for 5-10 μmol/L MLT pre-treated cells. This led to a higher accumulation of extracellular MCs. The results provide insight into how MLT influences H2O2 damage and assist in identifying situations where H2O2 treatment of cyanobacterial blooms is most appropriate.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
| | - Dinneswara Reddy Guda
- Korea Center for Artificial Photosynthesis and Center for Nanomaterial, Sogang University, Seoul, 121-742, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
11
|
Wang M, Zhan Y, Chen C, Chen M, Zhu J, Jiang X, Yang Y, Lv X, Yin P, Zhang W, Yang L. Amplified cyanobacterial bloom is derived by polyphosphate accumulation triggered by ultraviolet light. WATER RESEARCH 2022; 222:118837. [PMID: 35870388 DOI: 10.1016/j.watres.2022.118837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial blooms appear more strongly, constantly and globally, yet the positive effect of surface solar ultraviolet radiation (UV) on cyanobacterial bloom in natural freshwater habitats is largely ignored. Here in-situ and laboratory studies were jointly designed to probe the mechanism of cyanobacterial bloom promoted by solar UV light. The results showed that solar UV light is a key trigger factor for the accumulation of total phosphorus, dissolved inorganic phosphorus and polyphosphate (polyP) in blooming cyanobacterial cells. The increase of UV dose induces polyP accumulation to result in the excessive phosphorus uptake of blooming cyanobacteria, which provides sufficient phosphorus for cyanobacterial growth in suitable environment. Solar UV light also can promote the contents of phycocyanin, allophycocyanin, and phycoerythrin, producing sufficient ATP by photosynthesis for polyP synthesis in cyanobacterial cells in lake enviroment. The frequent variations of UV irradiance exposure prompts cyanobacteria to absorb excessive phosphorus from suspended solid or sediment. Cyanobacterial intracellular phosphorus is accumulated for their growth. UV light promotes polyP accumulation in blooming cyanobacterial cells to avoid damage. The adsorption amount of phosphorus increases for exuberant growth and then more surface blooming cyanobacteria are exposed to UV light to absorb ample phosphorus. Thus, the positive feedback occurs in lake water bodies with abundant phosphorus. This amplified cycle of cyanobacterial density and phosphorus due to solar UV light in eutrophic water bodies is analogous to a triode to amplify visible photosynthesis by UV light as a base electric current in the energy flow process in lake environment, therefore, "Cyanobacterial Phosphorus Assimilation Ultraviolet Effect" is used to describe this phenomenon. A new explanation is provided for the continuing proliferating mechanism of cyanobacterial bloom. Besides, a new perspective appears on the outbreak of cyanobacterial blooms in natural eutrophic lake water bodies worldwide.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yixuan Zhan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Menggaoshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yicheng Yang
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 32611, United States
| | - Xueyan Lv
- Jiangsu Environmental Monitoring Center, Nanjing 210036, PR China
| | - Peng Yin
- Water Resource Service center of Jiangsu Province, Nanjing 214029, PR China
| | - Wei Zhang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Xu S, Lyu P, Zheng X, Yang H, Xia B, Li H, Zhang H, Ma S. Monitoring and control methods of harmful algal blooms in Chinese freshwater system: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56908-56927. [PMID: 35708805 DOI: 10.1007/s11356-022-21382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) are a worldwide problem with substantial adverse effects on the aquatic environment as well as human health, which have prompted researchers to study measures to stem and control them. Meanwhile, it is key to research and develop monitoring methods to establish early warning HABs. However, both the current monitoring methods and control methods have some shortcomings, making the field application limited. Thus, we need to improve current approaches for monitoring and controlling HABs efficiently. Based on the freshwater system features in China, we review various monitoring and control methods of HABs, summarize and discuss the problems with these methods, and propose the future development direction of monitoring and control HABs. Finally, we envision that it can combine physical, chemical, and biological methods to inhibit HAB expansion in the future, complementing each other with advantages. Further, we promise to establish a long-term strategy of controlling HABs with various algicidal bacteria co-cultivate for field applications in China. Efforts in studying algicidal bacteria must be increased to better control HABs and mitigate the risks of aquatic ecosystems and human health in China.
Collapse
Affiliation(s)
- Shengjun Xu
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ping Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoxu Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haijun Yang
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Bing Xia
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hui Li
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
13
|
Zhang X, Ai S, Wei J, Yang X, Huang Y, Hu J, Wang Q, Wang H. Biphasic effects of typical chlorinated organophosphorus flame retardants on Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113813. [PMID: 36068742 DOI: 10.1016/j.ecoenv.2022.113813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The potential accumulation of chlorinated organophosphorus flame retardants (Cl-OPFRs) in aquatic environments sparked interest in studying the effects of Cl-OPFRs on cyanobacterial blooms. In this work, two common Cl-OPFRs, tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate (TCEP), induced dose-dependent biphasic effect on bloom-forming M. aeruginosa. The hormetic response to low-dose Cl-OPFRs was associated with the upregulation of the type I NADH dehydrogenase (NDH-1) complex and its mediated cyclic electron transfer (CET) pathway, as reflected by a transient post-illumination increase in chlorophyll fluorescence, the dark reduction of P700+ and the change of NDH-1-related gene expression. The increased CET activity and carotenoid content jointly reduced the intracellular ROS production, facilitating cyanobacterial growth. Conversely, a higher concentration of both Cl-OPFRs induced severe inhibition of growth and photosynthetic oxygen-evolving activity through an imbalance between PSII and PSI. Toxic-dose Cl-OPFRs inhibited state transition and fixed cells into the State I with a higher PSII/PSI ratio, as indicated by chlorophyll fluorescence induction, 77 K fluorescence emission spectra and photosystem stoichiometry. The elevated PSII/PSI ratio created an imbalance between the two photosystems and eventually lead to ROS overproduction, which generate adverse effects on cell growth. This work provides important insights into the hormetic mechanism of Cl-OPFRs on Microcystis aeruginosa and their potential roles in harmful cyanobacteria blooms.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Sijie Ai
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jialu Wei
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Xu Yang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Yichen Huang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Haiying Wang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
| |
Collapse
|
14
|
Ren L, Huang J, Ding K, Wang Y, Yang Y, Zhang L, Wu H. Comparative Study of Algal Responses and Adaptation Capability to Ultraviolet Radiation with Different Nutrient Regimes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5485. [PMID: 35564879 PMCID: PMC9104955 DOI: 10.3390/ijerph19095485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Frequent outbreaks of harmful algal blooms (HABs) represent one of the most serious outcomes of eutrophication, and light radiation plays a critical role in the succession of species. Therefore, a better understanding of the impact of light radiation is essential for mitigating HABs. In this study, Chlorella pyrenoidosa and non-toxic and toxic Microcystis aeruginosa were mono-cultured and co-cultured to explore algal responses under different nutrient regimes. Comparisons were made according to photosynthetically active radiation (PAR), UV-B radiation exerted oxidative stresses, and negative effects on the photosynthesis and growth of three species under normal growth conditions, and algal adaptive responses included extracellular polymeric substance (EPS) production, the regulation of superoxide dismutase (SOD) activity, photosynthetic pigments synthesis, etc. Three species had strain-specific responses to UV-B radiation and toxic M. aeruginosa was more tolerant and showed a higher adaptation capability to UV-B in the mono-cultures, including the lower sensitivity and better self-repair efficiency. In addition to stable μmax in PAR ad UV-B treatments, higher EPS production and enhanced production of photosynthetic pigments under UV-B radiation, toxic M. aeruginosa showed a better recovery of its photosynthetic efficiency. Nutrient enrichment alleviated the negative effects of UV-B radiation on three species, and the growth of toxic M. aeruginosa was comparable between PAR and UV-B treatment. In the co-cultures with nutrient enrichment, M. aeruginosa gradually outcompeted C. pyrenoidosa in the PAR treatment and UV-B treatment enhanced the growth advantages of M. aeruginosa, when toxic M. aeruginosa showed a greater competitiveness. Overall, our study indicated the adaptation of typical algal species to ambient UV-B radiation and the stronger competitive ability of toxic M. aeruginosa in the UV-radiated waters with severer eutrophication.
Collapse
Affiliation(s)
- Lingxiao Ren
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Jing Huang
- Three Gorges Beijing Enterprises Nanjing Water Group Co., Ltd., Nanjing 210000, China;
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Yi Wang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China;
| | - Lijuan Zhang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Haoyu Wu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| |
Collapse
|
15
|
Ren L, Ding K, Hu Z, Wang H, Qi N, Xu W. Processes and mechanisms of phosphorus mobility among sediment, water, and cyanobacteria under hydrodynamic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9354-9368. [PMID: 34505238 DOI: 10.1007/s11356-021-16255-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) has an important role in eutrophication and it is essential to explore the processes and mechanisms of P mobility in natural waters. In this study, laboratory experiments were conducted to simulate the SW system (sediment and water) and SAW system (sediment, algae, and water) under four hydrodynamic intensity conditions (static control, 50 rpm, 125 rpm, and 200 rpm treatments), to investigate P mobility. Results in SW system showed that sediment was an important source of P for overlying water, and the released total P (TP) increased with stronger hydrodynamic intensity, when P associated with metal pools (redox-sensitive P [BD-P] and meta-oxides bound P [NaOH-P]) were the most unstable and easier to migrate into the overlying water. Stronger hydrodynamic disturbances could enhance the processes including sediment resuspension, dissolution of particles, and release of P, when P mobility had a close relationship with redox conditions near sediment-water interface (SWI). Therefore, the release of TP, BD-P, and NaOH-P from sediment increased and decreased in the control and 50-200 rpm treatments over time. In SAW system, the release of TP significantly increased from sediment comparing to SW system, and the growth of Microcystis aeruginosa could selectively enhance the release of BD-P, NaOH-P, and organic P (OP). Meanwhile, the released P from sediment was quickly accumulated by algal cells. The maximum accumulation ability of P by cells, the highest photosynthetic efficiency, and the best growth of M. aeruginosa were observed in 125 rpm treatment. But with excessively strong hydrodynamic intensity (200 rpm treatment), the accumulation ability of P and alkaline phosphatase activity (APA) of M. aeruginosa was suppressed, which might hinder algal utilization of P and inhibit algal growth. Overall, our findings demonstrated the patterns of P mobility in natural ecosystems and could contribute to the understanding of P cycling.
Collapse
Affiliation(s)
- Lingxiao Ren
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China.
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| | - Zhixin Hu
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| | - Ning Qi
- College of Environment and Resources, Chongqing Technology and Business University, 400067, Chongqing, People's Republic of China
| | - Wei Xu
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Anam GB, Guda DR, Ahn YH. Hormones induce the metabolic growth and cytotoxin production of Microcystis aeruginosa under terpinolene stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145083. [PMID: 33736237 DOI: 10.1016/j.scitotenv.2021.145083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Several organic compounds released into the aquatic environment have a detrimental impact on humans and other organisms. There is a lack of knowledge about natural hormones and herbicides on non-target organisms, including cyanobacteria. In this study, the response of Microcystis aeruginosa to four phytohormones, indole-3-acetic acid (IAA; 10-5), zeatin (ZT; 10-5), abscisic acid (ABA; 10-7), and brassinolide (BRL; 10-9 mol/L), exposed to terpinolene (TPN; (0.44, 0.88, 1.17, or 1.62 mmol/L) at the cellular and genetic levels were investigated. The results showed that TPN could inhibit the growth and photosynthetic activities and stimulate microcystins (MCs) of M. aeruginosa at various levels through the co-occurrence of oxidative stress, antioxidant defense activities, and an imbalance of the antioxidative system. Hormones played critical roles in the growth promotion and photosynthetic activity by enhancing the antioxidant defense mechanisms and MCs production of M. aeruginosa under TPN stress in both hormone and TPN dose-dependent manner. The growth performance and photosynthetic activities of M. aeruginosa were significant with IAA (p < 0.01) and BSL (p < 0.05) compared to ZT and ABA, as TPN concentrations increased. Hormones stimulated the MCs production significantly BSL (p < 0.05) at various levels and protected the cells against TPN-induced oxidative stress and expression of mcyB and mcyD genes involve in MCs synthesis. Our results indicated that hormone contamination in eutrophic lakes might increase the risk of Microcystis aeruginosa bloom and microcystin production with the TPN association.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Dinneswara Reddy Guda
- Korea Center for Artificial Photosynthesis and Center for Nanomaterial, Sogang University, Seoul 121-742, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
17
|
Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Wilson SR, Madronich S, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Aucamp PJ, Banaszak AT, Bornman JF, Bruckman LS, Byrne SN, Foereid B, Häder DP, Hollestein LM, Hou WC, Hylander S, Jansen MAK, Klekociuk AR, Liley JB, Longstreth J, Lucas RM, Martinez-Abaigar J, McNeill K, Olsen CM, Pandey KK, Rhodes LE, Robinson SA, Rose KC, Schikowski T, Solomon KR, Sulzberger B, Ukpebor JE, Wang QW, Wängberg SÅ, White CC, Yazar S, Young AR, Young PJ, Zhu L, Zhu M. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci 2021; 20:1-67. [PMID: 33721243 PMCID: PMC7816068 DOI: 10.1007/s43630-020-00001-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/31/2023]
Abstract
This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
Collapse
Affiliation(s)
- R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Maryland, USA
| | - C E Williamson
- Department of Biology, Miami University, Oxford, OH, USA
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA
| | - A F Bais
- Department of Physics, Laboratory of Atmospheric Physics, Aristotle University, Thessaloniki, Greece
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, México
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - L S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - S N Byrne
- The University of Sydney, School of Medical Sciences, Discipline of Applied Medical Science, Sydney, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - S Hylander
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - M A K Jansen
- School of BEES, Environmental Research Institute, University College Cork, Cork, Ireland
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water and Atmospheric Research, Lauder, New Zealand
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA
| | - R M Lucas
- National Centre of Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño, Spain
| | | | - C M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - K K Pandey
- Department of Wood Properties and Uses, Institute of Wood Science and Technology, Bangalore, India
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - T Schikowski
- IUF-Leibniz Institute of Environmental Medicine, Dusseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S-Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - C C White
- Bee America, 5409 Mohican Rd, Bethesda, MD, USA
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - P J Young
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - L Zhu
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| |
Collapse
|
18
|
Zhang H, Yan M, Huang T, Huang X, Yang S, Li N, Wang N. Water-lifting aerator reduces algal growth in stratified drinking water reservoir: Novel insights into algal metabolic profiling and engineering applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115384. [PMID: 32823043 DOI: 10.1016/j.envpol.2020.115384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Water-lifting aerator (WLA) which was developed by Professor Tinglin Huang at Xi'an University of Architecture and Technology, China has multi-functional water quality improvement that significantly inhibits the occurrence of harmful algal blooms (HABs) in deep drinking water reservoirs. However, the biological mechanism of WLA to the suppress algal growth has not been comprehensively understood. Here, the cellular mechanism that allows WLA to control HABs was explored based on the combination of both laboratory simulation and field investigation. Under simulated hydrodynamic conditions, the results showed that the cell density, chlorophyll a content, chlorophyll fluorescence parameters, and dehydrogenase activity in Microcystis aeruginosa all peaked under light conditions at 25 °C. The metabolic activity of M. aeruginosa varied significantly under low temperature at 6 °C and light conditions when cultured for 48 h. The extracellular organic matter (EOM) and intracellular organic matter (IOM) contents of M. aeruginosa were both resolved into three components. Moreover, the total fluorescence intensities from EOM and IOM both peaked under light conditions at 25 °C. The field investigation showed that the growth of algae was decreased significantly in Lijiahe drinking water reservoir with WLA application. The chlorophyll fluorescence parameters decreased significantly after vertical mixing, thereby indicating that the WLA weakened the photosynthetic ability and reduced the biological activity of algae in situ. In addition, the WLA significantly affected the vertical distribution of the phytoplankton community composition. Altogether, these results shed new lights on understanding the control of algal blooms by WLA in stratified drinking water reservoirs. WLA has broad prospect of engineering applications, which can control algal blooms of water supply resources in situ, therefore, reduce the content of disinfection by-products in drinking water treatment plants.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Miaomiao Yan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shangye Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Na Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
19
|
Acuña-Alonso C, Álvarez X, Lorenzo O, Cancela Á, Valero E, Sánchez Á. Assessment of water quality in eutrophized water bodies through the application of indexes and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138775. [PMID: 32339839 DOI: 10.1016/j.scitotenv.2020.138775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
It is essential to have tools that can be used to diagnose water resources. For this reason, this study sets out on the one hand to assess water quality in three reservoirs in Spain (Salas, A Baxe and Conchas) with Cyano-Habs problems through the application of water quality indexes: The National Sanitation Foundation Water Quality Index (NFSWQI), the General Quality Index (GQI), the Trophic State Index (TSI), and the Trophic Contamination Index (ICOTRO). On the other hand, it seeks to learn how parameters such as nitrogen and phosphorus influence the presence of cyanotoxin, specifically Microcystis aeruginosa. To that end, samples from the three reservoirs are cultured and physical-chemical parameters and the toxicity of the water are measured. The results show that Salas reservoir has the worst water quality rating (GQI is bad and NFSWQI medium), while As Conchas and A Baxe obtain very good figures for NFSWQI. This contrasts with the data obtained via the TSI of moderately eutrophic conditions for all three reservoirs, and hypereutrophic levels for As Conchas and A Baxe downstream. On the other hand, the toxicity analysis shows levels of 1.12 ± 0.06 μg/l microcystin-LR (MC-LR) for As Conchas, 0.64 ± 0.04 μg/l MC-LR for Salas, and 1.24 ± 0.05 μg/l MC-LR for A Baxe, of which 20% corresponds to free MC-LR. This study finds that nitrogen is the parameter that most favors the production of MC-LR. We conclude that the eutrophication indexes are more reliable when studying the presence of cyanobacteria. Furthermore, nitrogen and phosphorous are the most significant parameters in this regard. They are taken into account in the quality indices (GQI, NFSWI), but they are not sufficiently representative. It is recommended as a future line of research that water quality indices be adapted or designed to incorporate eutrophication levels and even water toxicity.
Collapse
Affiliation(s)
- Carolina Acuña-Alonso
- Department of Natural Resources Engineering and the Environment, School of Forestry Engineering, University of Vigo, Campus A Xunqueira s/n., 36005, Pontevedra, Spain.
| | - Xana Álvarez
- Department of Natural Resources Engineering and the Environment, School of Forestry Engineering, University of Vigo, Campus A Xunqueira s/n., 36005, Pontevedra, Spain.
| | - Olalla Lorenzo
- School of Forestry Engineering, University of Vigo, Campus A Xunqueira s/n, 36005, Pontevedra, Spain
| | - Ángeles Cancela
- Chemical Engineering Department, School of Forestry Engineering, University of Vigo, Campus Campus A Xunqueira s/n., 36005, Pontevedra, Spain.
| | - Enrique Valero
- Department of Natural Resources Engineering and the Environment, School of Forestry Engineering, University of Vigo, Campus A Xunqueira s/n., 36005, Pontevedra, Spain.
| | - Ángel Sánchez
- Chemical Engineering Department, Industrial Engineering College, University of Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Pontevedra, Spain.
| |
Collapse
|