1
|
Ding X, Gao F, Chen L, Zeng Z, Zhao X, Wang Y, Cui H, Cui B. Size-dependent Effect on Foliar Utilization and Biocontrol Efficacy of Emamectin Benzoate Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22558-22570. [PMID: 38637157 DOI: 10.1021/acsami.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique. The particle size of Micro-EB was 162 times that of spherical Nano-EB. The small size and large specific surface area of Nano-EB facilitated the adsorption of surfactants on the surface of the particles, thereby improving its dispersibility, suspensibility, and stability. The pinning effect of nanoparticles significantly suppressed droplet retraction and rebounding. Moreover, Nano-EB exhibited a 25% higher retention of the active ingredient on cabbage leaves and a 70% higher washing resistance than Micro-EB, and both were significantly different. The improvement of abilities in wetting, spreading, and retention of Nano-EB on crop leaves contributed to the increase in foliar utilization, which further resulted in a 1.6-fold enhancement of bioactivity against target Spodoptera exigua compared to Micro-EB. Especially, Nano-EB did not exacerbate the safety risk to the nontarget organism zebrafish with no significant difference. This study elaborates the size effect on the effectiveness and safety of pesticide formulations and lays a theoretical foundation for the development and rational utilization of efficient and environmentally friendly nanopesticides.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Long Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
3
|
Gu J, Guo L, Hu J, Ji G, Yin D. Potential adverse outcome pathway (AOP) of emamectin benzoate mediated cardiovascular toxicity in zebrafish larvae (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165787. [PMID: 37499828 DOI: 10.1016/j.scitotenv.2023.165787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Emamectin benzoate (EMB) is an efficient insecticide which widely used as an anthelmintic drug additive in aquaculture fish. However, its extensive use has resulted in widespread pollution in the aquatic environment. Previous studies have identified the potential developmental and neurotoxic effects of EMB, however, systematic studies pertaining to the cardiovascular toxic effects of EMB on fish are scarce. In this study, zebrafish embryos were exposed to EMB at concentrations of 0, 0.1, 0.25, 0.5, 1, 2, 4, and 8 mg/L for 3 days, aiming to investigate the cardiovascular toxic effects of EMB via examining morphology, cardiac function, and vascular development phenotypes. It revealed that EMB exposure led to marked deteriorated effects, including adverse effects on mortality, hatching rate, and general morphological traits, such as malformation, heart rate, body length, and eye area, in zebrafish embryos/larvae. Furthermore, EMB exposure resulted in abnormal cardiac function and vascular development, triggering neutrophil migration and aggregation toward the pericardial and dorsal vascular regions, and finalized apoptosis in the zebrafish heart region, these phenomena were further deciperred by the transcriptome analysis that the Toll-like receptor pathway, P53 pathway, and apoptotic pathway were significantly affected by EMB exposure. Moreover, the molecular docking and aspirin anti-inflammatory rescue assays indicated that TLR2 and TLR4 might be the potential targets of EMB. Taken together, our study provides preliminary evidence that EMB may induce apoptosis by affecting inflammatory signaling pathways and eventually lead to abnormal cardiovascular development in zebrafish. This study provides a simple toxicological AOP framework for safe pesticide use and management strategies.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Zhang L, Sheng C, Chen C, Luo J, Wu Z, Cao H. Ecofriendly polysaccharide-based alginate/pluronic F127 semi-IPN hydrogel with magnetic collectability for precise release of pesticides and sustained pest control. Int J Biol Macromol 2023; 251:126175. [PMID: 37558040 DOI: 10.1016/j.ijbiomac.2023.126175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Controlled-release systems are crucial for efficient pesticide utilization and environmental protection in agricultural production. The utilization of polysaccharide-based materials derived from biopolymers as carriers for controlling pesticide release holds significant potential. In this work, a reversible near infrared-responsive polysaccharide-based hydrogel (RNPH) was fabricated by employing a semi-interpenetrating polymer network (alginate-FeIII/pluronic F127) as a carrier to encapsulate Fe3O4@polydopamine (FP) and emamectin benzoate (EB)-loaded hollow mesoporous silica. The incorporation of FP into the RNPH introduced a photothermal effect, enabling the precise release of EB through reversible shrinkage of the hydrogel upon NIR irradiation. Additionally, the presence of magnetic Fe3O4 in the system facilitated the rapid removal of remaining RNPH from the environment using a magnet, reducing EB residue. Importantly, RNPH exhibited exceptional controlled-release performance and could be reused for at least 4 cycles. Furthermore, the anti-photolysis ability of EB protected by RNPH was enhanced by 4.8 times compared to EB alone. Moreover, RNPH significantly improved the adhesion of EB to foliar surfaces, thereby reducing the loss of EB while ensuring crop safety. Therefore, the polysaccharide-based hydrogel holds promise as a versatile carrier for the precise release of EB, offering valuable applications in enhancing pesticide bioavailability and promoting environmental safety.
Collapse
Affiliation(s)
- Lihong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Chengwang Sheng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, People's Republic of China; Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, People's Republic of China
| | - Jian Luo
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, People's Republic of China; Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, People's Republic of China.
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China.
| |
Collapse
|
5
|
Wang X, Zhang M, Zhang D, Yan Y, Liu Q, Xu C, Zhu Z, Wu S, Zong Y, Cao Z, Zhang Y. Emamectin benzoate exposure impaired porcine oocyte maturation. Theriogenology 2023; 206:123-132. [PMID: 37209432 DOI: 10.1016/j.theriogenology.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Emamectin benzoate (EB) is a widely used insecticide that can damage the central nervous and immune systems. EB exposure significantly reduced the number of eggs laid, hatching rate, and developmental rate of lower organisms such as nematodes. However, effects of EB exposure on the maturation of higher animals such as porcine oocytes remains unknown. Here we reported that EB exposure severely impaired porcine oocyte maturation. EB exposure with 200 μM prevented cumulus expansion and reduced the rates of first polar body (pb1) extrusion, cleavage and blastocyst after parthenogenetic activation. Moreover, EB exposure disrupted spindle organization, chromosome alignment, and polymerization of microfilaments, but also apparently decreased the levels of acetylated α-tubulin (Ac-Tub) in oocytes. In addition, EB exposure perturbed mitochondria distribution and increased levels of reactive oxygen species (ROS), but did not affect the distribution of cortical granules (CGs) in oocytes. Excessive ROS caused DNA damage accumulation and induced early apoptosis of oocytes. EB exposure led to the abnormal expression of cumulus expansion and apoptosis-associated genes. Altogether, these results demonstrate that EB exposure impaired nuclear and cytoplasmic maturation of porcine oocytes probably through oxidative stress and early apoptosis.
Collapse
Affiliation(s)
- Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mengya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Danruo Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yelian Yan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuchen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Changzhi Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhihua Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Sucheng Wu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yanfeng Zong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Xiao J, Liu Y, Jiang S, Wang H, Liu Y, Lin F, Liu T, Fang K, Liao M, Shi Y, Cao H. Incorporating Bioaccessibility into Inhalation Exposure Assessment of Emamectin Benzoate from Field Spraying. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7978-7988. [PMID: 37162498 DOI: 10.1021/acs.est.3c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The inhalation exposure of pesticide applicators and residents who live close to pesticide-treated fields is a worldwide concern in public health. Quantitative assessment of exposure to pesticide inhalation health risk highlights the need to accurately assess the bioaccessibility rather than the total content in ambient air. Herein, we developed an in vitro method to estimate the inhalation bioaccessibility of emamectin benzoate and validated its applicability using a rat plasma pharmacokinetic bioassay. Emamectin benzoate was extracted using the Gamble solution, with an optimized solid-to-liquid ratio (1/250), extraction time (24 h), and agitation (200 rpm), which obtained in vitro inhalation bioaccessibility consistent with its inhalation bioavailability in vivo (32.33%). The margin of exposure (MOE) was used to assess inhalation exposure risk. The inhalation unit exposures to emamectin benzoate of applicators and residents were 11.05-28.04 and 0.02-0.04 ng/m3, respectively, varying markedly according to the methods of application, e.g., formulations and nozzles. The inhalation risk assessment using present application methods appeared to be acceptable; however, the MOE of emamectin benzoate might be overestimated by 32% without considering inhalation bioaccessibility. Collectively, our findings contribute insights into the assessment of pesticide inhalation exposure based on bioaccessibility and provide guidance for the safe application of pesticides.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuanhui Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Han Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Tianhe Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| |
Collapse
|
7
|
Wei Z, Wang W, Feng H, Xu W, Tao L, Li Z, Zhang Y, Shao X. Investigation on the immunotoxicity induced by Emamectin benzoate on THP-1 macrophages based on metabolomics analysis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1053-1062. [PMID: 36896474 DOI: 10.1002/tox.23747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Emamectin benzoate (EMB) is an insecticide extensively used in agricultural area. Assessing the toxic effects of EMB in mammals or humans and its endogenous metabolites alteration are the appropriate means of evaluating its risks to human health. In the study, THP-1 macrophage, a human immune model, was applied to investigate the immunotoxicity of EMB. A global metabolomics approach was developed to analyze metabolic perturbation on macrophages and discover the potential biomarkers of EMB-induced immunotoxicity. The results indicated that EMB could inhibit immune functions of macrophages. Based on metabolomics analysis, our results illustrated that EMB caused significant alterations in metabolic profiles on macrophages. 22 biomarkers associated with immune response were screened by pattern recognition and multivariate statistical analysis. Furthermore, pathway analysis identified purine metabolism was the most relevant pathway in the metabolic process and the abnormal conversion of AMP to xanthosine regulated by NT5E might be a potential mechanism of immunotoxicity induced by EMB. Our study provides important insights for understanding and underlying mechanism of immunotoxicity exposed to EMB.
Collapse
Affiliation(s)
- Ziyi Wei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Lari S, Yamagani P, Pandiyan A, Vanka J, Naidu M, Senthil Kumar B, Jee B, Jonnalagadda PR. The impact of the use of personal-protective-equipment on the minimization of effects of exposure to pesticides among farm-workers in India. Front Public Health 2023; 11:1075448. [PMID: 37026139 PMCID: PMC10072124 DOI: 10.3389/fpubh.2023.1075448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Although excessive use of pesticides and unsafe agricultural practices may contribute to numerous intoxications, the role of PPE (personal-protective-equipment) in the minimization of toxicological effects due to pesticide exposure has not been addressed so far. The present study aimed to assess the impact of the use of PPE on the minimization of effects of exposure to pesticides among farm-workers. Methods A community-based follow-up study with questionnaire-based survey and field observations was undertaken among farm-workers (n = 180) of Rangareddy district, Telangana, India. Biomarkers of exposure such as cholinesterase activity, inflammatory markers (TNF-α, IL-1β, IL-6, cortisol, and hs-C reactive protein), nutrients (vitamins A, E), liver function (total protein and A/G ratio, AST and ALT levels) were investigated in the laboratory by following the standard protocols. Results Farm-workers who had a mean farming exposure of 18 years of and who neither followed safe pesticide handling practices nor used PPE and also showed reluctance to obey good agricultural practices (GAPs). Inhibition of AChE (acetylcholine esterase) with increased inflammation was found among farm-workers as compared to their respective normal values when they have not used PPE. Linear regression statistical analysis revealed a profound effect on inhibition in the AChE activity and various inflammatory markers with the increase in the duration of pesticide exposure. Further, there was no effect of the duration of pesticide exposure on the levels of vitamins A, E, ALT, AST, total protein, and A/G ratio. Further, intervention studies carried out on the use of PPE provided (commercially available and cost-effective) for 90 days showed a significant reduction in the biomarker levels (p < 0.01). Conclusion This study demonstrated the importance of the use of PPE during pesticide applications and other agricultural tasks to minimize pesticide-associated adverse health effects.
Collapse
Affiliation(s)
- Summaiya Lari
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
- Department of Biochemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Praveen Yamagani
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Arun Pandiyan
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Janardhan Vanka
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Mohan Naidu
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Padmaja R. Jonnalagadda
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
- *Correspondence: Padmaja R. Jonnalagadda
| |
Collapse
|
9
|
Xu Z, Li L, Bai J, Zhang Y, Min M, Ma W, Ma L. Transcriptome analysis of emamectin benzoate caused midgut damage by inducing oxidative stress, energy metabolism disorder and apoptosis in gypsy moth (Lymantria dispar). PEST MANAGEMENT SCIENCE 2022; 78:4628-4637. [PMID: 35861673 DOI: 10.1002/ps.7083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emamectin benzoate (EMB) is a semisynthetic bioinsecticide, which has been widely used in the control of forestry and agricultural pests. However, the mechanism of its toxic effects on the non-neural tissues has been rarely reported. Here, we explored the mechanism of the midgut damage induced by EMB in gypsy moth (Lymantria dispar) in order to better understand the toxicological mechanism of EMB. RESULTS Our results confirmed that EMB caused damage to the midgut of gypsy moth by inducing apoptosis. Transcriptome showed that 1469, 650 and 950 genes were significantly differentially expressed in the midgut of gypsy moth after 24, 48 and 72 h of EMB exposure, and oxidative stress, energy metabolism disorder and apoptosis may be related to the toxic effects of EMB. The indicators related to oxidative stress, energy metabolism and apoptosis were further examined. The results showed that EMB could cause oxidative stress by increasing ROS level and inhibiting antioxidant enzymes (P < 0.05), such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), which in turn causes mitochondria injury. Subsequently, energy metabolism was inhibited by downregulating the activities and mRNA level of energy metabolism enzymes. Furthermore, the mitochondrial apoptosis pathway was activated, triggering apoptosis, and eventually causing midgut injury in gypsy moth. CONCLUSION Our results indicated that EMB caused damage to midgut by inducing oxidative stress, energy metabolism disorder and apoptosis in gypsy moth. Our findings shed new light on the toxicological mechanism of EMB on non-neural tissues from oxidative stress, energy metabolism and apoptosis perspectives. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yue Zhang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Mengru Min
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
10
|
Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms232012402. [PMID: 36293259 PMCID: PMC9604036 DOI: 10.3390/ijms232012402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.
Collapse
|
11
|
Organic food preferences: A Comparison of American and Indian consumers. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Lu J, Wang W, Xu W, Zhang C, Zhang C, Tao L, Li Z, Zhang Y. Induction of developmental toxicity and cardiotoxicity in zebrafish embryos by Emamectin benzoate through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154040. [PMID: 35196543 DOI: 10.1016/j.scitotenv.2022.154040] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Emamectin benzoate (EMB) is a widely used pesticide in agriculture, but its potential risks to the environment and health have not been fully evaluated. In this study, we evaluated the toxicity of Emamectin benzoate using zebrafish model, and found that it affected early embryonic development, such as malformations and delayed hatching. Mechanistically, Emamectin benzoate increased oxidative stress by excessive production of reactive oxygen species (ROS) and abnormal activities of the antioxidant enzymes. Moreover, Emamectin benzoate exposure caused abnormalities in zebrafish heart morphology and function, such as long SV-BA distance and slow heart rate. Alterations were induced in the transcription of heart development-related genes (nkx2.5, tbx5, gata4 and myl7). In summary, our data showed that Emamectin benzoate induces developmental toxicity and cardiotoxicity in zebrafish. Our research provides new evidence on the Emamectin benzoate's toxicity and potential risk in human health.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenggong Zhang
- Institute of Forensic Science Shanghai Municipal Public Security Bureau, Shanghai Municipal Bureau of Public Security, Shanghai 200437, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Mobeen A, Khan QM, Ishrat I, Awan FR, Mansoor S. Toxicity assessment of emamectin benzoate and its commercially available formulations in Pakistan by in vivo and in vitro assays. Food Chem Toxicol 2022; 165:113139. [PMID: 35598805 DOI: 10.1016/j.fct.2022.113139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Emamectin benzoate (EMB) is generally considered a safe insecticide in agriculture and veterinary practices, yet, it can cause cytotoxic and genotoxic effects. Hence, the aim of this study was to evaluate toxic effects of 80% EMB and its commercially used formulations (Tycon 1.9% EC and Tycon plus 5% EW) in Pakistan and tested for acute toxicity in albino rats, rabbits and fish (Labeo rohita). Genotoxicity was investigated by in vivo comet assay and bone marrow micronucleues test in the rats. In vitro mutagenicity was tested in Salmonella typhimurium TA98 and TA100. The tested EMB formulations were found moderately toxic (oral LD50: 122-168 mg/kg), causing severe eye irritation in rabbits, highly toxic to fish (LC50: 9-43 μg/L) and found non mutagenic. Oral administrations of EMB (80% and 5%) at 100 mg/kg of body weight to male rats reduced red blood cells, hemoglobin, and slightly increased the blood glucose, urea and liver enzymes levels but had no significant damage to DNA. EMB induced bone marrow toxicity was observed as reduction of polychromatic erythrocytes. Overall, EMB exposure was highly toxic to fish, and caused hemo- and hepatotoxicity in rats. These findings warrant cautious use of EMB formulations in agrochemicals and veterinary medicine.
Collapse
Affiliation(s)
- Ameena Mobeen
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| | - Qaiser M Khan
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| | - Iqra Ishrat
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan; Hefei National Laboratory / University of Science & Technology of China, Hefei, China
| | - Fazli Rabbi Awan
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| |
Collapse
|
14
|
Influence of Altruistic Motives on Organic Food Purchase: Theory of Planned Behavior. SUSTAINABILITY 2021. [DOI: 10.3390/su13116023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marketing campaigns of organic food emphasize utilitarian benefits and psychological benefits as well as consumer culture to enhance environmental sustainability. In order to study the purchase intention of organic food, the authors developed a model using antecedents like warm glow, subjective norm, attitude and perceived behavioral control. This study examines the model for the Indian and the USA samples and thus integrated using three theories: Theory of Planned Behavior (TPB), Pro-Social Behavior (PSB) Theory with the interaction of Consumer Culture Theory. The model is estimated using the multi-group Partial Least Square Structural Equation Modeling (PLS-SEM) technique using R software with samples from India (n = 692) and the USA (n = 640). Results differ for Indian and USA samples. The expectation of the “warm glow” resulted from an environmentally friendly purchase as having a higher influence on Indian samples than that of the USA. Further, the attitude towards organic food purchase intention is stronger for US samples than the Indian, and the group difference is significant, while all the relationships that take warm glow as an antecedent have higher β for Indian samples. Moreover, the study found that attitude towards organic food is a major element for US subsamples, whereas subjective norm plays a major role in Indian samples to adopt organic food. Managerially, the present study suggests that a firm marketing its organic food must concentrate more on “warm glow” for Indian consumers in order to improve their market share.
Collapse
|
15
|
Aniwanou CTS, Sinzogan AAC, Deguenon JM, Sikirou R, Stewart DA, Ahanchede A. Bio-Efficacy of Diatomaceous Earth, Household Soaps, and Neem Oil against Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae in Benin. INSECTS 2020; 12:18. [PMID: 33383724 PMCID: PMC7823957 DOI: 10.3390/insects12010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022]
Abstract
Spodoptera frugiperda was first reported in Africa in 2016 and has since become a serious threat to maize/cereal production on the continent. Current control of the pest relies on synthetic chemical insecticides, which can negatively impact the environment and promote the development of resistance when used indiscriminately. Therefore, great attention is being paid to the development of safer alternatives. In this study, several biorational products and a semi-synthetic insecticide were evaluated. Two household soaps ("Palmida" and "Koto") and a detergent ("So Klin") were first tested for their efficacy against the larvae under laboratory conditions. Then, the efficacy of the most effective soap was evaluated in field conditions, along with PlantNeem (neem oil), Dezone (diatomaceous earth), and Emacot 19 EC (emamectin benzoate), in two districts, N'Dali and Adjohoun, located, respectively, in northern and southern Benin. The soaps and the detergent were highly toxic t second-instar larvae with 24 h lethal concentrations (LC50) of 0.46%, 0.44%, and 0.37% for So Klin, Koto, and Palmida, respectively. In field conditions, the biorational insecticides produced similar or better control than Emacot 19 EC. However, the highest maize grain yields of 7387 and 5308 kg/ha were recorded, respectively, with Dezone (N'Dali) and Emacot 19 EC (Adjohoun). A cost-benefit analysis showed that, compared to an untreated control, profits increased by up to 90% with the biorational insecticides and 166% with Emacot 19 EC. Therefore, the use of Palmida soap at 0.5% concentration, neem oil at 4.5 L/ha, and Dezone at 7.5 kg/ha could provide an effective, environmentally friendly, and sustainable management of S. frugiperda in maize.
Collapse
Affiliation(s)
- Crépin T. S. Aniwanou
- Laboratoire d’Entomologie Agricole (LEAg), Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 01 B.P. 526 Cotonou, Benin;
| | - Antonio A. C. Sinzogan
- Laboratoire d’Entomologie Agricole (LEAg), Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 01 B.P. 526 Cotonou, Benin;
| | - Jean M. Deguenon
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA;
| | - Rachidatou Sikirou
- Laboratoire de Défense des Cultures (LDC), Centre de Recherches Agricoles d’Agonkanmey, Institut National des Recherches Agricoles du Bénin (INRAB), 01 B.P. 884 Cotonou, Benin;
| | | | - Adam Ahanchede
- Laboratoire de Biologie Végétale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 01 B.P. 526 Cotonou, Benin;
| |
Collapse
|
16
|
Liu N, Yang Y, Chen J, Jia H, Zhang Y, Jiang D, Wu G, Wu Z. 3-Acetyldeoxynivalenol induces lysosomal membrane permeabilization-mediated apoptosis and inhibits autophagic flux in macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114697. [PMID: 32454357 DOI: 10.1016/j.envpol.2020.114697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
3-Acetyldeoxynivalenol (3-Ac-DON), the acetylated derivative of deoxynivalenol (DON), has been reported to be coexisted with DON in various cereal grains. Ingestion of grain-based food products contaminated by 3-Ac-DON might exert deleterious effects on the health of both humans and animals. However, the biological toxicity of 3-Ac-DON on macrophages and the underlying mechanisms remain largely unknown. In the present study, we showed that RAW 264.7 macrophages treated with 0.75 or 1.50 μg/mL of 3-Ac-DON resulted in DNA damage and the related cell cycle arrest at G1 phase and cell death, activation of the ribotoxic stress and the endoplasmic reticulum (ER) stress responses. The 3-Ac-DON-induced cell death was accompanied by a protective autophagy, because gene silencing of Atg5 using the small interfering RNA enhanced cell death. Results of further experiments revealed a role for lysosomal membrane permeabilization in the 3-Ac-DON triggered inhibition of autophagic flux. Additional work also showed that increased lysosomal biogenesis and leakage of cathepsin B (CTSB) from lysosomes to cytosol was critical for the 3-Ac-DON-induced cell death. Importantly, 3-Ac-DON-induced DNA damage and cell death were rescued by CA-074-me, a CTSB inhibitor. Collectively, these results indicated a critical role of lysosomal membrane permeabilization in the 3-Ac-DON-induced apoptosis of RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Da Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China; Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Temiz Ö. Biopesticide emamectin benzoate in the liver of male mice: evaluation of oxidative toxicity with stress protein, DNA oxidation, and apoptosis biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23199-23205. [PMID: 32333357 DOI: 10.1007/s11356-020-08923-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Emamectin benzoate (EMB), which is used as a pesticide in agriculture, household, and veterinary medicine, can cause tissue damage with oxidative toxicity and can be considered as inducing apoptosis. In the present study, male mice were conducted by oral administration in EMB doses 25, 50, and 100 (mg/kg/day) for 14 days. Glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) levels using spectrophotometric methods were measured. 8-hydroxy-2'-deoxyguanosine (8-OHdG) which is DNA oxidation biomarker and, stress protein (HSP70) levels, caspase 3 enzyme activities were measured by ELISA techniques. This study shows that in vivo administration of EMB caused a marked induction of oxidative damage in liver tissue as demonstrated by an increased level of TBARS and reduced GSH level. The increase in HSP70 level did not prevent the apoptosis caused by the increase of caspase 3 enzyme activity. Toxicity caused by EMB also showed the formation of genotoxicity with an increase in DNA oxidation biomarker 8-OHdG levels. As a result of the study, the effects of toxicity caused by EMB on lipid; protein; and DNA, structural macromolecules in cells, and the importance of enzymatic and non-enzymatic bonds of the cell's protective systems were determined. Consequently, under experimental conditions, EMB exposure caused toxicity in the liver of male mice, and significant adverse effects were determined with biomarkers.
Collapse
Affiliation(s)
- Özge Temiz
- Department of Biology, Faculty of Science and Letters, University of Cukurova, Adana, Turkey.
| |
Collapse
|