1
|
Li W, Qiu H, van Gestel CAM, Peijnenburg WJGM, He E. Trophic Transfer and Toxic Potency of Rare Earth Elements along a Terrestrial Plant-Herbivore Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5705-5715. [PMID: 38460143 DOI: 10.1021/acs.est.3c09179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.
Collapse
Affiliation(s)
- Wenxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333 CC, The Netherlands
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Revel M, Medjoubi K, Charles S, Hursthouse A, Heise S. Mechanistic analysis of the sub chronic toxicity of La and Gd in Daphnia magna based on TKTD modelling and synchrotron X-ray fluorescence imaging. CHEMOSPHERE 2024; 353:141509. [PMID: 38403125 DOI: 10.1016/j.chemosphere.2024.141509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The release of lanthanides (Ln) into the environment has increased in recent decades due to their expanding applications in society. Studying their toxicity in aquatic ecosystems is urgent and challenging, with contradictory evidence presented in the literature. This study compared the biodistribution of La and Gd in Daphnia magna exposed to sub-chronic conditions and developed the first Toxicokinetic-Toxicodynamic (TKTD) model for these lanthanides with this model crustacean. D. magna were initially exposed for 7 days to concentrations close to the LC50 of La (2.10 mg L-1) and Gd (1.70 mg L-1). After exposure, half of the live daphnids were introduced in a clean media to allow depuration over 24 h, while the other organisms were directly prepared for synchrotron imaging measurements. Synchrotron X-ray fluorescence analysis revealed that metal distribution in the organisms was similar for both La and Gd, predominantly localized in the intestinal tract, even after the depuration process. These results indicate that ingested metal can adversely affect organisms under sub-chronic exposure conditions, highlighting the importance of using nominal concentrations as a more suitable indicator of metal bioavailability for risk assessment. The General Unified Threshold Model of Survival (GUTS) TKTD framework, in its reduced form (GUTS-RED), was developed for La and Gd using dissolved and nominal concentrations. D. magna were exposed for 7 days to concentrations from 0.5 to 5 mg L-1 of La or Gd and mortality monitored daily. The mechanistic model revealed a faster toxicokinetics for La than Gd and a higher toxicity for Gd than La in the organism. This study confirmed, despite similar chemical properties, the variation in both toxicity and toxicokinetics between these two metals.
Collapse
Affiliation(s)
- Marion Revel
- Faculty of Life Sciences, Hamburg University of Applied Science, Ulmenliet 20, D-21033 Hamburg, Germany; University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Kadda Medjoubi
- SOLEIL Synchrotron, L'Orme des Merisiers, Dptale 128, 91190 Saint-Aubin, France
| | - Sandrine Charles
- University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex, 69622, France
| | | | - Susanne Heise
- Faculty of Life Sciences, Hamburg University of Applied Science, Ulmenliet 20, D-21033 Hamburg, Germany
| |
Collapse
|
3
|
Li W, He E, Van Gestel CAM, Peijnenburg WJGM, Li Y, Liu M, Li Y, Li X, Qiu H. A toxicokinetics approach using Enchytraeus crypticus to evaluate the efficiency of hydroxyapatite to remediate soils contaminated with rare earth elements. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132487. [PMID: 37690204 DOI: 10.1016/j.jhazmat.2023.132487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Extensive rare earth element (REE) mining activities pose threats to agricultural soils surrounding the mining areas. Here, low and high REE-contaminated soils from farmlands around mine tailings were remediated with hydroxyapatite. A toxicokinetic approach was applied to assess whether the use of hydroxyapatite reduced the bioavailability of REEs and thus inhibited their accumulation in the terrestrial organism Enchytraeus crypticus. Our results showed that addition of hydroxyapatite increased soil pH, DOC and anion contents. CaCl2-extractable REE concentrations significantly decreased, indicating the stabilization by hydroxyapatite. The influence of hydroxyapatite on the REE accumulation in enchytraeids was quantified by fitting a toxicokinetic model to dynamic REE body concentrations. The estimated uptake (Ku) and elimination rate constants (Ke), and bioaccumulation factor (BAF) for REEs were in the range of 0.000821 - 0.122 kgsoil/kgworm day-1, 0.0224 - 0.136 day-1, and 0.00135 - 1.96, respectively. Both Ku and BAF were significantly reduced by over 80% by hydroxyapatite addition, confirming the decreased REE bioavailability. Low atomic number REEs had higher BAFs in slightly contaminated soil, suggesting a higher bioaccumulation potential of light REEs in soil organisms. Overall, chemical stabilization with amendments can attenuate the bioavailability of REEs and reduce the potential ecological risk of contaminated agricultural soils near REE mining areas.
Collapse
Affiliation(s)
- Wenxing Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333 CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, the Netherlands
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Wan Q, Liu B, Zhang M, Zhao M, Dai Y, Liu W, Ding K, Lin Q, Ni Z, Li J, Wang S, Jin C, Tang Y, Qiu R. Co-transport of biochar nanoparticles (BC NPs) and rare earth elements (REEs) in water-saturated porous media: New insights into REE fractionation. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131390. [PMID: 37060752 DOI: 10.1016/j.jhazmat.2023.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The present study investigated the co-transport behavior of three REEs3+ (La3+, Gd3+, and Yb3+) with and without biochar nanoparticles (BC NPs) in water-saturated porous media. The presence of REEs3+ enhanced the retention of BC NPs in quartz sand (QS) due to decreased electrostatic repulsion between BC NPs and QS, enhanced aggregation of BC NPs, and the contribution of straining. The distribution coefficients (KD) in packed columns in the co-transport of BC NPs and three REEs3+ were much smaller than in batch experiments due to the different hydrodynamic conditions. In addition, we, for the first time, found that REE fractionation in the solid-liquid phase occurred during the co-transport of REEs3+ in the presence and absence of BC NPs. Note that the REE fractionation during the co-transport, which is helpful for the tracing application during earth surface processes, was driven by the interaction of REEs3+ with QS and BC NPs. This study elucidates novel insights into the fate of BC NPs and REEs3+ in porous media and indicates that (i) mutual effects between BC NPs and REE3+ should be considered when BC was applied to REE contaminated aquatic and soil systems; and (ii) REE fractionation provides a useful tool for identifying the sources of coexisting substances.
Collapse
Affiliation(s)
- Quan Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Beibei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Man Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenshen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zheng B, Zhang YW, Geng Y, Wei W, Tan X, Xiao S, Gao Z. Measuring the anthropogenic cycles of light rare earths in China: Implications for the imbalance problem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163215. [PMID: 37011686 DOI: 10.1016/j.scitotenv.2023.163215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Light rare earth elements (LREEs) are of strategic importance for low carbon transition and decarbonization. However, the imbalance between LREEs exists and a systematic understanding of their flows and stocks is lacking, which impedes the attainment of resources efficiency and exacerbates the environmental burdens. This study examines the anthropogenic cycles and the imbalance problem of three representative LREEs in China, the largest LREEs producer in the world, including cerium (the most abundant), neodymium and praseodymium (the fastest demand-growing). We find that 1) from 2011 to 2020, the total consumption of Nd and Pr increased by 228 % and 223 %, respectively, mainly attributed to the increasing demand of NdFeB, whereas that of Ce increased by 157 %; 2) the supply insufficiency of Nd and Pr under the current quota system accumulated to 138,086 tons and 35,549 tons, respectively, while the oversupply of Ce reached 63,523 tons; and 3) China has become a net importer of LREEs concentrates, and a net exporter of LREEs in the form of intermediate and final products, imposing further burdens to the domestic environment. It is clear that the imbalance of LREEs occurred during the study period, raising urgent needs to adjust the LREEs production quotas, seek other Ce applications, and eliminate illegal mining.
Collapse
Affiliation(s)
- Biao Zheng
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Pudong New Area, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Yuquan W Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Pudong New Area, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Yong Geng
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Wendong Wei
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China
| | - Xueping Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; School of Economics and Management, China University of Mining & Technology, No.1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Shijiang Xiao
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China
| | - Ziyan Gao
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
6
|
Yuan Y, Wang X, Ge J, Jiang W, Li Z, Wang Z, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. Developmental immunotoxicity of maternal exposure to yttrium nitrate on BALB/c offspring mice. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37102272 DOI: 10.1002/tox.23820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Yttrium is a typical heavy rare earth element with widespread use in numerous sectors. Only one previous study has indicated that yttrium has the potential to cause developmental immunotoxicity (DIT). Therefore, there remains a paucity of evidence on the DIT of yttrium. This study aimed to explore the DIT of yttrium nitrate (YN) and the self-recovery of YN-induced DIT. Dams were treated with 0, 0.2, 2, and 20 mg/kg bw/day YN by gavage during gestation and lactation. No significant changes were found in innate immunity between the control and YN-treated groups in offspring. In female offspring at postnatal day 21 (PND21), YN markedly inhibited humoral and cellular immune responses, the proliferative capacity of splenic T lymphocytes, and the expression of costimulatory molecules in splenic lymphocytes. Moreover, the inhibitory effect on cellular immunity in female offspring persisted to PND42. Unlike females, YN exposure did not change the adaptive immune responses in male offspring. Overall, maternal exposure to YN showed a strong DIT to offspring, with the lowest effective dose of 0.2 mg/kg in the current study. The toxicity of cellular immunity could persist throughout development into adulthood. There were sex-specific differences in YN-induced DIT, with females being more vulnerable.
Collapse
Affiliation(s)
- Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Zekang Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Zhenyu Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
7
|
Wu J, Sun J, Bosker T, Vijver MG, Peijnenburg WJGM. Toxicokinetics and Particle Number-Based Trophic Transfer of a Metallic Nanoparticle Mixture in a Terrestrial Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2792-2803. [PMID: 36747472 DOI: 10.1021/acs.est.2c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we investigated to which extent metallic nanoparticles (MNPs) affect the trophic transfer of other coexisting MNPs from lettuce to terrestrial snails and the associated tissue-specific distribution using toxicokinetic (TK) modeling and single-particle inductively coupled plasma mass spectrometry. During a period of 22 days, snails were fed with lettuce leaves that were root exposed to AgNO3 (0.05 mg/L), AgNPs (0.75 mg/L), TiO2NPs (200 mg/L), and a mixture of AgNPs and TiO2NPs (equivalent doses as for single NPs). The uptake rate constants (ku) were 0.08 and 0.11 kg leaves/kg snail/d for Ag and 1.63 and 1.79 kg leaves/kg snail/d for Ti in snails fed with NPs single- and mixture-exposed lettuce, respectively. The elimination rate constants (ke) of Ag in snails exposed to single AgNPs and mixed AgNPs were comparable to the corresponding ku, while the ke for Ti were lower than the corresponding ku. As a result, single TiO2NP treatments as well as exposure to mixtures containing TiO2NPs induced significant biomagnification from lettuce to snails with kinetic trophic transfer factors (TTFk) of 7.99 and 6.46. The TTFk of Ag in the single AgNPs treatment (1.15 kg leaves/kg snail) was significantly greater than the TTFk in the mixture treatment (0.85 kg leaves/kg snail), while the fraction of Ag remaining in the body of snails after AgNPs exposure (36%) was lower than the Ag fraction remaining after mixture exposure (50%). These results indicated that the presence of TiO2NPs inhibited the trophic transfer of AgNPs from lettuce to snails but enhanced the retention of AgNPs in snails. Biomagnification of AgNPs from lettuce to snails was observed in an AgNPs single treatment using AgNPs number as the dose metric, which was reflected by the particle number-based TTFs of AgNPs in snails (1.67, i.e., higher than 1). The size distribution of AgNPs was shifted across the lettuce-snail food chain. By making use of particle-specific measurements and fitting TK processes, this research provides important implications for potential risks associated with the trophic transfer of MNP mixtures.
Collapse
Affiliation(s)
- Juan Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- Leiden University College, Leiden University, P.O. Box 13228, 2501 EEThe Hague, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BABilthoven, The Netherlands
| |
Collapse
|
8
|
Dang DH, Wang W, Winkler G, Chatzis A. Rare earth element uptake mechanisms in plankton in the Estuary and Gulf of St. Lawrence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160394. [PMID: 36427738 DOI: 10.1016/j.scitotenv.2022.160394] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The global shift toward green energy alternatives escalates demands for new resources, including rare earth elements (REEs), as per their implications in various green innovations. However, our understanding of their environmental cycle, especially the interactions with aquatic organisms, remains deficient, ultimately hindering environmental protection efforts. Here, we investigate the accumulation of REEs and 18 other elements in bulk and sorted plankton collected with different net mesh sizes (30, 63, 200, 333, 500 μm) in the Estuary and Gulf of St. Lawrence in the summer and winter of 2020. We observed significant correlations between the concentrations of REEs and elements of different charge numbers and ionic radii (Ba, Co, Cs, Fe, Mn, Pb, Rb and V), indicating non-selective uptake of REEs into plankton. All these elements have their highest concentrations in the fluvial corridor and upper estuary, with more significant enrichment in phytoplankton ([La] = 26.4 ± 4.8 mg kg-1) than zooplankton ([La] = 11.6 ± 8.3 mg kg-1). Their concentrations decrease to the minimum in the Gulf of St. Lawrence, especially in zooplankton ([La] = 4.8 × 10-2 ± 3.2 × 10-2 mg kg-1). We also assessed REE patterns to identify differential REE fractionation processes and anomalies. The freshwater plankton exhibits enrichment of middle REEs (MREEs) relative to the light and heavy REEs (LREEs and HREEs), potentially because of the higher binding affinity of MREEs on cellular surface transporters and metal loading effects. In estuarine and marine settings, the REE patterns in biological samples align with suspended particles, exhibiting a linear trend with LREE enrichment. This process is more noticeable in sorted macrozooplankton, which have significant Eu anomalies (Eu/Eu* up to 2), indicating differential incorporation of REEs into the chitin shells. This study highlights the significant enrichment of REEs into freshwater primary producers and the accumulation pathway similar to other inorganic elements.
Collapse
Affiliation(s)
- Duc Huy Dang
- School of the Environment, Trent University, Peterborough, Canada; Department of Chemistry and Water Quality Center, Trent University, Peterborough, Canada.
| | - Wei Wang
- School of the Environment, Trent University, Peterborough, Canada
| | - Gesche Winkler
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Canada
| | - Anique Chatzis
- School of the Environment, Trent University, Peterborough, Canada
| |
Collapse
|
9
|
He E, Peijnenburg WJGM, Qiu H. Photosynthetic, antioxidative, and metabolic adjustments of a crop plant to elevated levels of La and Ce exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113922. [PMID: 35905629 DOI: 10.1016/j.ecoenv.2022.113922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Rare earth elements (REEs) have been widely applied as fertilizers in farmland of China for decades to improve the yield and quality of crops. Unfortunately, adverse effects on plants have been observed due to overdosing with REEs. Until now, the toxicology of REEs was mainly evaluated based on phenotypic responses, but knowledge gaps still exist concerning their metabolic effects. Here, the physiological responses and nontargeted metabolomics studies were combined to systematically explore the potential effects of La and Ce on a crop plant, wheat Triticum aestivum. It was observed that REEs accumulated in the shoots of wheat, with significant reduction of the shoot biomass at higher exposure doses. The disturbance of photosynthesis and induced oxidative stress were identified by analyzing indicators of the photosynthetic (chlorophyll a/b, carotenoid and rubisco) and antioxidant systems (POD, CAT, SOD, GSH and MDA). Furthermore, the global metabolic profiles of REEs treatment groups and the non-exposed control group were screened and compared, and the metabolomic disturbance of REEs was dose-dependent. A high overlap of significantly changed metabolites and matched disturbed biological pathways was found between La and Ce treatments, indicating similarity of their toxicity mechanism in wheat shoots. Generally, the perturbed metabolomic pathways were mainly related to carbohydrate, amino acid and nucleotide/side metabolism, suggesting a disturbance of carbon and nitrogen metabolism, which finally affected the growth of wheat. We thus proved the potential adverse effect of inappropriate application of REEs in crop plants and postulated metabolomics as a feasible tool to identify the underlying toxicological mechanisms.
Collapse
Affiliation(s)
- Erkai He
- School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 510006 Guangzhou, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720BA Bilthoven, the Netherlands; Institute of Environmental Sciences, Leiden University, 2300RA Leiden, the Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|
10
|
Egler SG, Niemeyer JC, Correia FV, Saggioro EM. Effects of rare earth elements (REE) on terrestrial organisms: current status and future directions. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:689-699. [PMID: 35362805 DOI: 10.1007/s10646-022-02542-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 05/23/2023]
Abstract
Rare Earth Elements (REE) are becoming increasingly important economically and highly exploited, thus contributing to REE increases in ecosystems. The ecotoxicological effects of REE on the terrestrial environment are, however, not fully understood and information on the biological effects of REE is urgently required for environmental risk assessments. In this review, studies and gaps in the existing scientific literature regarding the toxicological effects of REE on terrestrial organisms are presented. A total of 41 articles from the Web of Science database are discussed. La and Ce are the most studied elements, while little information is found concerning heavy REE. Most studies have been performed on plant species and few investigations are available for animals. Plant effects such as reduced mitotic index, germination and photosynthesis and antioxidant system enzyme alterations have been reported. Invertebrate effects include mortality, reproduction alterations and reduced locomotion. Based on the limited number of articles on terrestrial environment REE effects, this review highlights the need for more detailed studies in order to elucidate the effects associated with the REE hormesis and perform complete risk assessments with the establishment of safe REE usage limits.
Collapse
Affiliation(s)
- Silvia Gonçalves Egler
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brazil
| | - Júlia Carina Niemeyer
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais (PPGEAN), Federal University of Santa Catarina (UFSC), Campus of Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brazil
| | - Fábio Veríssimo Correia
- UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-240, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 - Manguinhos, 21040-360, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
He E, Qiu H. Lanthanum and cerium disrupt similar biological pathways and interact synergistically in Triticum aestivum as revealed by metabolomic profiling and quantitative modeling. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127831. [PMID: 34863565 DOI: 10.1016/j.jhazmat.2021.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The industrial and agricultural applications of rare earth elements (REEs) lead to considerable REE emissions into environment. Yet, little is known about the molecular-level effects and interactions of REEs in terrestrial plants. Herein, the individual and joint effects of La and Ce in Triticum aestivum were investigated using mass spectrometry-based metabolomics. Metabolic effect level index (MELI) was utilized as a readable endpoint for quantifying mixture interactions. Exposure to single La/Ce at environmentally relevant levels induced significant dose-dependent metabolic changes. The highly overlap of differential metabolites and perturbed pathways of La and Ce suggested their similar mode of action. Exposure to La-Ce mixtures did not induce additional metabolic pathway perturbation. Specifically, metabolism of amino sugar and nucleotide sugar, starch and sucrose, fructose and mannose, glycerophospholipid and purine were disrupted for both single and binary exposures. These results, together with physiological indicators, point to REE-induced oxidative stress, energy expenditure, DNA damage and membrane disturbance. The MELI calculations showed that La and Ce interacted synergistically at the overall metabolic level, which could be causally linked to synergistic interaction at the individual level (root elongation). This work proved metabolomics could be an important and effective strategy for interpreting toxicity and interactions of REE mixtures.
Collapse
Affiliation(s)
- Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Gong B, He E, Van Gestel CAM, Tang Y, Yang W, Yang J, Li Y, Qiu H. Dynamic interaction processes of rare earth metal mixtures in terrestrial organisms interpreted by toxicokinetic and toxicodynamic model. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126281. [PMID: 34111748 DOI: 10.1016/j.jhazmat.2021.126281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Despite the progress in explanation of mixture toxicity of rare earth elements (REEs), a large knowledge gap still exists in interpreting their mixed effects from a dynamic perspective. Here, we investigated the effects of La-Ce mixtures in Enchytraeus crypticus at different exposure times. The single and mixture toxicity of La and Ce increased with time, as reflected by the reduced LC50/MT50 values. With concentration addition as the reference model, the interactions between La and Ce were quantified by MIXTOX modelling tool, showing a time-dependent pattern with antagonistic effect after 1 and 2 d but additive effects afterwards. The dynamic accumulation and toxicity of La/Ce in organisms exposed to REE mixtures was fitted using a process-based toxicokinetic and toxicodynamic (TK-TD) model to unravel how the elements interacted. Generally, the estimated uptake, elimination, and damage rate constants of La/Ce declined with increasing level of each other, suggesting inhibited uptake and subsequently reduced toxicity of La/Ce due to competition effect. The interplay of La and Ce in TK and TD processes seemed responsible for the observed antagonism. Our study showed that mixture toxicity and interaction of REEs are time-dependent processes and application of TK-TD model may provide more insight into this dynamic effect.
Collapse
Affiliation(s)
- Bing Gong
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Yang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|