1
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
2
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
3
|
Gautam P, Pandey AK, Gupta A, Dubey SK. Microcosm-omics centric investigation reveals elevated bacterial degradation of imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121402. [PMID: 36889658 DOI: 10.1016/j.envpol.2023.121402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Imidacloprid, a broad-spectrum insecticide, is widely used against aphids and other sucking insects. As a result, its toxic effect is becoming apparent in non-targeted organisms. In-situ bioremediation of residual insecticide from the environment utilizing efficient microbes would be helpful in reducing its load. In the present work, in-depth genomics, proteomics, bioinformatics, and metabolomics analyses were employed to reveal the potential of Sphingobacterium sp. InxBP1 for in-situ degradation of imidacloprid. The microcosm study revealed ∼79% degradation with first-order kinetics (k = 0.0726 day-1). Genes capable of mediating oxidative degradation of imidacloprid and subsequent decarboxylation of intermediates were identified in the bacterial genome. Proteome analysis demonstrated significant overexpression of the enzymes coded by these genes. Bioinformatic analysis revealed significant affinity and binding of the identified enzymes for their respective substrates (the degradation pathway intermediates). The nitronate monooxygenase (K7A41 01745), amidohydrolase (K7A41 03835 and K7A41 07535), FAD-dependent monooxygenase (K7A41 12,275), and ABC transporter enzymes (K7A41 05325, and K7A41 05605) were found to be effective in facilitating the transport and intracellular degradation of imidacloprid. The metabolomic study identified the pathway intermediates and validated the proposed mechanism and functional role of the identified enzymes in degradation. Thus, the present investigation provides an efficient imidacloprid degrading bacterial species as evidenced by its genetic attributes which can be utilized or further improved to develop technologies for in-situ remediation.
Collapse
Affiliation(s)
- Pallavi Gautam
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Ankush Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Gautam P, Pandey AK, Dubey SK. Multi-omics approach reveals elevated potential of bacteria for biodegradation of imidacloprid. ENVIRONMENTAL RESEARCH 2023; 221:115271. [PMID: 36640933 DOI: 10.1016/j.envres.2023.115271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The residual imidacloprid, a widely used insecticide is causing serious environmental concerns. Knowledge of its biodegradation will help in assessing its residual mass in soil. In view of this, a soil microcosm-based study was performed to test the biodegradation potential of Agrobacterium sp. InxBP2. It achieved ∼88% degradation in 20 days and followed the pseudo-first-order kinetics (k = 0.0511 day-1 and t1/2=7 days). Whole genome sequencing of Agrobacterium sp. InxBP2 revealed a genome size of 5.44 Mbp with 5179 genes. Imidacloprid degrading genes at loci K7A42_07110 (ABC transporter substrate-binding protein), K7A42_07270 (amidohydrolase family protein), K7A42_07385 (ABC transporter ATP-binding protein), K7A42_16,845 (nitronate monooxygenase family protein), and K7A42_20,660 (FAD-dependent monooxygenase) having sequence and functional similarity with known counterparts were identified. Molecular docking of proteins encoded by identified genes with their respective degradation pathway intermediates exhibited significant binding energies (-6.56 to -4.14 kcal/mol). Molecular dynamic simulation discovered consistent interactions and binding depicting high stability of docked complexes. Proteome analysis revealed differential protein expression in imidacloprid treated versus untreated samples which corroborated with the in-silico findings. Further, the detection of metabolites proved the bacterial degradation of imidacloprid. Thus, results provided a mechanistic link between imidacloprid and associated degradative genes/enzymes of Agrobacterium sp. InxBP2. These findings will be of immense significance in carrying out the lifecycle analysis and formulating strategies for the bioremediation of soils contaminated with insecticides like imidacloprid.
Collapse
Affiliation(s)
- Pallavi Gautam
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Zhang X, Huang Y, Chen WJ, Wu S, Lei Q, Zhou Z, Zhang W, Mishra S, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides. ENVIRONMENTAL RESEARCH 2023; 218:114953. [PMID: 36504008 DOI: 10.1016/j.envres.2022.114953] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids (NEOs) are fourth generation pesticides, which emerged after organophosphates, pyrethroids, and carbamates and they are widely used in vegetables, fruits, cotton, rice, and other industrial crops to control insect pests. NEOs are considered ideal substitutes for highly toxic pesticides. Multiple studies have reported NEOs have harmful impacts on non-target biological targets, such as bees, aquatic animals, birds, and mammals. Thus, the remediation of neonicotinoid-sullied environments has gradually become a concern. Microbial degradation is a key natural method for eliminating neonicotinoid insecticides, as biodegradation is an effective, practical, and environmentally friendly strategy for the removal of pesticide residues. To date, several neonicotinoid-degrading strains have been isolated from the environment, including Stenotrophomonas maltophilia, Bacillus thuringiensis, Ensifer meliloti, Pseudomonas stutzeri, Variovorax boronicumulans, and Fusarium sp., and their degradation properties have been investigated. Furthermore, the metabolism and degradation pathways of neonicotinoids have been broadly detailed. Imidacloprid can form 6-chloronicotinic acid via the oxidative cleavage of guanidine residues, and it is then finally converted to non-toxic carbon dioxide. Acetamiprid can also be demethylated to remove cyanoimine (=N-CN) to form a less toxic intermediate metabolite. A few studies have discussed the neonicotinoid toxicity and microbial degradation in contaminated environments. This review is focused on providing an in-depth understanding of neonicotinoid toxicity, microbial degradation, catabolic pathways, and information related to the remediation process of NEOs. Future research directions are also proposed to provide a scientific basis for the risk assessment and removal of these pesticides.
Collapse
Affiliation(s)
- Xidong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Shang C, Chen A, Cao R, Luo S, Shao J, Zhang J, Peng L, Huang H. Response of microbial community to the remediation of neonicotinoid insecticide imidacloprid contaminated wetland soil by Phanerochaete chrysosporium. CHEMOSPHERE 2023; 311:136975. [PMID: 36283437 DOI: 10.1016/j.chemosphere.2022.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid (IMI), a typic neonicotinoid insecticide, is widely used and persist in soils with long half-time causing serious threat to ecosystem and human health. It is urgent to develop suitable and effective methods to accelerate it degradation and alleviate its negative impacts in soil. In this study, the introduction of functional microbe white-rot fungus Phanerochaete chrysosporium to remediate IMI contaminated wetland soil was carried out. The remediation performance and the response of the soil microbial community were examined. The results showed that P. chrysosporium could improve the degradation of IMI in soil no matter the soil was sterilized or not. The bioaugmentation was especially observed in non-sterilized soil under the inoculation patterns of FE and SP with the maximum IMI degradation rate of 91% and 93% in 7 days, respectively. The invertase activity in soil was also enhanced with P. chrysosporium inoculation. Microbial community analysis revealed that P. chrysosporium inoculation could increase the diversity and richness of bacterial community, and stimulate some IMI degraders genera including Ochrobactrum, Leifsonia, Achromobacter, and Bacillus. Moreover, the xenobiotic degradation and metabolism pathway was generally enhanced with P. chrysosporium inoculation based on PICRUSt analysis. These obtained results demonstrated that the introduction of white-rot fungus is of great potentially enabling the remediation of neonicotinoids contaminated soil.
Collapse
Affiliation(s)
- Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Ruoyu Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| |
Collapse
|
7
|
Yu H, Le Roux JJ, Zhao M, Li W. Mikania sesquiterpene lactones enhance soil bacterial diversity and fungal and bacterial activities. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhu D, Ge C, Sun H, Wang J, He L. Bioremediation of tetramethyl thiuram disulfide and resource utilization of natural rubber wastewater by WR-2 Bacillus-dominated microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63182-63192. [PMID: 35449336 DOI: 10.1007/s11356-022-20267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Tetramethyl thiuram disulfide (TMTD), an emerging pollutant with ecotoxicity and accumulation in rubber wastewater, is directly discharged by factories into the surrounding soil to save costs, and this disrupts the nearby ecosystem. In this study, an efficient bioremediation microbial community (WR-2) dominated by Bacillus was acclimatized and isolated from soil contaminated by rubber wastewater. After passing through the metabolic process of WR-2, the ecotoxic TMTD decomposes within 14 days. In the pot experiment, WR-2 not only completed the bioremediation of contaminated soil but also significantly improved the crop growth conditions and the product quality. These results show that WR-2 has broad application prospects in the bioremediation of soil contaminated by rubber wastewater. It also provides a theoretical framework for the resource utilization of the effluent at the end of the initial rubber processing.
Collapse
Affiliation(s)
- Dayu Zhu
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Chengjun Ge
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Hongfei Sun
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Jun Wang
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Liujing He
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| |
Collapse
|
9
|
Kulkarni K, Chawan A, Kulkarni A, Gharat S. Bioremediation of imidacloprid using Azospirillium biofertilizer and Rhizobium biofertilizer. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Huslystyi A, Nedzvetsky V, Yermolenko S, Gasso V, Petrushevskyi V, Sukharenko E. Low Doses of Imidacloprid Induce Oxidative Stress and Neural Cell Disruption in Earthworm <i>Eisenia fetida</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.18052/www.scipress.com/ilns.84.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Imidacloprid is a widely used pesticide that belongs to the class of neonicotinoids. There is a piece of rising evidence that neonicotinoids exert cytotoxic effects in non-target organisms including vertebrate species such as mammals. Nevertheless, dose-limiting toxicity and molecular mechanisms of neonicotinoids' deleterious effects are still poorly understood. In accord to imidacloprid fate in the environment, the most of used pesticide is absorbed in the soil. Therefore, earthworms, which are prevailing soil organisms, could be considered as a target of neonicotinoids toxicity. The earthworm’s simple nervous system is a prospective model for neurotoxicological studies. We exposed earthworms to imidacloprid in a paper contact test with a doses range of 0.1‑0.4 µg/cm2 for 14 days. In the present work, we studied the imidacloprid effect on oxidative stress generation and neuronal marker neuron-specific enolase (NSE) expression. The exposure to imidacloprid induced a dose-dependent decrease in NSE. Both reactive oxygen species production and lipid peroxidation level were upregulated as well. Observed NSE decline suggests imidacloprid-caused disturbance in earthworm neuron cells. Obtained data have shown that relatively low doses of imidacloprid are potent to induce cytotoxicity in neurons. Furthermore, neurotoxicity could be recognized as one of an individual scenario of the general imidacloprid toxicity. Thus, presented results suggest the cytotoxicity of imidacloprid low doses in non-target organisms and hypothesize that NSE downregulation could be estimated as a biomarker of neonicotinoid cytotoxicity in a nervous system of non-insect species.
Collapse
|
11
|
Huslystyi A, Nedzvetsky V, Yermolenko S, Gasso V, Petrushevskyi V, Sukharenko E. Low Doses of Imidacloprid Induce Oxidative Stress and Neural Cell Disruption in Earthworm <i>Eisenia fetida</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.56431/p-af973e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Imidacloprid is a widely used pesticide that belongs to the class of neonicotinoids. There is a piece of rising evidence that neonicotinoids exert cytotoxic effects in non-target organisms including vertebrate species such as mammals. Nevertheless, dose-limiting toxicity and molecular mechanisms of neonicotinoids' deleterious effects are still poorly understood. In accord to imidacloprid fate in the environment, the most of used pesticide is absorbed in the soil. Therefore, earthworms, which are prevailing soil organisms, could be considered as a target of neonicotinoids toxicity. The earthworm’s simple nervous system is a prospective model for neurotoxicological studies. We exposed earthworms to imidacloprid in a paper contact test with a doses range of 0.1‑0.4 µg/cm2 for 14 days. In the present work, we studied the imidacloprid effect on oxidative stress generation and neuronal marker neuron-specific enolase (NSE) expression. The exposure to imidacloprid induced a dose-dependent decrease in NSE. Both reactive oxygen species production and lipid peroxidation level were upregulated as well. Observed NSE decline suggests imidacloprid-caused disturbance in earthworm neuron cells. Obtained data have shown that relatively low doses of imidacloprid are potent to induce cytotoxicity in neurons. Furthermore, neurotoxicity could be recognized as one of an individual scenario of the general imidacloprid toxicity. Thus, presented results suggest the cytotoxicity of imidacloprid low doses in non-target organisms and hypothesize that NSE downregulation could be estimated as a biomarker of neonicotinoid cytotoxicity in a nervous system of non-insect species.
Collapse
|
12
|
Anjos CS, Lima RN, Porto ALM. An overview of neonicotinoids: biotransformation and biodegradation by microbiological processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37082-37109. [PMID: 34056690 DOI: 10.1007/s11356-021-13531-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids are a class of pesticides widely used in different phases of agricultural crops. Similar to other classes of pesticides, they can damage human and environmental health if overused, and can be resistent to degradation. This is especially relevant to insect health, pollination, and aquatic biodiversity. Nevertheless, application of pesticides is still crucial for food production and pest control, and should therefore be carefully monitored by the government to control or reduce neonicotinoid contamination reaching human and animal feed. Aware of this problem, studies have been carried out to reduce or eliminate neonicotinoid contamination from the environment. One example of a green protocol is bioremediation. This review discusses the most recent microbial biodegradation and bioremediation processes for neonicotinoids, which employ isolated microorganisms (bacteria and fungi), consortiums of microorganisms, and different types of soils, biobeds, and biomixtures.
Collapse
Affiliation(s)
- Charlene S Anjos
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Rafaely N Lima
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
13
|
George DM, Vincent AS, Mackey HR. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00563. [PMID: 33304839 PMCID: PMC7714679 DOI: 10.1016/j.btre.2020.e00563] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Collapse
Key Words
- ALA, 5-Aminolevulinic acid
- APB, Anoxygenic phototrophic bacteria
- Anoxygenic phototrophic bacteria (APB)
- BChl, Bacteriochlorophyll
- BES, Bioelectrochemical systems
- BPV, Biophotovoltaic
- BPh, Bacteriopheophytin
- Bacteriochlorophyll (BChl)
- Chl, Chlorophyll
- CoQ10, Coenzyme Q10
- DET, Direct electron transfer
- DNA, Deoxyribonucleic acid
- DO, Dissolved oxygen
- DXP, 1 deoxy-d-xylulose 5-phosphate
- FPP, Farnesyl pyrophosphate
- Fe-S, Iron-Sulfur
- GNSB, Green non sulfur bacteria
- GSB, Green sulfur bacteria
- IPP, Isopentenyl pyrophosphate isomerase
- LED, light emitting diode
- LH2, light-harvesting component II
- MFC, Microbial fuel cell
- MVA, Mevalonate
- PH3B, Poly-3-hydroxybutyrate
- PHA, Poly-β-hydroxyalkanoates
- PHB, Poly-β-hydroxybutyrate
- PNSB, Purple non sulfur bacteria
- PPB, Purple phototrophic bacteria
- PSB, Purple sulfur bacteria
- Pheo-Q, Pheophytin-Quinone
- Photo-BES, Photosynthetic bioelectrochemical systems
- Photo-MFC, Photo microbial fuel cell
- Poly-β-hydroxyalkanoates (PHA)
- Purple phototrophic bacteria (PPB)
- Resource recovery
- RuBisCO, Ribulose-1,5-biphosphate carboxylase/oxygenase
- SCP, Single-cell protein
- SOB, Sulfide oxidizing bacteria
- SRB, Sulfate reducing bacteria
- Single-cell proteins (SCP)
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Annette S. Vincent
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
14
|
Pang S, Lin Z, Zhang Y, Zhang W, Alansary N, Mishra S, Bhatt P, Chen S. Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. TOXICS 2020; 8:toxics8030065. [PMID: 32882955 PMCID: PMC7560415 DOI: 10.3390/toxics8030065] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that has been widely used to control insect pests in agricultural fields for decades. It shows insecticidal activity mainly by blocking the normal conduction of the central nervous system in insects. However, in recent years, imidacloprid has been reported to be an emerging contaminant in all parts of the world, and has different toxic effects on a variety of non-target organisms, including human beings, due to its large-scale use. Hence, the removal of imidacloprid from the ecosystem has received widespread attention. Different remediation approaches have been studied to eliminate imidacloprid residues from the environment, such as oxidation, hydrolysis, adsorption, ultrasound, illumination, and biodegradation. In nature, microbial degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use, and from an environmental point of view, it is the most promising means, as it is the most effective, least hazardous, and most environmentally friendly. To date, several imidacloprid-degrading microbes, including Bacillus, Pseudoxanthomonas, Mycobacterium, Rhizobium, Rhodococcus, and Stenotrophomonas, have been characterized for biodegradation. In addition, previous studies have found that many insects and microorganisms have developed resistance genes to and degradation enzymes of imidacloprid. Furthermore, the metabolites and degradation pathways of imidacloprid have been reported. However, reviews of the toxicity and degradation mechanisms of imidacloprid are rare. In this review, the toxicity and degradation mechanisms of imidacloprid are summarized in order to provide a theoretical and practical basis for the remediation of imidacloprid-contaminated environments.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-8229
| |
Collapse
|